The Cerebellum

, 1:35 | Cite as

Role of the cerebellar deep nuclei in respiratory modulation

Article

Abstract

The cerebellum contains three deep nuclei, i.e., the fastigial, interposed and lateral nucleus. Recent studies demonstrate that these nuclei play different roles in respiratory modulation. Activation of fastigial nuclear neurons predominantly increases ventilation via elevation of respiratory frequency and/or tidal volume. Ablation of the fastigial nucleus did not significantly alter eupneic breathing, but did markedly attenuate the respiratory response to medium and severe hypercapnia as well as hypoxia. The fastigial nucleus contains respiratory-modulated neurons and about 25% of these neurons do not show their respiratory-related phasic activity until exposed to hypercapnia. The fastigial nucleus also contains CO2/H+ chemosensitive sites that contributed to the respiratory response to hypercapnia. Therefore, it is concluded that fastigial nuclear facilitatory influence on chemoreflexes emerges during hypercapnia via recruiting intrinsic chemoreception and respiratory-modulated neurons. Full expression of the fastigial nucleus-mediated respiratory responses depends on the integrity of the medullary gigantocellular nucleus at least partially via monosynaptic projections. Additionally, the fastigial nucleus receives inhibitory inputs primarily from Purkinje cells located in the medial vermis and recent observations indicate that simulation of these Purkinje cells inhibits respiration. As compared to chemoreflexes, fastigial nuclear role in the respiratory mechanoreflexes is not significant. The studies related to the role of the interposed and lateral nucleus in eupneic breathing are limited and the results appear controversial. However, there is evidence to show that the interposed nucleus contains respiratory-modulated neurons and is involved in coughing motor control

Keywords

fastigial nucleus interposed nucleus gigantocellular nucleus hypercapnia hypoxia chemoreception respiratory-modulated neurons 

References

  1. 1.
    Bassal M., Bianchi AL. Inspiratory onset or termination induced by electrical stimulation of the brain. Respir Physiol 1982; 50: 23–40.PubMedCrossRefGoogle Scholar
  2. 2.
    Xu F., Frazier DT. Modulation of respiratory motor output by cerebellar deep nuclei in the rat. J Appl Physiol 2000; 89: 996–1004.PubMedGoogle Scholar
  3. 3.
    Bradley DJ., Pascoe JP., Paton JFR., Spyer KM. Cardiovascular and respiratory responses evoked from the posterior cerebellar cortex and fastigial nucleus in the cat. J Physiol 1987; 393: 107–121.PubMedGoogle Scholar
  4. 4.
    Hirano TK., Yoshida HK., Furuse M., Taniguchi K., Inao S. Fastigial pressor response observed during an operation on a patient with cerebellar bleeding. An anatomical review and clinical significance. Neurosurgery 1993; 32: 675.Google Scholar
  5. 5.
    Lutherer LO., Williams JL. Stimulating fastigial nucleus pressor region elicits patterned respiratory responses. Comp Physiol 1986; 250: R418–426.Google Scholar
  6. 6.
    Williams JL., Everse SJ., Lutherer LO. Stimulating fastigial nucleus alters central mechanisms regulating phrenic activity. Respir Physiol 1989; 76: 215–228.PubMedCrossRefGoogle Scholar
  7. 7.
    Xu F., Frazier DT. Medullary respiratory neuronal activity modulated by stimulation of the fastigial nucleus of the cerebellum. Brain Res 1995; 705: 53–64.PubMedCrossRefGoogle Scholar
  8. 8.
    Xu F, Zhou T, Gibson T, Frazier DT. Fastigial nucleus-mediated respiratory responses depend on the medullar gigantocellu-lar nucleus. J Appl Physiol 2001; in press.Google Scholar
  9. 9.
    Zhang Z., Xu F., Frazier DT. Role of the Bötzinger Complex in fastigial nucleus-mediated respiratory responses. Anatomical Record 1999; 254: 542–54.PubMedCrossRefGoogle Scholar
  10. 10.
    Ito M. The cerebellum and neural control. New York: Raven Press, 1984.Google Scholar
  11. 11.
    Huang Q., Zhou D., St. John WM. Cerebellar control of expiratory activities of medullary neurons and spinal nerves. J Appl Physiol 1993; 74: 1934–1940.PubMedGoogle Scholar
  12. 12.
    Farber JP. Expiratory effect of cerebellar stimulation in developing opossums. Am J Physiol 1987; 252: R1158-R1164.PubMedGoogle Scholar
  13. 13.
    Huang Q., Zhou D., St. John WM. Vestibular and cerebellar modulation of expiratory motor activities in the cat. J Physiol 1991; 436: 385–404.PubMedGoogle Scholar
  14. 14.
    Xu F., Owen J., Frazier DT. Respiratory response to hypoxia attenuated by ablation of the cerebellum or fastigial nuclei. J Appl Physiol 1995; 79: 1181–1189.PubMedGoogle Scholar
  15. 15.
    Xu F., Fazier DT., Zhang Z., Baekey DM., Shannon R. Cerebellar modulation of the cough motor pattern in cats. J Appl Physiol 1997; 83: 391–397.PubMedGoogle Scholar
  16. 16.
    Xu F., Owen J., Frazier DT. Cerebellar modulation of ventilatory response to progressive hypercapnia. J Appl Physiol 1994; 77: 1073–1080.PubMedGoogle Scholar
  17. 17.
    Speck DF., Webber CL (Jr). Cerebellar influence on the termination of inspiration by intercostal nerve stimulation. Respir Physiol 1982; 47: 231–238.PubMedCrossRefGoogle Scholar
  18. 18.
    Panda A., Senapati JM., Parida B., Fahim M. Role of the cerebellum in ventilatory change due to muscle-receptor stimulation in the dog. J Appl Physiol 1979; 47: 1062–1065.PubMedGoogle Scholar
  19. 19.
    Sanapati JM., Jain SK., Parida B., Panda A., Fahim M. The influence of the cerebellum on carbon dioxide response in the dog. Jpn J Physiol 1990; 40: 471–478.CrossRefGoogle Scholar
  20. 20.
    Ebert D., Hefter H., Dohle C., Freund H-J. Ataxic breathing during alternating forearm movements of various frequencies in cerebellar patients. Neurosci Lett 1995; 193: 145–148.PubMedCrossRefGoogle Scholar
  21. 21.
    Glasser RL., Tippett JW, Jr. Davidian VA. Cerebellar activity, apneustic breathing, and the neural control of respiration. Nature (London) 1966; 209: 810–812.CrossRefGoogle Scholar
  22. 22.
    Stella G. The effect of the cerebellum on respiration. J Physiol 1939; 96: 26p.Google Scholar
  23. 23.
    Bradley DJ., Ghelarducci B., La Noce A., Paton JFR., Spyer KM., Withington-Wray DJ. An electrophysiological and anatomical study of afferents reaching the cerebellar uvula in the rabbit. Exp Physiol 1990; 75: 163–177.PubMedGoogle Scholar
  24. 24.
    Decima EE., Euler C von. Intercostal and cerebellar influences on efferent phrenic activity in the decerebrate cat. Acta Physiol Scand 1969; 76: 148–158.PubMedGoogle Scholar
  25. 25.
    Moruzzi G. Paleocerebellar inhibition of vasomotor and respiratory carotid sinus reflexes. Neurophysiol 1940; 3: 20–32.Google Scholar
  26. 26.
    Stella G., Stevan G. Changes in the heart rate from stimulation of the cerebellar cortex in decerebrate dogs. Arch Int Pharmacodyn 1962; CXXXVI: 102.Google Scholar
  27. 27.
    Hayashi F., Coles SK., Bach KB., Mitchell GS., McCrimmom DR. Time-dependent phrenic nerve responses to carotid afferent activation: intact vs. decerebellate rats. Am J Physiol 1993; 256: R811–819.Google Scholar
  28. 28.
    Xu F., Zhang Z., Frazier DT. Ventilation in shaker mutant rats with hereditary Purkinje cell degeneration. Soc Neurosci (Abstr) 1998; 24: 379.Google Scholar
  29. 29.
    Xu F., Frazier DT. Involvement of the fastigial nuclei in vagally mediated respiratory responses. J Appl Physiol 1997; 82: 2054–2062.Google Scholar
  30. 30.
    Xu F., Taylor B., Lee LY., Frazier DT. Respiratory load-compensation II: Cerebellar role. J Appl Physiol 1992; 75: 675–681.Google Scholar
  31. 31.
    Mansfeld. G., Tyukody. V. Atemzentrum und narkose. Arch Int Pharmacodyn 1936; 54: 219.Google Scholar
  32. 32.
    Harper RM., Yu PL., Saeed MM., Alger JR., Woo MA., Gozal D., Keens TG. Time trends of cerebellar fastigial nucleus responses to hypercapnia in congenital central hypoventilation syndrome. Soc Neurosci (Abstract) 2000; 26: 557.Google Scholar
  33. 33.
    Cruz-Sanchez FF., Lucena J., Ascaso C., Tolosa E. Cerebellar cortex delayed maturation in sudden infant death syndrome. J Neuropathol Exp Neurol 1997; 56: 340–346.PubMedCrossRefGoogle Scholar
  34. 34.
    Zhang Z., Xu F., Frazier DT.c-/fos-identified activation of cerebellar neurons during hypercapnia in rats. Soc Neurosci (Abstract) 1997; 23: 1254.Google Scholar
  35. 35.
    Ballintijn CM., Luiten PGM., Jüch PJW. Respiratory neuron activity in the mesencephalon, diencephalon and cerebellum of the carp. J Comp Physiol 1979; 133: 131–139.CrossRefGoogle Scholar
  36. 36.
    Gruart A., Maria J. Respiration-related neurons recorded in the deep cerebellar nuclei of the alert cat. NeuroReport 1992; 3: 365–368.PubMedCrossRefGoogle Scholar
  37. 37.
    Lutherer LO., Williams JL., Everse SJ. Neurons of the rostral fastigial nucleus are responsive to cardiovascular and respiratory challenges. J Auton Nerv System 1989; 27: 101–112.CrossRefGoogle Scholar
  38. 38.
    Xu F., Zhang Z., Randall D., Frazier DT. Respiratory-modulated neurons (RRNs) in the fastigial nucleus (FN) respond to chemical challenges in the rat. Soc Neurosci (Abstract) 1999; 25: 936.Google Scholar
  39. 39.
    Xu F., Frazier DT. Respiratory-related neurons of the fastigial nucleus in response to chemical and mechanical challenges. J Appl Physiol 1997; 82: 1177–1184.PubMedGoogle Scholar
  40. 40.
    Xu F, Zhang Z, Frazier DT. Microinjection of acetazolamide into the fastigial nucleus augments respiratory output in the rat. J Appl Physiol 2001; in press.Google Scholar
  41. 41.
    Nattie E. CO2 brainstem chemoreceptors and breathing. Prog Eurobiol 1999; 59: 299–331.CrossRefGoogle Scholar
  42. 42.
    Bernard DG., Li A., Nattie EE. Evidence for central chemoreception in the midline raphe. J Appl Physiol 1996; 80: 108–115.PubMedGoogle Scholar
  43. 43.
    Bickler PE., Litt L., Banville DL., and Severinghaus JW. Effects of acetazolamide on cerebral acid-base balance. J Appl Physiol 1988; 65: 422–427.PubMedGoogle Scholar
  44. 44.
    Wang W., Richerson GB. Chemosensitivity of non-respiratory rat CNS neurons in tissue culture. Brain Res 2000; 860: 119–129.PubMedCrossRefGoogle Scholar
  45. 45.
    Andrezik JA., Dormer KJ., Foreman RD., Person RJ. Fastigial nucleus projections to the brain stem in beagles: Pathways of autonomic regulation. Neurosci 1984; 11: 497–507.CrossRefGoogle Scholar
  46. 46.
    Batton RR., Jayaraman A., Ruggiero D., Carpenter MD. Fastigial efferent projections in the monkey: an autoradiographic study. J Comp Neurol 1977; 174: 281–306.PubMedCrossRefGoogle Scholar
  47. 47.
    Homma YS., Nonaka K., Matsuyama R., Mori S. Fastigiofugal projection to the brainstem nuclei in the cat: an anterograde PHA-L tracing study. Neurosci Res 1995; 23: 89–102.PubMedCrossRefGoogle Scholar
  48. 48.
    Ito M., Udo M., Mano N., Kawai N. Synaptic action of the fastigiobulbar impulses upon neurons in the medullary reticular formation and vestibular nuclei. Exp Brain Res 1970; 11: 29–47.PubMedCrossRefGoogle Scholar
  49. 49.
    Supple, WF Jr., Kapp BS. Anatomical and physiological relationships between the anterior cerebellar vermis and the pontine parabrachial nucleus in the rabbit. Br Res Bull 1994; 33: 561–574.CrossRefGoogle Scholar
  50. 50.
    Wenninger JM., Pan LG., Martino P., Geiger L., Hodges M., Serra A., Feroah TR., Forster HV. Multiple rostral medullary nuclei can influence breathing in awake goats. J Appl Physiol 2001; 91: 777–788.PubMedGoogle Scholar

Copyright information

© Springer 2002

Authors and Affiliations

  1. 1.Department of PhysiologyUniversity of KentuckyLexingtonUSA

Personalised recommendations