The Cerebellum

, Volume 2, Issue 2, pp 123–130

Context-dependent adaptation of visually-guided arm movements and vestibular eye movements: role of the cerebellum



Accurate motor control requires adaptive processes that correct for gradual and rapid perturbations in the properties of the controlled object. The ability to quickly switch between different movement synergies using sensory cues, referred to as context-dependent adaptation, is a subject of considerable interest at present. The potential function of the cerebellum in context-dependent adaptation remains uncertain, but the data reviewed below suggest that it may play a fundamental role in this process.


cerebellum adaptation vestibular reaching context 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Held R, Freedman SJ. Plasticity in human sensorimotor control. Science 1963; 142: 437–454.CrossRefGoogle Scholar
  2. 2.
    Gonshor A, Melvill Jones G. Plasticity in the adult human vestibulo-ocular reflex arc. Proc Can Fed Biol Soc 1971; 14: 11.Google Scholar
  3. 3.
    Fogt N, Jones R. The effect of refractive lenses on perceived visual direction. Vision Res 1996; 36: 3735–3741.PubMedCrossRefGoogle Scholar
  4. 4.
    Tuan K-M, Jones R. Adaptation to the prismatic effects of refractive lenses. Vision Res 1997; 37: 1851–1857.PubMedCrossRefGoogle Scholar
  5. 5.
    Shambes GM, Gibson JM, Welker W. Fractured somatotopy in granule cell tactile areas of rat cerebellar hemispheres revealed by micromapping. Brain Behav Evol 1978; 15: 94–140.PubMedCrossRefGoogle Scholar
  6. 6.
    Thach WT, Goodkin HP, Keating JG. The cerebellum and the adaptive coordination of movement. Ann Rev Neurosci 1992; 15: 403–442.PubMedCrossRefGoogle Scholar
  7. 7.
    McGonigle BO, Flook J. Long-term retention of single and multistate prismatic adaptation by humans. Nature 1978; 272: 364–366.PubMedCrossRefGoogle Scholar
  8. 8.
    Martin TA, Thach WT. Is learned gaze-hand coordination stored in the cerebellar cortex? Soc Neurosci Abstr 1997; 23: 749.Google Scholar
  9. 9.
    Martin TA, Keating JG, Bastian AJ, Thach WT. Throwing while looking through prisms. II. Specificity and storage of multiple gazethrow calibrations. Brain 1996; 119: 1199–1211.PubMedCrossRefGoogle Scholar
  10. 10.
    Ghahramani Z, Wolpert DM. Modular decomposition in visuomotor learning. Nature 1997; 386: 392–395.PubMedCrossRefGoogle Scholar
  11. 11.
    Scidler RD, Bloomberg JJ, Stelmach GE. Context-dependent arm pointing adaptation. Behav Brain Res 2001; 119: 155–166.CrossRefGoogle Scholar
  12. 12.
    Norris SA, Greger BE, Martin TA, Thach WT. Prism adaptation of reaching is dependent on the type of visual feedback of hand and target position. Brain Res 2001; 905: 207–219.PubMedCrossRefGoogle Scholar
  13. 13.
    Gordon AM, Westling G, Cole KJ, Johansson RS. Memory representations underlying motor commands used during manipulation of common and novel objects. J Neurophysiol 1993; 69: 1789–1796.PubMedGoogle Scholar
  14. 14.
    Cohn JV, DiZio P, Lackner JR. Reaching during virtual rotation: context specific compensations for expected Coriolis forces. J Neurophysiol 2000; 83: 3230–3240.PubMedGoogle Scholar
  15. 15.
    Gauthier GM, Hofferer J-M, Hoyt WF, Stark L. Visual-motor adaptation: quantitative demonstration in patients with posterior fossa involvement. Arch Neurol 1979; 36: 155–160.PubMedGoogle Scholar
  16. 16.
    Weiner MJ, Hallet M, Funkenstein HH. Adaptation to lateral displacement of vision in patients with lesions of the central nervous system. Neurology 1983; 33: 766–773.PubMedGoogle Scholar
  17. 17.
    Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT. Throwing while looking through prisms. I. Focal olivocerebellar lesions impair adaptation. Brain 1996; 119: 1183–1198.PubMedCrossRefGoogle Scholar
  18. 18.
    Baizer JS, Kralj-Hans I, Glickstein M. Cerebellar lesions and prism adaptation in macaque monkeys. J Neurophysiol 1999; 81: 1960–1965.PubMedGoogle Scholar
  19. 19.
    Glickstein M, Gerrits N, Kralj-Hans I, Mercier B, Stein J, Voogd J. Visual pontocerebellar projections in the macaque. J Comp Neurol 1994; 349: 51–72.PubMedCrossRefGoogle Scholar
  20. 20.
    Milak MS, Bracha V, Bloedel JR. Context-dependent modulation of cerebellar nuclear neurons related to the performance of specific movement segments. Soc Neurosci Abstr 1994; 20: 1746.Google Scholar
  21. 21.
    Lewis RF, Tamargo RJ. Cerebellar lesions impair contextdependent adaptation of reaching movements in primates. Exp Brain Res 2001; 138: 263–267.PubMedCrossRefGoogle Scholar
  22. 22.
    Yakushin SB, Raphan T, Cohen B. Context-specific adaptation of the vertical vestibuloocular reflex with regard to gravity. J Neurophysiol 2000; 84: 3067–3071.PubMedGoogle Scholar
  23. 23.
    Shelhamer M, Robinson DA, Tan HS. Context-specific adaptation of the gain of the vestibulo-ocular reflex in humans. J Vestib Res 1992; 2: 89–96.PubMedGoogle Scholar
  24. 24.
    Lisberger SG, Miles FA, Zee DS. Signals used to compute errors in monkey vestibulo-ocular reflex: possible role of flocculus. J Neurophysiol 1984; 52: 1140–1153.PubMedGoogle Scholar
  25. 25.
    Lewis RF, Zee DS. Ocular motor disorders associated with cerebellar lesions: pathophysiology and topical localization. Rev Neurol 1993; 149: 665–677.PubMedGoogle Scholar
  26. 26.
    Wearne S, Raphan T, Cohen B. Control of spatial orientation of the angular vestibuloocular reflex by the nodulus and uvula. J Neurophysiol 1998; 79: 2690–2715.PubMedGoogle Scholar
  27. 27.
    Schwarz U, Miles FA. Ocular responses to translation and their dependence on viewing distance. I. Motion of the observer. J Neurophysiol 1991; 66: 851–864.PubMedGoogle Scholar
  28. 28.
    Paige GD. The influence of target distance on eye movement responses during vertical linear motion. Exp Brain Res 1989; 77: 585–593.PubMedCrossRefGoogle Scholar
  29. 29.
    Crane BT, Demer JL. Human horizontal vestibulo-ocular reflex initiation: effects of angular acceleration, linear acceleration, stimulus intensity, target distance, and unilateral deafferentation. J Neurophysiol 1998; 80: 1151–1166.PubMedGoogle Scholar
  30. 30.
    Telford L, Scidman SH, Paige GD. Dynamics of squirrel monkey linear vestibuloocular reflex and interactions with fixation distance. J Neurophysiol 1997; 78: 1775–1790.PubMedGoogle Scholar
  31. 31.
    Snyder LH, King WM. Effect of viewing distance and location of the axis of head rotation on the monkey’s vestibuloocular reflex. I Eye movement responses. J Neurophysiol 1992; 67: 861–874.PubMedGoogle Scholar
  32. 32.
    Lisberger SG. The neural basis of learning simple motor skills. Science 1988; 242: 728–735.PubMedCrossRefGoogle Scholar
  33. 33.
    Broussard DM, Bronte-Stewart HM, Lisberger SG. Expression of motor learning in the response of the primate vestibuloocular pathway to electrical stimulation. J Neurophysiol 1992; 67: 1493–1508.PubMedGoogle Scholar
  34. 34.
    Angelaki DE, McHenry MQ. Short-latency primate vestibuloocular responses during translation. J Neurophysiol 1999; 82: 1651–1654.PubMedGoogle Scholar
  35. 35.
    Clendaniel RA, Lewis RF, Zee DS. Vergence dependent adaptation of the vestibuloocular reflex. Soc Neurosci Abstr 1994; 20: 567.Google Scholar
  36. 36.
    Baloh RW, Yue Q, Demer JL. The linear vestibulo-ocular reflex in normal subjects and patients with vestibular and cerebellar lesions. J Vestib Res 1995; 5: 349–361.PubMedCrossRefGoogle Scholar
  37. 37.
    Crane BT, Tian J-R, Demer JL. Initial vestibulo-ocular reflex during transient angular and linear acceleration in human cerebellar dysfunction. Exp Brain Res 2000; 130: 486–496.PubMedCrossRefGoogle Scholar
  38. 38.
    Lewis RF, Merfeld DM, Schmahmann J. Eye movements in cerebellar agenesis. Presented at the International Clinical Eye Movement Society symposium, Boston MA, October 2000.Google Scholar
  39. 39.
    Shelhamer M, Young LR. The interaction of otolith organ stimulation and smooth pursuit tracking. J Vestib Res 1994; 4: 1–15.PubMedGoogle Scholar
  40. 40.
    Anastasopoulos D, Haslwanter T, Fetter M, Dichgans J. Smooth pursuit eye movements and otolith-ocular responses are differently impaired in cerebellar ataxia. Brain 1998; 121: 1497–1505.PubMedCrossRefGoogle Scholar
  41. 41.
    Miles FA. The cerebellum. In: Carpenter RHS, editor. Eye Movements. London: MacMillan Press, 1991: 224–243.Google Scholar
  42. 42.
    Snyder LH, King WM. Behavior and physiology of the macaque vestibulo-ocular reflex response to sudden off-axis rotation: computing eye translation. Brain Res Bull 1996; 40: 293–301.PubMedCrossRefGoogle Scholar
  43. 43.
    Brashers-Krug T, Shadmehr R, Bizzi E. Consolidation in human motor memory. Nature 1996; 382: 252–255.PubMedCrossRefGoogle Scholar
  44. 44.
    Krakauer JW, Ghilardi MF, Ghez C. Independent learning of internal models for kinematic and dynamic control of reaching. Nat Neurosci 1999; 2: 1026–1031.PubMedCrossRefGoogle Scholar
  45. 45.
    Tong C, Wolpert DM, Flanagan JR. Kinematics and dynamics are not represented independently in motor working memory: evidence from an intereference study. J Neurosci 2002; 22: 1108–1113.PubMedGoogle Scholar
  46. 46.
    Gandolfo F, Mussa-Ivaldi FA, Bizzi E. Motor learning by field approximation. Proc Natl Acad Sci USA 1996; 93: 3843–3846.PubMedCrossRefGoogle Scholar
  47. 47.
    Wolpert DM, Ghahramani Z. Computational principles of movement neuroscience. Nature Neuroscience 2000; 3(suppl): 1212–1217.PubMedCrossRefGoogle Scholar

Copyright information

© Taylor & Francis 2003

Authors and Affiliations

  1. 1.Departments of Otolaryngology and NeurologyHarvard Medical SchoolBostonUSA

Personalised recommendations