The Cerebellum

, Volume 4, Issue 4, pp 290–294 | Cite as

The cerebellum on the rise in human emotion

  • Dennis J. L. G. Schutter
  • Jack Van Honk
Scientific Papers


For decennia the cerebellum has largely been excluded from scientific enquiry beyond motor function. However, the intimate afferent and efferent connections to the midbrain and limbic system provide for the neuroanatomical foundation of cerebellar involvement in emotion and emotional disorders. Moreover, an increasing body of empirical evidence indicates that the cerebellum may be involved in emotion regulation. Both functional and structural abnormalities of the cerebellum have been demonstrated in emotional disorders, including depression and schizophrenia. Research shows that the functional repertoire of the cerebellum is broader than previously thought and its involvement in emotion is noteworthy.

Key words

Cerebellum clinical emotion homeostasis motivation neuroscience pacemaker psychopathology universal cerebellar transform 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kandel ER, Schwartz JH, Jessel TM. Principles of neural science (4th edn). New York: McGraw-Hill; 2000.Google Scholar
  2. 2.
    Snider RS, Maiti A. Cerebellar contributions to the Papez circuit. J Neurosci Res. 1976;2:133–46.PubMedCrossRefGoogle Scholar
  3. 3.
    Heath RG. Modulation of emotion with a brain pacemaker: Treatment for intractable psychiatric illness. J Nerv Ment Dis. 1977;165:300–17.PubMedGoogle Scholar
  4. 4.
    Schmahmann JD. An emerging concept. The cerebellar contribution to higher function. Arch Neurol. 1991;48: 1178–87.PubMedGoogle Scholar
  5. 5.
    Schmahmann JD. Disorders of the cerebellum: Ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004;16: 367–78.PubMedGoogle Scholar
  6. 6.
    Buck R. The biological affects: A typology. Psychol Rev. 1999;106:301–36.PubMedCrossRefGoogle Scholar
  7. 7.
    Papez JW. A proposed mechanism of emotion. Arch Neurol Psychiatry. 1937;38:725–43.Google Scholar
  8. 8.
    Peters M, Monjan AA. Behavior after cerebellar lesions in cats and monkeys. Physiol Behav. 1971;6:205–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Heath RG, Dempesy CW, Fontana CJ, Myers WA. Cerebellar stimulation: Effects on septal region, hippocampus, and amygdala of cats and rats. Biol Psychiatry. 1978; 13:501–29.PubMedGoogle Scholar
  10. 10.
    Supple WF Jr, Sebastiani L, Kapp BS. Purkinje cell responses in the anterior cerebellar vermis during Pavlovian fear conditioning in the rabbit. Neuroreport. 1993;4:975–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Sacchetti B, Scelfo B, Tempia F, Strata P. Long-term synaptic changes induced in the cerebellar cortex by fear conditioning. Neuron. 2004;42:973–82.PubMedCrossRefGoogle Scholar
  12. 12.
    Liotti M, Mayberg HS, Brannan SK, McGinnis S, Jerabek P, Fox PT. Differential limbic-cortical correlates of sadness and anxiety in healthy subjects: Implications for affective disorders. Biol Psychiatry. 2000;48:30–42.PubMedCrossRefGoogle Scholar
  13. 13.
    Wiech K, Seymour B, Kalisch R, EnnoStephan K, Koltzenburg M, Driver J, Dolan RJ. Modulation of pain processing in hyperalgesia by cognitive demand. Neuroimage. 2005;27:59–69.PubMedCrossRefGoogle Scholar
  14. 14.
    Habel U, Klein M, Kellermann T, Shah NJ, Schneider F. Same or different? Neural correlates of happy and sad mood in healthy males. Neuroimage. 2005;26:206–14.PubMedCrossRefGoogle Scholar
  15. 15.
    Mazzocchi G, Andreis PG, De Caro R, Aragona F, Gottardo L, Nussdorfer GG. Cerebellin enhances in vitro secretory activity of human adrenal gland. J Clin Endocrinol Metab. 1999;84:632–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Teicher MH, Andersen SL, Polcari A, Anderson CM, Navalta CP, Kim DM. The neurobiological consequences of early stress and childhood maltreatment. Neurosci Biobehav Rev. 2003;27:33–44.PubMedCrossRefGoogle Scholar
  17. 17.
    Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121:561–79.PubMedCrossRefGoogle Scholar
  18. 18.
    Levisohn L, Cronin-Golomb A, Schmahmann JD. Neuropsychological consequences of cerebellar tumour resection in children: Cerebellar cognitive affective syndrome in a paediatric population. Brain. 2000;123:1041–50.PubMedCrossRefGoogle Scholar
  19. 19.
    Duggal HS. Cognitive affective psychosis syndrome in a patient with sporadic olivopontocerebellar atrophy. J Neuropsychiatry Clin Neurosci. 2005;17:260–2.PubMedGoogle Scholar
  20. 20.
    Andreasen NC. A unitary model of schizophrenia. Arch Gen Psychiatry. 1999;56:781–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Okugawa G, Nobuhara K, Sugimoto T, Kinoshita T. Diffusion tensor imaging study of the middle cerebellar peduncles in patients with schizophrenia. Cerebellum. 2005;4:123–7.PubMedCrossRefGoogle Scholar
  22. 22.
    James AC, James S, Smith DM, Javaloyes A. Cerebellar, prefrontal cortex, and thalamic volumes over two time points in adolescent-onset schizophrenia. Am J Psychiatry. 2004;161:1023–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Kyosseva SV. The role of the extracellular signal-regulated kinase pathway in cerebellar abnormalities in schizophrenia. Cerebellum. 2004;3:94–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Loeber RT, Cintron CM, Yurgelun-Todd DA. Morphometry of individual cerebellar lobules in schizophrenia. Am J Psychiatry. 2001;158:952–4.PubMedGoogle Scholar
  25. 25.
    Okugawa G, Sedvall GC, Agartz I. Smaller cerebellar vermis but not hemisphere volumes in patients with chronic schizophrenia. Am J Psychiatry. 2003;160:1614–17.PubMedCrossRefGoogle Scholar
  26. 26.
    Ichimiya T, Okubo Y, Suhara T, Sudo Y. Reduced volume of the cerebellar vermis in neuroleptic-naive schizophrenia. Biol Psychiatry. 2001;49:20–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Soares JC, Mann JJ. The anatomy of mood disorders-review of structural neuroimaging studies. Biol Psychiatry. 1997; 41:86–106.PubMedCrossRefGoogle Scholar
  28. 28.
    Leroi I, O’Hearn E, Marsh L, Lyketsos CG, Rosenblatt A, Ross CA, Brandt J, Margolis RL. Psychopathology in patients with degenerative cerebellar diseases: A comparison to Huntington’s disease. Am J Psychiatry. 2002;159: 1306–14.PubMedCrossRefGoogle Scholar
  29. 29.
    Beyer JL, Krishnan KR. Volumetric brain imaging findings in mood disorders. Bipolar Disord. 2002;4:89–104.PubMedCrossRefGoogle Scholar
  30. 30.
    Neil P, Mills NP, DelBello MP, Caleb M, Adler CM, Strakowski SM. MRI analysis of cerebellar vermal abnormalities in bipolar disorder. Am J Psychiatry. 2005; 162:1530–3.CrossRefGoogle Scholar
  31. 31.
    Schmahmann JD. The role of the cerebellum on affect and psychosis. J Neurolinguist. 2000;13:189–214.CrossRefGoogle Scholar
  32. 32.
    Schweighofer N, Doya K, Kuroda S. Cerebellar aminergic neuromodulation: Towards a functional understanding. Brain Res Rev. 2004;44:103–16.PubMedCrossRefGoogle Scholar
  33. 33.
    Middleton FA, Strick PL. Cerebellar projections to the prefrontal cortex of the primate. J Neurosci. 2001;21: 700–12.PubMedGoogle Scholar
  34. 34.
    George MS, Belmaker RH. Transcranial magnetic stimulation in neuropsychiatry. Washington, DC: American Psychiatric Press; 2000.Google Scholar
  35. 35.
    Grafman J, Wassermann EM. Transcranial magnetic stimulation can measure and modulate learning and memory. Neuropsychologia. 1999;37:159–67.PubMedCrossRefGoogle Scholar
  36. 36.
    Daskalakis ZJ, Christensen BK, Fitzgerald PB, Fountain SI, Chen R. Reduced cerebellar inhibition in schizophrenia: a preliminary study. Am J Psychiatry. 2005;162:1203–5.PubMedCrossRefGoogle Scholar
  37. 37.
    Schutter DJLG, van Honk J, d’Alfonso AAL, Peper JS, Panksepp J. High frequency repetitive transcranial magnetic over the medial cerebellum induces a shift in the prefrontal electroencephalography gamma spectrum: a pilot study in humans. Neurosci Lett. 2003;336:73–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Schmahmann JD, Anderson CM, Newton N, Ellis R. The function of the cerebellum in cognition, affect and consciousness: Empirical support for the embodied mind. Conscious Emotion. 2001;2:273–309.CrossRefGoogle Scholar
  39. 39.
    Schutter DJLG, Van Honk J. A framework for targeting alternative brain regions with repetitive transcranial magnetic stimulation in the treatment of depression. J Psychiatry Neurosci. 2005;30:91–7.PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Affective Neuroscience Section, Department of Psychonomics, Helmholtz Research InstituteUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations