The Cerebellum

, Volume 4, Issue 1, pp 7–18

The Anp32 family of proteins containing leucine-rich repeats

Scientific Papers


Herein we describe the characteristic features of the Anp32 family represented by the cerebellar leucine-rich repeat protein (Lanp) and the cerebellar developmental-regulated protein 1 (Cpd1). The Anp32 family consists of 32 evolutionarilyconserved proteins and is included within the superfamily of leucine-rich repeat (LRR) proteins characterized by the presence of tandem arrays of a LRR, a structural motif implicated in the mediation of protein-protein interactions. We describe three novel human Anp32 proteins, reveal the evolutionary relationships of the members of the Anp32 family, provide insights into their biochemical and structural properties, and review their macromolecular interactions, substrate specificities, tissue distribution/expression patterns, and physiological and pathological roles. Recent findings indicate a conserved role of members of the Anp32 family during evolution in the modulation of cell signalling and transduction of gene expression to regulate the morphology and dynamics of the cytoskeleton, cell adhesion, neural development or cerebellar morphogenesis.

Key words

Anp32 Lanp Cpd1 leucine-rich repeats signal transduction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Matsuoka K, Taoka M, Satozawa N, Nakayama H, Ichimura T, Takahashi N, et al. A nuclear factor containing the leucine-rich repeats expressed in murine cerebellar neurons. Proc Natl Acad Sci USA. 1994;91:9670–4.PubMedCrossRefGoogle Scholar
  2. 2.
    Matilla A, Koshy BT, Cummings CJ, Isobe T, Orr HT, Zoghbi HY. The cerebellar leucine-rich acidic nuclear protein interacts with ataxin-1. Nature. 1997;389:974–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Radrizzani M, Vila-Ortiz G, Cafferata EG, Di Tella MC, Gonzalez-Guerrico A, Perandones C, et al. Differential expression of CPD1 during postnatal development in the mouse cerebellum. Brain Res. 2001;907:162–74.PubMedCrossRefGoogle Scholar
  4. 4.
    Mencinger M, Panagopoulos I, Contreras JA, Mitelman F, Aman P. Expression analysis and chromosomal mapping of a novel human gene, APRIL, encoding an acidic protein rich in leucines. Biochim Biophys Acta. 1998;1395:176–80.PubMedGoogle Scholar
  5. 5.
    Li M, Guo H, Damuni Z. Purification and characterization of two potent heat-stable protein inhibitors of protein phosphatase 2A from bovine kidney. Biochem. 1995;34:1988–96.CrossRefGoogle Scholar
  6. 6.
    Li M, Makkinje A, Damuni Z. Molecular identification of I1PP2A, a novel potent heat-stable inhibitor protein of protein phosphatase 2A. Biochem. 1996;35:6998–7002.CrossRefGoogle Scholar
  7. 7.
    Jiang M, Ma Y, Ni X, Cao G, Ji C, Cheng H, et al. Molecular cloning and characterization of a novel human gene (ANP32E alias LANPL) from human fetal brain. Cytogenet Genome Res. 2002;97:68–71.PubMedCrossRefGoogle Scholar
  8. 8.
    Vaesen M, Barnikol-Watanabe S, Gotz H, Awni LA, Cole T, Zimmermann B, et al. Purification and characterization of two putative HLA class II associated proteins: PHAPI and PHAPII. Biolog Chem Hoppe-Seyler. 1994;375:113–26.Google Scholar
  9. 9.
    Chen TH, Brody JR, Romantsev FE, Yu JG, Kayler AE, Voneiff E, et al. Structure of pp32, an acidic nuclear protein which inhibits oncogene-induced formation of transformed foci. Mol Biol Cell. 1996;7:2045–56.PubMedGoogle Scholar
  10. 10.
    Kadkol SS, Brody JR, Pevsner J, Bai J, Pasternack GR. Modulation of oncogenic potential by alternative gene use in human prostate cancer. Nature Med. 1999;5:275–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Mutai H, Toyoshima Y, Sun W, Hattori N, Tanaka S, Shiota K. PAL31, a novel nuclear protein, expressed in the developing brain. Biochem Biophys Res Commun. 2000;274:427–33.PubMedCrossRefGoogle Scholar
  12. 12.
    Zhu L, Perlaky L, Henning D, Valdez BC. Cloning and characterization of a new silver-stainable protein SSP29, a member of the LRR family. Biochem Mol Biol Int. 1997;42:927–35.PubMedGoogle Scholar
  13. 13.
    Kobe B, Kajava AV. The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol., 2001;11:725–32.PubMedCrossRefGoogle Scholar
  14. 14.
    Kobe B, Deisenhofer J. Crystal structure of porcine ribonuclease inhibitor, a protein with leucine-rich repeats. Nature. 1993;366:751–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Kajava AV, Kobe B. Assessment of the ability to model proteins with leucine-rich repeats in light of the latest structural information. Protein Sci. 2002;11:1082–90.PubMedCrossRefGoogle Scholar
  16. 16.
    Ceulemans H, De Maeyer M, Stalmans W, Bollen M. A capping domain for LRR protein interaction modules. FEBS Lett. 1999;456:349–51.PubMedCrossRefGoogle Scholar
  17. 17.
    Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.PubMedCrossRefGoogle Scholar
  18. 18.
    Henikoff S, Henikoff JG. Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci USA. 1992;89:10915–19.PubMedCrossRefGoogle Scholar
  19. 19.
    Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–80.PubMedCrossRefGoogle Scholar
  20. 20.
    Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17:368–76.PubMedCrossRefGoogle Scholar
  21. 21.
    Swofford DL. PAUP: Phylogenetic analysis using parsimony (and other methods). Version 4. Sunderland, MA: Sinauer Associates, 1998.Google Scholar
  22. 22.
    Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783–91.CrossRefGoogle Scholar
  23. 23.
    Graceffa P, Jancso A, Mabuchi K. Modification of acidic residues normalizes sodium dodecyl sulfate-polyacrylamide gel electrophoresis of caldesmon and other proteins that migrate anomalously. Arch Biochem Biophys. 1992;297:46–51.PubMedCrossRefGoogle Scholar
  24. 24.
    Lopez de Saro FJ, Woody AY, Helmann JD. Structural analysis of the Bacillus subtilis delta factor: a protein polyanion which displaces RNA from RNA polymerase. J Mol Biol. 1995;252:189–202.CrossRefGoogle Scholar
  25. 25.
    Littauer UZ, Giveon D, Thierauf M, Ginzburg I, Ponstingl H. Common and distinct tubulin binding sites for microtubuleassociated proteins. Proc Natl Acad Sci USA. 1986;83:7162–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Philpott A, Krude T, Laskey RA. Nuclear chaperones. Semin Cell Dev Biol. 2000;11:7–14.PubMedCrossRefGoogle Scholar
  27. 27.
    Myre MA, O’Day DH. Nucleomorphin. A novel, acidic, nuclear calmodulin-binding protein from dictyostelium that regulates nuclear number. J Biol Chem. 2002;277:19735–44.PubMedCrossRefGoogle Scholar
  28. 28.
    Arnan C, Saperas N, Prieto C, Chiva M, Ausio J. Interaction of nucleoplasmin with core histones. J Biol Chem. 2003;278:31319–24.PubMedCrossRefGoogle Scholar
  29. 29.
    Ye X, Sloboda RD. Molecular characterization of p62, a mitotic apparatus protein required for mitotic progression. J Biol Chem. 1997;272:3606–14.PubMedCrossRefGoogle Scholar
  30. 30.
    Banerjee S, Kundu TK. The acidic C-terminal domain and A-box of HMGB-1 regulates p53-mediated transcription. Nucleic Acids Res. 2003;31:3236–47.PubMedCrossRefGoogle Scholar
  31. 31.
    Opal P, Garcia JJ, Propst F, Matilla A, Orr HT, Zoghbi HY. Mapmodulin/leucine-rich acidic nuclear protein binds the light chain of microtubule associated protein 1B and modulates neuritogenesis. J Biol Chem. 2003;14:14.Google Scholar
  32. 32.
    Matsubae M, Kurihara T, Tachibana T, Imamoto N, Yoneda Y. Characterization of the nuclear transport of a novel leucine-rich acidic nuclear protein-like protein. FEBS Lett. 2000;468:171–5.PubMedCrossRefGoogle Scholar
  33. 33.
    Fornerod M, Ohno M, Yoshida M, Mattaj IW. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell. 1997;90:1051–60.PubMedCrossRefGoogle Scholar
  34. 34.
    Gallouzi IE, Steitz JA. Delineation of mRNA export pathways by the use of cell-permeable peptides. Science. 2001;294:1895–901.PubMedCrossRefGoogle Scholar
  35. 35.
    Rodriguez JA, Span SW, Ferreira CG, Kruyt FA, Giaccone G. CRM1-mediated nuclear export determines the cytoplasmic localization of the antiapoptotic protein Survivin. Exp Cell Res. 2002;275:44–53.PubMedCrossRefGoogle Scholar
  36. 36.
    Sigrist CJ, Cerutti L, Hulo N, Gattiker A, Falquet L, Pagni M, et al. PROSITE: a documented database using patterns and profiles as motif descriptors. Brief Bioinform. 2002;3:265–74.PubMedCrossRefGoogle Scholar
  37. 37.
    Guex N, Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997;18:2714–23.PubMedCrossRefGoogle Scholar
  38. 38.
    Schwede T, Kopp J, Guex N, Peitsch MC. SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res. 2003;31:3381–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Price SR, Evans PR, Nagai K. Crystal structure of the spliceosomal U2B′’-U2A′ protein complex bound to a fragment of U2 small nuclear RNA. Nature. 1998;394:645–50.PubMedCrossRefGoogle Scholar
  40. 40.
    Wu H, Maciejewski MW, Marintchev A, Benashski SE, Mullen GP, King SM. Solution structure of a dynein motor domain associated light chain. Nat Struct Biol. 2000;7:575–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Kobe B, Deisenhofer J. Mechanism of ribonuclease inhibition by ribonuclease inhibitor protein based on the crystal structure of its complex with ribonuclease A. J Mol Biol. 1996;264:1028–43.PubMedCrossRefGoogle Scholar
  42. 42.
    Ulitzur N, Rancano C, Pfeffer SR. Biochemical characterization of mapmodulin, a protein that binds microtubuleassociated proteins. J Biol Chem. 1997;272:30577–82.PubMedCrossRefGoogle Scholar
  43. 43.
    Itin C, Ulitzur N, Muhlbauer B, Pfeffer SR. Mapmodulin, cytoplasmic dynein, and microtubules enhance the transport of mannose 6-phosphate receptors from endosomes to the trans-golgi network. Mol Biol Cell. 1999;10:2191–7.PubMedGoogle Scholar
  44. 44.
    Brody JR, Kadkol SS, Mahmoud MA, Rebel JM, Pasternack GR. Identification of sequences required for inhibition of oncogene-mediated transformation by pp32. J Biol Chem. 1999;274:20053–5.PubMedCrossRefGoogle Scholar
  45. 45.
    Bai J, Brody JR, Kadkol SS, Pasternack GR. Tumor suppression and potentiation by manipulation of pp32 expression. Oncogene. 2001;20:2153–60.PubMedCrossRefGoogle Scholar
  46. 46.
    Beresford PJ, Zhang D, Oh DY, Fan Z, Greer EL, Russo ML, et al. Granzyme A activates an endoplasmic reticulumassociated caspase-independent nuclease to induce singlestranded DNA nicks. J Biol Chem. 2001;276:43285–93.PubMedCrossRefGoogle Scholar
  47. 47.
    Fan Z, Beresford PJ, Oh DY, Zhang D, Lieberman J. Tumor suppressor NM23-H1 is a granzyme A-activated DNase during CTL-mediated apoptosis, and the nucleosome assembly protein SET is its inhibitor. Cell. 2003;115:241.CrossRefGoogle Scholar
  48. 48.
    Jiang X, Kim HE, Shu H, Zhao Y, Zhang H, Kofron J, et al. Distinctive roles of PHAP proteins and prothymosin-alpha in a death regulatory pathway. Science. 2003;299:223–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Theodosiou A, Ashworth A. MAP kinase phosphatases. Genome Biol. 2002;3:REVIEWS3009.Google Scholar
  50. 50.
    Millward TA, Zolnierowicz S, Hemmings BA. Regulation of protein kinase cascades by protein phosphatase 2A. Trends Biochem Sci. 1999;24:186–91.PubMedCrossRefGoogle Scholar
  51. 51.
    Huelsken J, Behrens J. The Wnt signalling pathway. J Cell Sci. 2002;115:3977–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Li X, Yost HJ, Virshup DM, Seeling JM. Protein phosphatase 2A and its B56 regulatory subunit inhibit Wnt signaling in Xenopus. EMBO J. 2001;20:4122–31.PubMedCrossRefGoogle Scholar
  53. 53.
    Seo SB, McNamara P, Heo S, Turner A, Lane WS, Chakravarti D. Regulation of histone acetylation and transcription by INHAT, a human cellular complex containing the set oncoprotein. Cell. 2001;104:119–30.PubMedCrossRefGoogle Scholar
  54. 54.
    Rowe LB, Nadeau JH, Turner R, Frankel WN, Letts VA, Eppig JT, et al. Maps from two interspecific backcross DNA panels available as a community genetic mapping resource. Mamm Genome. 1994;5:253–74.PubMedCrossRefGoogle Scholar
  55. 55.
    Fink TM, Vaesen M, Kratzin HD, Lichter P, Zimmer M. Localization of the gene encoding the putative human HLA class II associated protein (PHAPI) to chromosome 15q22.3q23 by fluorescence in situ hybridization. Genomics. 1995;29:309–10.PubMedCrossRefGoogle Scholar
  56. 56.
    Clamp M, Andrews D, Barker D, Bevan P, Cameron G, Chen Y, et al. Ensembl 2002: accommodating comparative genomics. Nucleic Acids Res. 2003;31:38–42.PubMedCrossRefGoogle Scholar
  57. 57.
    Wang J, Williams RW, Manly KF. WebQTL: Web-based complex trait analysis. Neuroinformatics. 2003;1:299–308.PubMedCrossRefGoogle Scholar
  58. 58.
    Letunic I, Copley RR, Schmidt S, Ciccarelli FD, Doerks T, Schultz J, et al. SMART 4.0: towards genomic data integration. Nucleic Acids Res. 2004;32 Database issue:D 142–4.CrossRefGoogle Scholar
  59. 59.
    Sun W, Hattori N, Mutai H, Toyoshima Y, Kimura H, Tanaka S, et al. PAL31, a nuclear protein required for progression to the S phase. Biochem Biophys Res Commun. 2001;280:1048–54.PubMedCrossRefGoogle Scholar
  60. 60.
    Kurihara T, Hori M, Takeda H, Inoue M, Yoneda Y. Partial purification and characterization of a protein kinase that is activated by nuclear localization signal peptides. FEBS Lett. 1996;380:241–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Brennan CM, Gallouzi IE, Steitz JA. Protein ligands to HuR modulate its interaction with target mRNAs in vivo. J Cell Biol. 2000;151:1–14.PubMedCrossRefGoogle Scholar
  62. 62.
    Kins S, Crameri A, Evans DR, Hemmings BA, Nitsch RM, Gotz J. Reduced protein phosphatase 2A activity induces hyperphosphorylation and altered compartmentalization of tau in transgenic mice. J Biol Chem. 2001;276:38193–200.PubMedGoogle Scholar
  63. 63.
    Holmes SE, O’Hearn EE, McInnis MG, Gorelick-Feldman DA, Kleiderlein JJ, Callahan C, et al. Expansion of a novel CAG trinucleotide repeat in the 5′ region of PPP2R2B is associated with SCA12. Nat Genet. 1999;23:391–2.PubMedCrossRefGoogle Scholar
  64. 64.
    Chen HK, Fernandez-Funez P, Acevedo SF, Lam YC, Kaytor MD, Fernandez MH, et al. Interaction of Aktphosphorylated ataxin-1 with 14-3-3 mediates neurodegeneration in spinocerebellar ataxia type 1. Cell. 2003;113:457–68.PubMedCrossRefGoogle Scholar
  65. 65.
    Chen DH, Brkanac Z, Verlinde CL, Tan XJ, Bylenok L, Nochlin D, et al. Missense mutations in the regulatory domain of PKCgamma: A new mechanism for dominant nonepisodic cerebellar ataxia. Am J Hum Genet. 2003;72:839–49.PubMedCrossRefGoogle Scholar
  66. 66.
    Launey T, Endo S, Sakai R, Harano J, Ito M. Protein phosphatase 2A inhibition induces cerebellar long-term depression and declustering of synaptic AMPA receptor. Proc Natl Acad Sci USA. 2004;101:676–81.PubMedCrossRefGoogle Scholar
  67. 67.
    Clamp M, Cuff J, Searle SM, Barton GJ. The Jalview Java alignment editor. Bioinformatics. 2004;20:426–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Schmid KJ, Tautz D. A screen for fast evolving genes from Drosophila. Proc Natl Acad Sci USA. 1997;94:9746–50.PubMedCrossRefGoogle Scholar

Copyright information

© Taylor & Francis Group Ltd 2005

Authors and Affiliations

  1. 1.Institute of Child HealthUniversity College LondonLondonUK
  2. 2.Fundacion Instituto Leloir (IIB-FCEyN-UBA)Buenos AiresArgentina
  3. 3.Centro Nacional de Genética Médica (ANLIS)Buenos AiresArgentina

Personalised recommendations