Skip to main content
Log in

Exploring the cerebellum with a new tool: neonatal Borna disease virus (BDV) infection of the rat’s brain

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Cerebellar pathology has been associated with a number of developmental behavioral disorders, including autism spectrum disorders. Despite the fact that perinatal virus infections have been implicated in neurodevelopmental damage, few animal models have been developed to study the pathogenesis involved. One of the most interesting in vivo models of virus-induced cerebellar damage is the neonatal Borna disease virus (BDV) infection of the rat brain. The present review describes molecular, cellular, neuroanatomical, neurochemical and behavioral features of the BDV model and also provides a basis for a new understanding of the pathogenic mechanisms of cerebellar malformation and associated behavioral deficits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Watson PJ. Nonmotor function of the cerebellum. Psychol Bull 1978; 85: 944–967.

    Article  PubMed  CAS  Google Scholar 

  2. Schmahmann JD. An emerging concept. The cerebellar contribution to higher function. Arch Neurol 1991; 48: 1178–1187.

    PubMed  CAS  Google Scholar 

  3. Snider SR. Cerebellar pathology in schizophrenia—cause or consequence? Neurosci Biobehav Rev 1982; 6: 47–53.

    Article  PubMed  CAS  Google Scholar 

  4. Martin P, Albers M. Cerebellum and schizophrenia: a selective review. Schizoph Bull 1995; 21: 241–250.

    PubMed  CAS  Google Scholar 

  5. Bauman ML, Filipek PA, Kemper TL. Early infantile autism. Int Rev Neurobiol 1997; 41: 367–88.

    Article  PubMed  CAS  Google Scholar 

  6. Pierce K, Courchesne E. Evidence for a cerebellar role in reduced exploration and stereotyped behavior in autism. Biol Psychiatry 2001; 49: 655–664.

    Article  PubMed  CAS  Google Scholar 

  7. Giedd JN, Blumenthal J, Molloy E, Castellanos FX. Brain imaging of attention deficit/hyperactivity disorder. Ann N Y Acad Sci 2001; 931: 33–49.

    PubMed  CAS  Google Scholar 

  8. Rapoport M, van Reekum R, Mayberg H. The role of the cerebellum in cognition and behavior: a selective review. J Neuropsychiatry Clin Neurosci 2000; 12: 193–198.

    PubMed  CAS  Google Scholar 

  9. Airman J, Bayer SA Development of the Cerebellar System in Relation to its Evolution, Structure, and Functions. Boca Raton: CRC Press, 1997.

    Google Scholar 

  10. Caston J, Lalonde R, Delhaye-Bouchaud N, Mariani J. The cerebellum and postural sensorimotor learning in mice and rats. Behav Brain Res 1998; 95: 17–22.

    Article  PubMed  CAS  Google Scholar 

  11. Molinari M, Petrosini L, Gremoli T. Hemicerebellectomy and motor behaviour in rats. II. Effects of cerebellar lesion performed at different developmental stages. Exp Brain Res 1990; 82: 483–492.

    Article  PubMed  CAS  Google Scholar 

  12. Funnum F, Lock EA. Cerebellum as a target for toxic substances. Toxicol Let 2000; 112-113: 9–16.

    Article  Google Scholar 

  13. Brunson KL, Khanna A, Cromwell HC, Cohen RW. Effects of the noncompetitive NMDA antagonists MK-801 and ketamine on the Spastic Han-Wistar Mutant: A rat model of excitotoxicity. Dev Neurosci 2001; 23: 31–40.

    Article  PubMed  CAS  Google Scholar 

  14. Wolf LW, LaRegina MC, Tolbert DL. A behavioral study of the development of hereditary cerebellar ataxia in the shaker rat mutant. Behav Brain Res 1996; 75: 67–81.

    Article  PubMed  CAS  Google Scholar 

  15. Johnson RT Viral Infections of the Nervous System. Philadelphia: Lippincott-Raven, 1998.

    Google Scholar 

  16. Yolken RH, Torrey EF. Viruses, schizophrenia and bipolar disorders. Clin Microbiol Rev 1995; 8: 131–145.

    PubMed  CAS  Google Scholar 

  17. Pearce BD. Schizophrenia and viral infection during neurodevelopment: a focus on mechanisms. Mol Psychiatry 2001; 6: 634–646.

    Article  PubMed  CAS  Google Scholar 

  18. Ferguson SA. Neuroanatomical and functional alterations resulting from early postnatal cerebellar insults in rodents. Pharmacol Biochem Behav 1996; 55: 663–671.

    Article  PubMed  CAS  Google Scholar 

  19. Rubin SA, Pletnikov M, Taffs R, Wright KE, Brown EG, Carbone KM. Evaluation of a neonatal rat model for prediction of mumps virus neurovirulence in humans. J Virol 2000; 74: 5382–5384.

    Article  PubMed  CAS  Google Scholar 

  20. Takano T, Uno M, Yamano T, Shimada M. Pathogenesis of cerebellar deformity in experimental Chiari type I malformation caused by mumps virus. Acta Neuropathol. 1994; 87: 168–173.

    PubMed  CAS  Google Scholar 

  21. Bonthius DJ, Mahoney J, Buchmeier MJ, Karacay B, Taggard D. Critical role for glial cells in the propagation and spread of lymphocytic choriomeningitis virus in the developing rat brain. J Virol 2002; 76: 6618–6635.

    Article  PubMed  CAS  Google Scholar 

  22. Raine CS, Fields BN. Reovirus type III encephalitis—a virologic and ultrastructural study. J Neuropathol Exp Neurol 1973; 32: 19–33.

    Article  PubMed  CAS  Google Scholar 

  23. Pletnikov MV, Moran TH, Carbone KM. Borna disease virus infection of the neonatal rat: developmental brain injury model of autism spectrum disorders. Frontiers Bioscience 2002; 7: 593–607.

    Article  Google Scholar 

  24. Oster-Granite ML, Herndon RM. The pathogenesis of parvovirusinduced cerebellar hypoplasia in the Syrian hamster, Mesocricetus auratus. Fluorescent antibody, foliation, cytoarchitectonic, golgi and electron microscopic studies. J Comp Neurol 1985; 169: 481–522.

    Article  Google Scholar 

  25. Monjan AA, Gilden DH, Cole GA, Nathonson N. Cerebellar hypoplasia in neonatal rats caused by limphocytic choriomeningitis virus. Science 1971; 171: 194–196.

    Article  PubMed  CAS  Google Scholar 

  26. de la Torre JC. Molecular biology of borna disease virus: prototype of a new group of animal viruses. J Virol 1994; 68: 7669–7675.

    PubMed  Google Scholar 

  27. Gosztonyi G, Ludwig H. Borna disease—neuropathology and pathogenesis. Curr Top Microbiol Immunol 1995; 190: 39–73.

    PubMed  CAS  Google Scholar 

  28. Herzog S, Rott R. Replication of Borna disease virus in cell culture. Med Microbiol Immunol 1980; 168: 153–158.

    Article  PubMed  CAS  Google Scholar 

  29. Carbone K. Borna disease virus and human disease. Clinical Microbiol Rev 2001; 14: 513–527.

    Article  CAS  Google Scholar 

  30. Narayan O, Herzog S, Frese K, Scheefers H, Rott R. Behavioral disease in rats caused by immunopathological responses to persistent borna virus in the brain. Science 1983; 220: 1401–1403.

    Article  PubMed  CAS  Google Scholar 

  31. Hirano N, Kao M, Ludwig H. Persistent, tolerant or subacute infection in Borna disease virus-infected rats. J Gen Virol 1983; 64: 1521–1530.

    Article  PubMed  Google Scholar 

  32. Carbone KM, Park SW, Rubin SA, Waltrip II RW, Vogelsang GB. Borna disease: association with a maturation defect in the cellular immune response. J Virol 1991; 65: 6154–6164.

    PubMed  CAS  Google Scholar 

  33. Hornig M, Weissenbock H, Horscroft N, Lipkin WI. An infectedbased model of neurodevelopmental damage. Proc Natl Acad Sci USA 1999; 96: 12102–12107.

    Article  PubMed  CAS  Google Scholar 

  34. Ciaranello AL, Ciaranello RD. The neurobiology of infantile autism. Annu Rev Neurosci 1995; 18: 101–28.

    Article  PubMed  CAS  Google Scholar 

  35. Lord KE, Cook B, Leventhal N, Amaral DG. Autism spectrum disorders. Neuron 2000; 28: 355–363.

    Article  PubMed  CAS  Google Scholar 

  36. Bautista JR, Rubin SA, Moran TH, Schwartz GJ, Carbone KM. Early and persistent abnormalities in rats with neonatally acquired Borna disease virus infection. Brain Res Bull 1994; 34: 31–40.

    Article  PubMed  CAS  Google Scholar 

  37. Pletnikov M, Rubin S, Carbone K, Moran T, Schwartz GJ. Neonatal Borna disease virus infection (BDV)-induced damage to the cerebellum is associated with sensorimotor deficits in developing Lewis. Dev Brain Res 2001; 126: 1–12.

    Article  CAS  Google Scholar 

  38. Bautista JR, Rubin SA, Moran TH, Schwartz GJ, Carbone KM. Developmental injury to the cerebellum following perinatal Borna disease virus infection. Dev Brain Res 1995; 90: 45–53.

    Article  CAS  Google Scholar 

  39. Gonzalez-Dunia D, Sauder Ch, De la Torre JC. Borna disease virus and the brain. Brain Res Bull 1997; 44: 647–664.

    Article  PubMed  CAS  Google Scholar 

  40. Carbone KM, Trapp BD, Griffin JW, Duchala CS, Narayan O. Astrocytes and Schwann cells are virus-host cells in the nervous systems of rats with borna disease. J Neuropath Exp Neurol 1989; 48: 631–644.

    Article  PubMed  CAS  Google Scholar 

  41. Weissenbock H, Hornig M, Hickey WF, Lipkin WI. Microglial activation and neuronal apoptosis in Bornavirus infected neonatal Lewis rats. Brain Pathol 2000; 10: 260–272.

    Article  PubMed  CAS  Google Scholar 

  42. Stitz L, Noske K, Planz O, Furrer E, Lipkin WI, Bilzer T. A functional role for neutralizing antibodies in Borna disease: influence on virus tropism outside the central nervous system. J Virol 1998; 72: 8884–8892.

    PubMed  CAS  Google Scholar 

  43. Eisenman LM, Brothers R, Tran MH, Kean RB, Dickson GM, Dietzschold B, Hooper DC. Neonatal Borna disease virus infection in the rat causes a loss of Purkinje cells in the cerebellum. J Neurovirol 1999; 5: 181–189.

    Article  PubMed  CAS  Google Scholar 

  44. Zocher M, Czub S, Schulte-Monting J, de la Torre JC, Sauder C. Alterations in neurotrophin and neurotrophin receptor gene expression patterns in the rat central nervous system following Borna disease virus infection. J NeuroVirol 2000; 6: 462–477.

    Article  PubMed  CAS  Google Scholar 

  45. Rubin S, Bautista J, Moran T, Schwartz G, Carbone KM. Viral teratogenesis: brain developmental damage associated with maturation state at time of infection. Dev Brain Res 1991; 112: 237–244.

    Article  Google Scholar 

  46. Goldowitz D, Hamre K. The cells and molecules that make a cerebellum. Trends in Neurosci. 1998; 21: 375–382.

    Article  CAS  Google Scholar 

  47. Smeyne RJ, Chu T, Lewin A, Bian F, Crisman S, Kunsch C, Lira SA, Oberdick J. Local control of granule cell generation by cerebellar Purkinje cells. Mol Cell Neurosci 1995; 6: 230–251.

    Article  PubMed  CAS  Google Scholar 

  48. Mullen Rj, Eicher EM, Sidman RL. Purkinje cell degeneration, a new neurological mutation in the mouse. Proc Natl Acad Sci USA 1976; 73: 208–212.

    Article  PubMed  CAS  Google Scholar 

  49. Tolbert DL, Ewald M, Gutting J, LaRegina MC. Spatial and temporal pattern of Purkinje cell degeneration in shaker mutant rats with hereditary cerebellar ataxia. J Comp Neurol 1995; 355: 490–507.

    Article  PubMed  CAS  Google Scholar 

  50. Wagemann E, Schmidt-Kastner R, Block F, Somtag KH. Neuronal degeneration in hippocampus and cerebellum of mutant spastic Han-Wistar rats. Neurosci Lett 1991; 121: 102–106.

    Article  PubMed  CAS  Google Scholar 

  51. Gould E, McEwen BS. Neuronal birth and death. Curr Opin Neurobiol 1993; 3: 676–682.

    Article  PubMed  CAS  Google Scholar 

  52. Gonzalez-Dunia D, Watanabe M, Syan S, Mallory M, Masliah E, de la Torre JC. Synaptic pathology in Borna disease virus persistent infection. J Virol 2000; 74: 3441–3448.

    Article  PubMed  CAS  Google Scholar 

  53. Turlejski K, Djavadian R. Life-long stability of neurons: a century of research on neurogenesis, neuronal death and neuron quantification in adult CNS. Prog Brain Res 2002; 136: 39–65.

    Article  PubMed  Google Scholar 

  54. Hans A, Syan S, Crosio C, Sassone-Corsi P, Brahic M, Gonzalez-Dunia D. Borna disease virus persistent infection activates mitogen-activated protein kinase and blocks neuronal differentiation of PC12 cells. J Biol Chem 2001; 276: 7258–7265.

    Article  PubMed  CAS  Google Scholar 

  55. Kamitani W, Shoya Y, Kobayashi T, Watanabe M, Lee BJ, Zhang G, Tomonaga K, Ikuta K. Borna disease virus phosphoprotein binds a neurite outgrowth factor, amphoterin/HMG-1. J Virol 2001; 18: 8742–8751.

    Article  Google Scholar 

  56. Carbone KM, Duchala CS, Griffin JW, Kincaid AL, Narayan O. Pathogenesis of Borna disease in rats: evidence that intra-axonal spread is the major route for virus dissemination and the determinant for disease incubation. J Virol 1987; 61: 3431–3440.

    PubMed  CAS  Google Scholar 

  57. Becher B, Prat A, Antel JP. Brain-immune connection: immunoregulatory properties of CNS-resident cells. Glia 2000; 29: 293–304.

    Article  PubMed  CAS  Google Scholar 

  58. Sauder C, de la Torre JC. Cytokine expression in the rat central nervous system following perinatal Borna disease virus infection. J Neuroimmunol 1999; 96: 29–45.

    Article  PubMed  CAS  Google Scholar 

  59. Plata-Salamán C, Ilyin S, Gayle D, Romanovitch A, Carbone KM. Persistent Borna disease virus infection of neonatal rats causes brain regional changes of mRNAs for cytokines, cytokine receptor components and neuropeptides. Brain Res Bull 1999; 49: 441–451.

    Article  PubMed  Google Scholar 

  60. Sauder C, Hallensleben W, Pagemstecher A, Schneckenburger S, Biro L, Pertlick D, Hausmann J, Suter M, Staeheli P. Chemokine gene expression in astrocytes of Borna disease virus-infected rats and mice in the absence of inflammation. J Virol 2000; 74: 9267–9280.

    Article  PubMed  CAS  Google Scholar 

  61. Rauer M, Pagenstecher A, Schulte-Monting J, Sauder C. Upregulation of chemokine receptor gene expression in brains of Borna disease virus (BDV)-infected rats in the absence and presence of inflammation. J Neurovirol 2002; 8: 168–179.

    Article  PubMed  CAS  Google Scholar 

  62. Lu M, Grove EA, Miller RJ. Abnormal development of the hippocampal dentate gyrus in mice lacking the CXCR4 chemokine receptor. Proc Natl Acad Sci USA 2002; 99: 7090–7095.

    Article  PubMed  CAS  Google Scholar 

  63. Hallensleben W, Schwemmle M, Hausmann J, Stitz L, Volk B, Pagenstecher A, Staeheli P. Borna disease virus-induced neurological disorder in mice: infection of neonates results in immunopathology. J Virol 1998; 72: 4379–4386.

    PubMed  CAS  Google Scholar 

  64. Sauder C, Wolfer DP, Lipp HP, Staeheli P, Hausmann J. Learning deficits in mice with persistent Borna disease virus infection of the CNS associated with elevated chemokine expression. Behav Brain Res 2001; 120: 189–201.

    Article  PubMed  CAS  Google Scholar 

  65. Benes FM, Berreta S. GABAergic interneurons: implications for understanding schizophrenia and bipolar disorders. Neuropsychopharmacol 2001; 25: 1–27.

    Article  CAS  Google Scholar 

  66. Parri HR, Gould TM, Crunelli V. Spontaneous astrocytic Ca2+oscillations in situ drive NMDAR-mediated neuronal excitation. Nat Neurosci. 2001; 4: 803–812.

    Article  PubMed  CAS  Google Scholar 

  67. Sattler R, Tymianski M. Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. Mol Neurobiol. 2001; 24: 107–129.

    Article  PubMed  CAS  Google Scholar 

  68. Billaud JN, Ly C, Phillips TR, de la Torre JC. Borna disease virus persistence causes inhibition of glutamate uptake by feline primary cortical astrocytes. J Virol 2000; 74: 10438–10446.

    Article  PubMed  CAS  Google Scholar 

  69. Dieudonne S. Serotonergic neuromodulation in the cerebellar cortex: cellular, synaptic and molecular basis. Neuroscientist 2001; 7: 207–219.

    Article  PubMed  CAS  Google Scholar 

  70. Woodward DJ, Moises HC, Waterhouse BD, Yeh HH, Cheun JE. The cerebellar norepinephrine system: inhibition, modulation, and gating. Prog Brain Res 1991; 88: 331–341.

    Article  PubMed  CAS  Google Scholar 

  71. Pletnikov M, Rubin S, Schwartz G, Carbone K, Moran TH. Effects of neonatal rat Borna disease virus (BDV) infection on the postnatal development of brain monoaminergic systems. Dev Brain Res 2000; 119: 179–185.

    Article  CAS  Google Scholar 

  72. Sanberg PR, Moran TH, Coyle JT. Microencephaly: cortical hypoplasia induced by methylazoxymethanol. In: Coyle, JT, editor, Animal Models of Dementia. New York: Alan R. Liss Inc., 1987: 253–278.

    Google Scholar 

  73. McEwen BS. Steroid hormone actions on the brain: when is the genome involved? Horm Behav 1994; 28: 396–405.

    Article  PubMed  CAS  Google Scholar 

  74. Airman J, Sudarshan K. Postnatal development of locomotion in the laboratory rat. Anim Behav 1975; 23: 896–920.

    Article  Google Scholar 

  75. Petrosini L, Molinari M, Gremoli T. Hemicerebellectomy and motor behaviour in rats. I. Development of motor function after neonatal lesion. Exp Brain Res 1990; 82: 472–482.

    Article  PubMed  CAS  Google Scholar 

  76. Pellis S, Pellis V. Development of righting when falling from a bipedal standing posture: evidence for the dissociation of dynamic and static righting reflexes in rats. Physiol Behav 1994; 56: 659–663.

    Article  PubMed  CAS  Google Scholar 

  77. Auvray N, Caston J, Reber A, Stelz T. Role of the cerebellum in the ontogenesis of the equilibrium behavior in the young rat: a behavioral study. Brain Res 1989; 505: 291–301.

    Article  PubMed  CAS  Google Scholar 

  78. Thullier F, Lalonde R, Cousin X, Lestienne F. Neurobehavioral evaluation of lurcher mutant mice during ontogeny. Dev Brain Res 1997; 100: 22–28.

    Article  CAS  Google Scholar 

  79. Oldstone MB. An old nemesis in new clothing: viruses playing new tricks by causing cytopathology in the absence of cytolysis. J Infect Dis 1985; 152: 665–667.

    PubMed  CAS  Google Scholar 

  80. Leonard CT, Goldberger ME. Consequences of damage of the sensorimotor cortex in neonatal and adult cats. I. Sparing and recovery of function. Dev Brain Res 1987; 32: 1–14.

    Article  Google Scholar 

  81. Dittrich W, Bode L, Kao M, Schneider K. Learning deficiencies in Borna disease virus-infected but clinically healthy rats. Biol Psychiatry 1989; 26: 818–828.

    Article  PubMed  CAS  Google Scholar 

  82. Pletnikov MV, Rubin SA, Schwartz GJ, Moran TH, Sobotka TJ, Carbone KM. Persistent neonatal Borna disease virus (BDV) infection of the brain causes chronic emotional abnormalities in adult rats. Physiol Behav 1999; 65: 823–831.

    Article  Google Scholar 

  83. Rubin S, Sylves P, Vogel M, Pletnikov M, Moran T, Schwartz G, Carbone KM. Borna disease virus-induced hippocampal dentate gyrus damage is associated with spatial learning and memory deficits. Brain Res Bull 1999; 48: 23–30.

    Article  PubMed  CAS  Google Scholar 

  84. Pletnikov MV, Rubin SA, Vasudevan K, Moran TH, Carbone KM. Developmental brain injury associated with abnormal play behavior in neonatally Borna Disease Virus (BDV)-infected Lewis rats: a model of autism. Behav Brain Res 1999; 100: 30–45.

    Article  Google Scholar 

  85. Levitsky DA, Strupp BJ. Malnutrition and the brain: changing concepts, changing concerns. J Nutr 1995; 125: 2212S-2220S.

    PubMed  CAS  Google Scholar 

  86. Hallensleben W, Schwemmle M, Hausmann J, Stitz L, Volk B, Pagenstecher A, Staeheli P. Borna disease virus-induced neurological disorder in mice: infection of neonates results in immunopathology. J Virol 1998; 72: 4379–4386.

    PubMed  CAS  Google Scholar 

  87. Watanabe ML, Byeong-Jae W, Kamitani T, Kobayashi H, Taniyama K, Tomonaga K, Ikuta K. Neurological diseases and viral dynamics in the brains of neonatally Borna disease virusinfected gerbils. Virology 2001; 282: 65–76.

    Article  PubMed  CAS  Google Scholar 

  88. Nishino Y, Kobasa D, Rubin SA, Pletnikov MV, Carbone KM. Enhanced neurovirulence of Borna disease virus variants associated with nucleotide changes in the glycoprotein and L polymerase genes. J Virol 2002; 76: 8650–8658.

    Article  PubMed  CAS  Google Scholar 

  89. Pletnikov MV, Rubin SA, Vogel MW, Moran TH, Carbone KM. Effects of genetic background on neonatal Borna disease virus infection-induced neurodevelopmental damage. I. Brain pathology and behavioral deficits. Brain Res 2002; 944: 97–107.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail V. Pletnikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carbone, K.M., Pletnikov, M.V., Rubin, S.A. et al. Exploring the cerebellum with a new tool: neonatal Borna disease virus (BDV) infection of the rat’s brain. Cerebellum 2, 62–70 (2003). https://doi.org/10.1080/14734220309425

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220309425

Keywords

Navigation