The Cerebellum

, Volume 1, Issue 4, pp 241–258 | Cite as

‘New’ functions for ‘old’ proteins: The role of the calcium-binding proteins calbindin D-28k, calretinin and parvalbumin, in cerebellar physiology. Studies with knockout mice

Scientific Papers


Calretinin (CR), calbindin D-28k (CB) and parvalbumin (PV) belong to the large family of EF-hand calcium-binding proteins, which comprises more than 200 members in man. Structurally these proteins are characterized by the presence of a variable number of evolutionary well-conserved helix-loop-helix motives, which bind Ca2+ ions with high affinity. Functionally, they fall into two groups: by interaction with target proteins, calcium sensors translate calcium concentrations into signaling cascades, whereas calcium buffers are thought to modify the spatiotemporal aspects of calcium transients. Although CR, CB and PV are currently being considered calcium buffers, this may change as we learn more about their biology. Remarkable differences in their biophysical properties have led to the distinction of fast and slow buffers and suggested functional specificity of individual calcium buffers. Evaluation of the physiological roles of CR, CB and PV has been facilitated by the recent generation of mouse strains deficient in these proteins. Here, we review the biology of these calcium-binding proteins with distinct reference to the cerebellum, since they are particularly enriched in specific cerebellar neurons. CR is principally expressed in granule cells and their parallel fibres, while PV and CB are present throughout the axon, soma, dendrites and spines of Purkinje cells. PV is additionally found in a subpopulation of inhibitory interneurons, the stellate and basket cells. Studies on deficient mice together within vitro work and their unique cell type-specific distribution in the cerebellum suggest that these calcium-binding proteins have evolved as functionally distinct, physiologically relevant modulators of intracellular calcium transients. Analysis of different brain regions suggests that these proteins are involved in regulating calcium pools critical for synaptic plasticity. Surprisingly, a major role of any of these three calcium-binding proteins as an endogenous neuroprotectant is not generally supported.


Calcium-binding protein Knockout mice Purkinje cells synaptic plasticity ataxia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wasserman RH, Taylor AN. Vitamin D3-induced calcium-binding protein in chick intestinal mucosa. Science 1966; 152: 791–793.PubMedGoogle Scholar
  2. 2.
    Rogers JH. Calretinin: A gene for a novel calcium-binding protein expressed principally in neurons. J Cell Biol 1987; 105: 1343–1353.PubMedGoogle Scholar
  3. 3.
    Pechere JF. Isolation of a parvalbumin from rabbit muscle. C R Acad Sci Hebd Seances Acad Sci D 1974; 278: 2577–2579.PubMedGoogle Scholar
  4. 4.
    Kretsinger RH. Strocture and evolution of calcium-modulated proteins. CRC Crit Rev Biochem 1980; 8: 119–174.PubMedGoogle Scholar
  5. 5.
    Kawasaki H, Nakayama S, Kretsinger RH. Classification and evolution of EF-hand proteins. Biometals 1998; 11: 277–295.PubMedGoogle Scholar
  6. 6.
    Schäfer BW, Heizmann CW. The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biol Sci 1996; 21: 134–140.Google Scholar
  7. 7.
    Celio M, Pauls T Schwaller B, editors. Guidebook to the calcium-binding proteins. Oxford: Oxford University Press, 1996.Google Scholar
  8. 8.
    Cheung WT, Richards DE, Rogers JH. Calcium binding by chick calretinin and rat calbinding D28k synthesised in bacteria. Eur J Biochem 1993; 215: 401–410.PubMedGoogle Scholar
  9. 9.
    Schwaller B, Durussel I, Jermann D, Herrmann B, Cox JA. Comparison of the Ca2+-binding properties of human recombinant calretinin-22k and calretinin. J Biol Chem 1997; 272: 29663–29671.PubMedGoogle Scholar
  10. 10.
    Haiech J, Derancourt J, Pechere J-F, Demaille JG. Magnesium and calcium binding to parvalbumins: evidence for differences between parvalbumins and an explanation of their relaxing function. Biochemistry 1979; 18: 2752–2758.PubMedGoogle Scholar
  11. 11.
    Li-Smerin Y, Levitan ES, Johnson JW. Free intracellular Mg2+ concentration and inhibition of NMDA responses in cultured rat neurons. J Physiol (Lond) 2001; 533: 729–743.Google Scholar
  12. 12.
    Lee SH, Schwaller B, Neher E. Kinetics of Ca2+ binding to parvalbumin in bovine chromaffin cells: implications for [Ca2+] transients of neuronal dendrites. J Physiol (Lond) 2000; 525: 419–432.Google Scholar
  13. 13.
    Hou T-T, Johnson JD, Rall JA. Parvalbumin content and Ca2+ and Mg2+ dissociation rates correlated with changes in relaxation rate of frog muscle fibres. J Physiol (Lond) 1991; 441: 285–304.Google Scholar
  14. 14.
    Maruyama K, Mikawa T, Ebashi S. Detection of calcium binding proteins by45Ca autoradiography on nitrocellulose membrane after sodium dodecyl sulfate gel electrophoresis. J Biochem (Tokyo) 1984; 95: 511–519.Google Scholar
  15. 15.
    German DC, Ng MC, Liang CL, McMahon A, Iacopino AM. Calbindin-D-28k in nerve cell nuclei. Neuroscience 1997; 81: 735–743.PubMedGoogle Scholar
  16. 16.
    Feher JJ, Wasserman RH. Evidence for a membrane-bound fraction of chick intestinal calcium-binding protein. Biochim Biophys Acta 1978; 540: 134–143.PubMedGoogle Scholar
  17. 17.
    Bikle D, Munson S, Christakos S, Kumar R, Buckendahl P. Camodulin binding to the intestinal brush-border membrane: comparison to other calcium-binding proteins. Biochim Biophys Acta 1989; 1010: 122–127.PubMedGoogle Scholar
  18. 18.
    Hubbard MJ, McHugh NJ. Calbindin 28kDa and calbindin 30kDa (calretinin) are substantially localised in the particulate fraction of rat brain. FEBS Lett 1995; 374: 333–337.PubMedGoogle Scholar
  19. 19.
    Sayer RJ, Turnbull CI, Hubbard MJ. Calbindin 28kDa is specifically associated with extranuclear constituents of the dense particulate fraction. Cell Tissue Res 2000; 302: 171–180.PubMedGoogle Scholar
  20. 20.
    Winsky L, Kuznicki J. Distribution of calretinin, calbindin D28k and parvalbumin in subcellular fractions of rat cerebellum: effects of calcium. J Neurochem 1995; 65: 381–388.PubMedGoogle Scholar
  21. 21.
    Marilley D, Schwaller B. Association between the calcium-binding protein calretinin and cytoskeletal components in the human colon adenocarcinoma cell line WiDr. Exp Cell Res 2000; 259: 12–22.PubMedGoogle Scholar
  22. 22.
    Shimura F, Wasserman RH. Membrane-associated vitamin D-induced calcium-binding protein (CaBP): quantification by a radioimmunoassay and evidence for a specific CaBP in purified intestinal brush borders. Endocrinology 1984; 115: 1964–1972.PubMedGoogle Scholar
  23. 23.
    Leathers VL, Norman AW. Evidence for calcium mediated conformational changes in calbinding-D28K (the vitamin D-induced calcium binding protein) interactions with chick intestinal brush border membrane alkaline phosphatase as studied via photoaffinity labeling techniques. J Cell Biochem 1993; 52: 243–252.PubMedGoogle Scholar
  24. 24.
    Hack NJ, Wride MC, Charters KM, Kater SB, Parks TN. Developmental changes in the subcellular localization of calretinin. J Neurosci (Online) 2000; 20: RC67.Google Scholar
  25. 25.
    Résibois A, Rogers JH. Calretinin in rat brain: an immunohistochemical study. Neurosci 1992; 46: 101–134.Google Scholar
  26. 26.
    Marini AM, Strauss KI, Jacobowitz DM. Calretinin-containing neurons in rat cerebellar granule cell cultures. Brain Res Bull 1997; 42: 279–288.PubMedGoogle Scholar
  27. 27.
    Schiffmann SN, Cheron G, Lohof A, d'Alcantara P, Meyer M, Parmentier M, Schurmans S. Impaired motor coordination and Purkinje cell excitability in mice lacking calretinin. Proc Natl Acad Sci USA 1999; 96: 5257–5262.PubMedGoogle Scholar
  28. 28.
    Rogers JH. Immunoreactivity for calretinin and other calcium-binding proteins in cerebellum. Neurosci 1989; 31: 711–721.Google Scholar
  29. 29.
    Arai R, Jacobowitz DM, Deura S. Ultrastructural localization of calretinin immunoreactivity in lobule V of the rat cerebellum. Brain Res 1993; 613: 300–304.PubMedGoogle Scholar
  30. 30.
    Floris A, Dino M, Jacobowitz DM, Mugnaini E. The unipolar brush cells of the rat cerebellar cortex and cochlear nucleus are calretinin-positive: a study by light and electron microscopic immunocytochemistry. Anat Embryol (Berl) 1994; 189: 495–520.Google Scholar
  31. 31.
    Dino MR, Willard FH, Mugnaini E. Distribution of unipolar brush cells and other calretinin immunoreactive components in the mammalian cerebellar cortex. J Neurocytol 1999; 28: 99–123.PubMedGoogle Scholar
  32. 32.
    Dino MR, Nunzi MG, Anelli R, Mugnaini E. Unipolar brush cells of the vestibulocerebellum: afferents and targets. Prog Brain Res 2000; 124: 123–137.PubMedGoogle Scholar
  33. 33.
    Dieudonne S, Dumoulin A. Serotonin-driven long-range inhibitory connections in the cerebellar cortex. J Neurosci 2000; 20: 1837–1848.PubMedGoogle Scholar
  34. 34.
    Fortin M, Marchand R, Parent A. Calcium-binding proteins in primate cerebellum. Neurosci Res 1998; 30: 155–168.PubMedGoogle Scholar
  35. 35.
    Plogmann D, Celio MR. Intracellular concentration of parvalbumin in nerve cells. Brain Res 1993; 600: 273–279.PubMedGoogle Scholar
  36. 36.
    Kosaka T, Kosaka K, Nakayama T, Hunziker W, Heizmann CW. Axons and axon terminals of cerebellar Purkinje cells and basket cells have higher levels of parvalbumin immunoreactivity than somata and dendrites: quantitative analysis by immunogold labeling. Exp Brain Res 1993; 93: 483–491.PubMedGoogle Scholar
  37. 37.
    Fierro L, Llano I. High endogenous calcium buffering in Purkinje cells from rat cerebellar slices. J Physiol (Lond) 1996; 496: 617–625.Google Scholar
  38. 38.
    Maeda H, Ellis-Davies GC, Ito K, Miyashita Y, Kasai H. Supralinear Ca2+ signaling by cooperative and mobile Ca2+ buffering in Purkinje neurons. Neuron 1999; 24: 989–1002.PubMedGoogle Scholar
  39. 39.
    Celio MR. Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 1990; 35: 375–475.PubMedGoogle Scholar
  40. 40.
    Palay SL, Chan-Palay V. The cerebellum. Berlin: Springer Verlag, 1974.Google Scholar
  41. 41.
    Mann-Metzer P, Yarom Y. Electrotonic coupling interacts with intrinsic properties to generate synchronized activity in cerebellar networks of inhibitory interneurons. J Neurosci 1999; 19: 3298–3306.PubMedGoogle Scholar
  42. 42.
    Galarreta M, Hestrin S. Electrical synapses between GABA-releasing interneurons. Nat Rev Neurosci 2001; 2: 425–433.PubMedGoogle Scholar
  43. 43.
    Scotti AL, Nitsch C. Differential Ca2+ binding properties in the human cerebellar cortex: distribution of parvalbumin and calbindin D-28k immunoreactivity. Anat Embryol 1992; 185: 163–167.PubMedGoogle Scholar
  44. 44.
    Airaksinen MS, Eilers J, Garaschuk O, Thoenen H, Konnerth A, Meyer M. Ataxia and altered dendritic calcium signaling in mice carrying a targeted null mutation of the calbindin D28k gene. Proc Natl Acad Sci USA 1997; 94: 1488–1493.PubMedGoogle Scholar
  45. 45.
    Schurmans S, Schiffmann SN, Gurden H, Lemaire M, Lipp HP, Schwam V, Pochet R, Imperato A, Böhme GA, Parmentier M. Impaired LTP induction in the dentate gyrus of calretinin-deficient mice. Proc Natl Acad Sci USA 1997; 94: 10415–10420.PubMedGoogle Scholar
  46. 46.
    Schwaller B, Dick J, Dhoot G, Carroll S, Vrbova G, Nicotera P, Pette D, Wyss A, Bluethmann H, Hunziker W, Celio MR. Trolonged contraction-relaxation cycle of fast-twitch muscles in parvalbumin knockout mice. Am J Physiol (Cell Physiol) 1999; 276: C396-C403.Google Scholar
  47. 47.
    Eilers J, Callewaert G, Armstrong C, Konnerth A. Calcium signaling in a narrow somatic submembrane shell during synaptic activity in cerebellar Purkinje neurons. Proc Natl Acad Sci USA 1995; 92: 10272–10276.PubMedGoogle Scholar
  48. 48.
    Olson JM, Greenamyre JT, Penney JB, Young AB. Autoradiographic localization of cerebellar excitatory amino acid binding sites in the mouse. Neuroscience 1987; 22: 913–923.PubMedGoogle Scholar
  49. 49.
    Tempia F, Kano M, Schneggenburger R, Schirra C, Garaschuk O, Plant T, Konnerth A. Fractional calcium current through neuronal AMPA-receptor channels with a low calcium permeability. J Neurosci 1996; 16: 456–466.PubMedGoogle Scholar
  50. 50.
    Eilers J, Augustine GJ, Konnerth A. Subthreshold synaptic Ca2+ signalling in fine dendrites and spines of cerebellar Purkinje neurons. Nature 1995; 373: 155–158.PubMedGoogle Scholar
  51. 51.
    Takechi H, Eilers J, Konnerth A. A new class of synaptic response involving calcium release in dendritic spines. Nature 1998; 396: 757–760.PubMedGoogle Scholar
  52. 52.
    Denk W, Sugimori M, Llinas R. Two types of calcium response limited to single spines in cerebellar Purkinje cells. Proc Natl Acad Sci USA 1995; 92: 8279–8282.PubMedGoogle Scholar
  53. 53.
    Finch EA, Augustine GJ. Local calcium signalling by inositol-1,4,5-trisphosphate in Purkinje cell dendrites. Nature 1998; 396: 753–756.PubMedGoogle Scholar
  54. 54.
    Ogden D, Khodakhah K. Intracellular Ca2+ release by InsP3 in cerebellar Purkinje neurones. Acta Physiol Scand 1996; 157: 381–394.PubMedGoogle Scholar
  55. 55.
    Wang SS, Denk W, Häusser M. Coincidence detection in single dendritic spines mediated by calcium release. Nat Neurosci 2000; 3: 1266–1273.PubMedGoogle Scholar
  56. 56.
    Mak DO, McBride S, Foskett JK. Inositol 1,4,5-trisphosphate activation of inositol trisphosphate receptor Ca2+ channel by ligand tuning of Ca2+ inhibition. Proc Natl Acad Sci USA 1998; 95: 15821–15825.PubMedGoogle Scholar
  57. 57.
    Kuwaiima G, Futatsugi A, Niinobe M, Nakanishi S, Mikoshiba K. Two types of ryanodine receptors in mouse brain: skeletal muscle type exclusively in Purkinje cells and cardiac muscle type in various neurons. Neuron 1992; 9: 1133–1142.Google Scholar
  58. 58.
    Walton PD, Airey JA, Sutko JL, Beck CF, Mignery GA, Sudhof TC, Deerinck TJ, Ellisman MH. Ryanodine and inositol trisphosphate receptors coexist in avian cerebellar Purkinje neurons. J Cell Biol 1991; 113: 1145–1157.PubMedGoogle Scholar
  59. 59.
    Kohda K, Inoue T, Mikoshiba K. Ca2+ release from Ca2+ stores, particularly from ryanodine-sensitive Ca2+ stores, is required for the induction of LTD in cultured cerebellar Purkinje cells. J Neurophysiol 1995; 74: 2184–2188.PubMedGoogle Scholar
  60. 60.
    Llano I, DiPolo R, Marty A. Calcium-induced calcium release in cerebellar Purkinje cells. Neuron 1994; 12: 663–673.PubMedGoogle Scholar
  61. 61.
    Baba-Aissa F, Raeymaekers L, Wuytack F, Callewaert G, Dode L, Missiaen L, Casteels R. Purkinje neurons express the SERCA3 isoform of the organellar type Ca2+-transport ATPase. Brain Res Mol Brain Res 1996; 41: 169–174.PubMedGoogle Scholar
  62. 62.
    Fierro L, DiPolo R, Llano I. Intracellular calcium clearance in Purkinje cell somata from rat cerebellar slices. J Physiol (Lond) 1998; 510: 499–512.Google Scholar
  63. 63.
    Shull GE. Gene knockout studies of Ca2+-transporting ATPases. Eur J Biochem 2000; 267: 5284–5290.PubMedGoogle Scholar
  64. 64.
    Garcia ML, Strehler EE. Plasma membrane calcium ATPases as critical regulators of calcium homeostasis during neuronal cell function. Front Biosci 1999; 4: D869–882.PubMedGoogle Scholar
  65. 65.
    Guerini D, Garcia-Martin E, Zecca A, Guidi F, Carafoli E. The calcium pump of the plasma membrane: membrane targeting, calcium binding sites, tissue-specific isoform expression. Acta Physiol Scand Suppl 1998; 643: 265–273.PubMedGoogle Scholar
  66. 66.
    de Talamoni N, Smith CA, Wasserman RH, Beltramino C, Fullmer CS, Penniston JT. Immunocytochemical localization of the plasma membrane calcium pump, calbindin-D28k, and parvalbumin in Purkinje cells of avian and mammalian cerebellum. Proc Natl Acad Sci USA 1993; 90: 11949–11953.PubMedGoogle Scholar
  67. 67.
    Blaustein MP, Lederer WJ. Sodium/calcium exchange: its physiological implications. Physiol Rev 1999; 79: 763–854.PubMedGoogle Scholar
  68. 68.
    Lederer WJ, He S, Luo S, duBell W, Kofuji P, Kieval R, Neubauer CF, Ruknudin A, Cheng H, Cannell MB, Rogers TB, Schulze DH. The molecular biology of the Na+−Ca2+ exchanger and its functional roles in heart, smooth muscle cells, neurons, glia, lymphocytes, and nonexcitable cells. Ann N Y Acad Sci 1996; 779: 7–17.PubMedGoogle Scholar
  69. 69.
    Markram H, Roth A, Helmchen F. Competitive calcium binding: implications for dendritic calcium signaling. J Comput Neurosci 1998; 5: 331–348.PubMedGoogle Scholar
  70. 70.
    Yuste R, Denk W. Dendritic spines as basic functional units of neuronal integration. Nature 1995; 375: 682–684.PubMedGoogle Scholar
  71. 71.
    Yuste R, Majewska A, Holthoff K. From form to function: calcium compartmentalization in dendritic spines. Nat Neurosci 2000; 3: 653–659.PubMedGoogle Scholar
  72. 72.
    Airaksinen MS, Thoenen H, Meyer M. Vulnerability of midbrain dopaminergic neurons in calbindin-D-28k-deficient mice: lack of evidence for a neuroprotective role of endogenous calbindin in MPTP-treated and weaver mice. Eur J Neurosci 1997; 9: 120–127.PubMedGoogle Scholar
  73. 73.
    Wässle H, Peichl L, Airaksinen MS, Meyer M. Calcium-binding proteins in the retina of a calbindin-null mutant mouse. Cell Tissue Res 1998; 292: 211–218.PubMedGoogle Scholar
  74. 74.
    Vecellio M, Schwaller B, Meyer M, Hunziker W, Celio MR. Alterations in Purkinje cell spines of calbindin D-28 k and parvalbumin knock-out mice. Eur J Neurosci 2000; 12: 945–954.PubMedGoogle Scholar
  75. 75.
    Barski JJ, Dethleffsen K, Meyer M. Cre recombinase expression in cerebellar Purkinje cells. Genesis 2000; 28: 93–98.PubMedGoogle Scholar
  76. 76.
    Tymianski M, Spigelman I, Zhang L, Carlen PL, Tator CH, Charlton MP, Wallace MC. Mechanism of action and persistence of neuroprotection by cell-permeant Ca2+ chelators. J Cereb Blood Flow Metab 1994; 14: 911–923.PubMedGoogle Scholar
  77. 77.
    Chard PS, Jordan J, Marcuccilli CJ, Miller RJ, Leiden JM, Roos RP, Ghadge GD. Regulation of excitatory transmission at hippocampal synapses by calbindin D28k. Proc Natl Acad Sci USA 1995; 92: 5144–5148.PubMedGoogle Scholar
  78. 78.
    Klapstein GJ, Vietla S, Lieberman DN, Gray PA, Airaksinen MS, Thoenen H, Meyer M, Mody I. Calbindin-D28k fails to protect hippocampal neurons against ischemia in spite of its cytoplasmic calcium buffering properties: evidence from calbindin-D28k knockout mice. Neuroscience 1998; 85: 361–373.PubMedGoogle Scholar
  79. 79.
    Rozov A, Burnashev N, Sakmann B, Neher E. Transmitter release modulation by intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target cell-specific difference in presynaptic calcium dynamics. J Physiol (Lond) 2001; 531: 807–826.Google Scholar
  80. 80.
    Klingauf J, Neher E. Modeling buffered Ca2+ diffusion near the membrane: implications for secretion in neuroendocrine cells. Biophys J 1997; 72: 674–690.PubMedGoogle Scholar
  81. 81.
    Zucker RS. Increased Ca2+ buffering enhances Ca2+-dependent process. J Physiol (Lond) 2001; 531: 583.Google Scholar
  82. 82.
    Molinari S, Battini R, Ferrari S, Pozzi L, Killcross AS, Robbins TW, Jouvenceau A, Billard JM, Dutar P, Lamour Y, Baker WA, Cox H, Emson PC. Deficits in memory and hippocampal longterm potentiation in mice with reduced calbindin D-28K expression. Proc Natl Acad Sci USA 1996; 93: 8028–8033.PubMedGoogle Scholar
  83. 83.
    Jouvenceau A, Potier B, Battini R, Ferrari S, Dutar P, Billard JM. Glutamatergic synaptic responses and long-term potentiation are impaired in the CA1 hippocampal area of calbindin D(28k)-deficient mice. Synapse 1999; 33: 172–180.PubMedGoogle Scholar
  84. 84.
    Niesen C, Charlton MP, Carlen PL. Postsynaptic and presynaptic effects of the calcium chelator BAPTA on synaptic transmission in rat hippocampal dentate granule neurons. Brain Res 1991; 555: 319–325.PubMedGoogle Scholar
  85. 85.
    Cheron G, Schurmans S, Lohof A, d'Alcantara P, Meyer M, Draye JP, Parmentier M, Schiffmann SN. Electrophysiological behavior of Purkinje cells and motor coordination in calretinin knock-out mice. Prog Brain Res 2000; 124: 299–308.PubMedGoogle Scholar
  86. 86.
    Atluri PP, Regehr WG. determinants of the time course of facilitation at the granule cell to Purkinje cell synapse. J Neurosci 1996; 16: 5661–5671.PubMedGoogle Scholar
  87. 87.
    Campbell NC, Ekerot CF, Hesslow G. Interaction between responses in Purkinje cells evoked by climbing fibre impulses and parallel fibre volleys in the cat. J Physiol (Lond) 1983; 340: 225–238.Google Scholar
  88. 88.
    Midtgaard J. Stellate cell inhibition of Purkinje cells in the turtle cerebellum in vitro. J Physiol (Lond) 1992; 457: 355–367.Google Scholar
  89. 89.
    Chen C, Kano M, Abeliovich A, Chen L, Bao S, Kim JJ, Hashimoto K, Thompson RF, Tonegawa S. Impaired motor coordination correlates with persistent multiple climbing fiber innervation in PKC gamma mutant mice. Cell 1995; 83: 1233–1242.PubMedGoogle Scholar
  90. 90.
    Conquet F, Bashir ZI, Davies CH, Daniel H, Ferraguti F, Bordi F, Franz-Bacon K, Reggiani A, Matarese V, Conde F, et al. Motor deficit and impairment of synaptic plasticity in mice lacking mGluR1. Nature 1994; 372: 237–243.PubMedGoogle Scholar
  91. 91.
    Raymond JL, Lisberger SG, Mauk MD. The cerebellum: a neuronal learning machine? Science 1996; 272: 1126–1131.PubMedGoogle Scholar
  92. 92.
    Welsh JP, Lang EJ, Suglhara I, Llinas R. Dynamic organization of motor control within the olivocerebellar system. Nature 1995; 374: 453–457.PubMedGoogle Scholar
  93. 93.
    Gao JH, Parsons LM, Bower JM, Xiong J, Li J, Fox PT. Cerebellum implicated in sensory acquisition and discrimination rather than motor control. Science 1996; 272: 545–547.PubMedGoogle Scholar
  94. 94.
    Chard PS, Bleakman D, Christakos S, Fullmer CS, Miller RJ. Calcium buffering properties of calbindin D28k and parvalbumin in rat sensory neurones. J Physiol (Lond) 1993; 472: 341–357.Google Scholar
  95. 95.
    Lee SH, Rosenmund C, Schwaller B, Neher E. Differences in Ca2+ buffering properties between excitatory and inhibitory hippocampal neurons from the rat. J Physiol (Lond) 2000; 525: 405–418.Google Scholar
  96. 96.
    Heizmann CW, Berchtold MW, Rowlerson AM. Correlation of parvalbumin concentration with relaxation speed in mammalian muscles. Proc Natl Acad Sci USA 1982; 79: 7243–7247.PubMedGoogle Scholar
  97. 97.
    Raymackers JM, Gailly P, Schoor MC, Pette D, Schwaller B, Hunziker W, Celio MR, Gillis JM. Tetanus relaxation of fast skeletal muscles of the mouse made parvalbumin deficient by gene inactivation. J Physiol 2000; 527: 355–364.PubMedGoogle Scholar
  98. 98.
    Gillis JM, Gerday C, editors. Calcium movements between myofibrils, parvalbumins and sarcoplasmic reticulum in muscle. New-York: North Holland, 1977.Google Scholar
  99. 99.
    Caillard O, Moreno H, Schwaller B, Llano I, Celio M, Marty A. Role of the calcium binding protein parvalbumin in short-term synaptic plasticity. Proc Natl Acad Sci USA 2000; 97: 13372–13377.PubMedGoogle Scholar
  100. 100.
    Bertram R, Sherman A, Stanley EF. Single-domain/bound calcium hypothesis of transmitter release and facilitation. J Neurophysiol 1996; 75: 1919–1931.PubMedGoogle Scholar
  101. 101.
    Kamiya H, Zucker RS. Residual Ca2+ and short-term synaptic plasticity. Nature 1994; 371: 603–606.PubMedGoogle Scholar
  102. 102.
    Dittman JS, Kreitzer AC, Regehr WG. Interplay between facilitation, depression, and residual calcium at three presynaptic terminals. J Neurosci 2000; 20: 1374–1385.PubMedGoogle Scholar
  103. 103.
    Neher E. Usefulness and limitations of linear approximations to the understanding of Ca2+ signals. Cell Calcium 1998; 24: 345–357.PubMedGoogle Scholar
  104. 104.
    Neher E. Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. J Neuron 1998; 20: 389–399.Google Scholar
  105. 105.
    Baimbridge KG, Celio MR, Rogers JH. Calcium-binding proteins in the nervous system. Trends Neurosci 1992; 15: 303–308.PubMedGoogle Scholar
  106. 106.
    Kawaguchi Y, Kubota Y. Correlation of physiological subgroupings of nonpyramidal cells with parvalbumin- and calbindinD28k-immunoreactive neurons in layer V of rat frontal cortex. J Neurophysiol 1993; 70: 387–396.PubMedGoogle Scholar
  107. 107.
    Kawaguchi Y. Groupings of nonpyramidal and pyramidal cells with specific physiological and morphological characteristics. J Neurophysiol 1993; 69: 416–431.PubMedGoogle Scholar
  108. 108.
    Eccles JC, Llinas R, Sasaki K. The inhibitory interneurones within the cerebellar cortex. Exp Brain Res 1966; 1: 1–16.PubMedGoogle Scholar
  109. 109.
    Wilson PW, Rogers J, Harding M, Pohl V, Pattyn G, Lawson DEM. Structure of chick chromosomal genes for calbindin and calretinin. J Mol Biol 1988; 200: 615–625.PubMedGoogle Scholar
  110. 110.
    Edmonds B, Reyes R, Schwaller B, Roberts WM. Calretinin modifies presynaptic calcium signaling in frog saccular hair cells. Nat Neurosci 2000; 3: 786–790.PubMedGoogle Scholar
  111. 111.
    Harris KM, Stevens JK. Dendritic spines of rat cerebellar Purkinje cells: serial electron microscopy with reference to their biophysical characteristics. J Neurosci 1988; 9: 2982–2997.Google Scholar
  112. 112.
    Korkotian E, Segal M. Release of calcium from stores alters the morphology of dendritic spines in cultured hippocampal neurons. Proc Natl Acad Sci USA 1999; 96: 12068–12072.PubMedGoogle Scholar
  113. 113.
    Volfovsky N, Parnas H, Segal M, Korkotian E. Geometry of dendritic spines affects calcium dynamics in hippocampal neurons: theory and experiments. J Neurophysiol 1999; 82: 450–462.PubMedGoogle Scholar
  114. 114.
    Majewska A, Tashiro A, Yuste R. Regulation of spine calcium dynamics by rapid spine motility. J Neurosci 2000; 20: 8262–8268.PubMedGoogle Scholar
  115. 115.
    Chen G, Carroll S, Racay P, Dick J, Pette D, Traub I, Vrbova G, Eggli P, Celio MR, Schwaller B. Deficiency in the relaxation factor parvalbumin increases the fatigue-resistance in fast-twitch muscle, upregulates mitochondria, and increases vascularisation. Am J Physiol (Cell Physiol) 2001; 281: C114-C122.Google Scholar
  116. 116.
    Gillis JM. Inhibition of mitochondrial calcium uptake slows down relaxation in mitochondria-rich skeletal muscles. J Muscle Res Cell Motil 1997; 18: 473–483.PubMedGoogle Scholar
  117. 117.
    Nägerl UV, Mody I. Calcium-dependent inactivation of high-threshold calcium currents in human dentate gyrus granule cells. J Physiol (Lond) 1998; 509: 39–45.Google Scholar
  118. 118.
    Nägerl UV, Mody I, Jeub M, Lie AA, Elger CE, Beck H. Surviving granule cells of the sclerotic human hippocampus have reduced Ca2+ influx because of a loss of calbindin-D(28k) in temporal lobe epilepsy. J Neurosci 2000; 20: 1831–1836.PubMedGoogle Scholar
  119. 119.
    Freund TF, Buzsaki G, Leon A, Baimbridge KG, Somogyi P. Relationship of neuronal vulnerability and calcium binding protein immunoreactivity in ischemia. Exp Brain Res 1990; 83: 55–66.PubMedGoogle Scholar
  120. 120.
    Freund TF, Ylinen A, Miettinen R, Pitkanen A, Lahtinen H, Baimbridge KG, Riekkinen PJ. Pattern of neuronal death in the rat hippocampus after status epilepticus. Relationship to calcium binding protein content and ischemic vulnerability. Brain Res Bull 1992; 28: 27–38.PubMedGoogle Scholar
  121. 121.
    Tortosa A, Ferrer I. Poor correlation between delayed neuronal death induced by transient forebrain ischemia, and immunoreactivity for parvalbumin and calbindin D-28k in developing gerbil hippocampus. Acta Neuropathol 1994; 88: 67–74.PubMedGoogle Scholar
  122. 122.
    Diemer NH, Siemkowicz E. Regional neurone damage after cerebral ischaemia in the normo- and hypoglycaemic rat. Neuropathol Appl Neurobiol 1981; 7: 217–227.PubMedGoogle Scholar
  123. 123.
    Bouilleret V, Schwaller B, Schurmans S, Celio MR, Fritschy JM. Neurodegenerative and morphogenic changes in a mouse model of temporal lobe epilepsy do not depend on the expression of the calcium-binding proteins parvalbumin, calbindin, or calretinin. Neuroscience 2000; 97: 47–58.PubMedGoogle Scholar
  124. 124.
    Schauwecker PE. Seizure-induced neuronal death is associated with induction of c-Jun N-terminal kinase and is dependent on genetic background. Brain Res 2000; 884: 116–128.PubMedGoogle Scholar
  125. 125.
    Schauwecker PE, Steward O. Genetic determinants of susceptibility to excitotoxic cell death: implications for gene targeting approaches. Proc Natl Acad Sci USA 1997; 94: 4103–4108.PubMedGoogle Scholar
  126. 126.
    Yenari MA, Minami M, Sun GH, Meier TJ, Kunis DM, McLaughlin JR, Ho DY, Sapolsky RM, Steinberg GK. Calbindin D28k overexpression protects striatal neurons from transient focal cerebral ischemia. Stroke 2001; 32: 1028–1035.PubMedGoogle Scholar
  127. 127.
    D'Orlando C, Fellay B, Schwaller B, Salicio V, Bloc A, Gotzos V, Celio MR. Calretinin and calbindin D-28k delay the onset of cell death after excitotoxic stimulation in transfected P19 cells. Brain Res 2001; 909: 145–158.PubMedGoogle Scholar
  128. 128.
    Ho BK, Alexianu ME, Colom LV, Mohamed AH, Serrano F, Appel SH. Expression of calbindin-D28k in motoneuron hybrid cells after retroviral infection with calbindin-D28k cDNA prevents amyotrophic lateral sclerosis IgG-mediated cytotoxicity. Proc Natl Acad Sci USA 1996; 93: 6796–6801.PubMedGoogle Scholar
  129. 129.
    Isaacs K, Jacobowitz D. Mapping of the colocalization of calretinin and tyrosine hydroxylase in the rat substantia nigra and ventral tegmental area. Exp Brain Res 1994; 99: 34–42.PubMedGoogle Scholar
  130. 130.
    Möckel V, Fischer G. Vulnerability to excitotoxic stimuli of cultured rat hippocampal neurons containing the calcium-binding proteins calretinin and calbindin D28k. Brain Res 1994; 648: 109–120.PubMedGoogle Scholar
  131. 131.
    Pike CJ, Cotman CW. Calretinin-immunoreactivity neurons are resistant to B-amyloid toxicity in vitro. Brain Res 1995; 671: 293–298.PubMedGoogle Scholar
  132. 132.
    Diop AG, Dussartre C, Barthe D, Hugon J. Neuroprotective properties of calretinin against the HIV-1 gp120 toxicity. Neurosci Res Commun 1996; 18: 107–114.Google Scholar
  133. 133.
    Kuznicki J, Isaacs KR, Jacobowitz DM. The expression of calretinin in transfected PC12 cells provides no protection against Ca2+-overload or trophic factor deprivation. Biochim Biophys Acta 1996; 1313: 194–200.PubMedGoogle Scholar
  134. 134.
    Billing-Marczak K, Przybyszewska M, Kuznicki J. Measurements of [Ca2+] using fura-2 in glioma C6 cells expressing calretinin with GFP as a marker of transfection: no Ca2+-buffering provided by calretinin. Biochim Biophys Acta 1999; 1449: 169–177.PubMedGoogle Scholar
  135. 135.
    Cicchetti F, Parent A. Striatal interneurons in Huntington's disease: selective increase in the density of calretinin-immunoreactive medium-sized neurons. Mov Disord 1996; 11: 619–626.PubMedGoogle Scholar
  136. 136.
    Hof PR, Nimchinsky EA, Cello MR, Bouras C, Morrison JH. Calretinin-immunoreactive neocortical interneurons are unaffected in Alzheimer's disease. Neurosci Lett 1993; 152: 145–148.PubMedGoogle Scholar
  137. 137.
    Mouatt-Prigent A, Agid Y, Hirsch EC. Does the calcium binding protein calretinin protect dopaminergic neurons against degeneration in Parkinson's disease? Brain Res 1994; 668: 62–70.PubMedGoogle Scholar
  138. 138.
    Sampson VL, Morrison JH, Vickers JC. The cellular basis for the relative resistance of parvalbumin and calretinin immunoreactive neocortical neurons to the pathology of Alzheimer's disease. Exp Neurol 1997; 145: 295–302.PubMedGoogle Scholar
  139. 139.
    Gander JC, Gotzos V, Fellay B, Schwaller B. Inhibition of the proliferative cycle and apoptotic events in WiDr cells after down-regulation of the calcium-binding protein calretinin using antisense oligodeoxynucleotides. Exp Cell Res 1996; 225: 399–410.PubMedGoogle Scholar
  140. 140.
    Geiser JR, van Tuinen D, Brockerhoff SE, Neff MM, Davis TN. Can calmodulin function without binding calcium? Cell 1991; 65: 949–959.PubMedGoogle Scholar
  141. 141.
    Vig PJ, Fratkin JD, Desaiah D, Currier RD, Subramony SH. Decreased parvalbumin immunoreactivity in surviving Purkinje cells of patients with spinocerebellar ataxia-1. Neurology 1996; 47: 249–253.PubMedGoogle Scholar
  142. 142.
    Vig PJ, Subramony SH, Rurright EN, Fratkin JD, McDaniel DO, Desaiah D, Qin Z. Reduced immunoreactivity to calcium-binding, proteins in Purkinje cells precedes onset of ataxia in spinocerebellar ataxia-1 transgenic mice. Neurology 1998; 50: 106–113.PubMedGoogle Scholar
  143. 143.
    Vig PJ, Subramony SH, Qin Z, McDaniel DO, Fratkin JD. Relationship between ataxin-1 nuclear inclusions and Purkinje cell specific proteins in SCA-1 transgenic mice. J Neurol Sci 2000; 174: 100–110.PubMedGoogle Scholar
  144. 144.
    Svoboda K, Helmchen F, Denk W, Tank DW. Spread of dendritic excitation in layer 2/3 pyramidal neurons in rat barrel cortex in vivo. Nat Neurosci 1999; 2: 65–73.PubMedGoogle Scholar
  145. 145.
    Helmchen F, Fee MS, Tank DW, Denk W. A miniature headmounted two-photon microscope, high-resolution brain imaging in freely moving animals. Neuron 2001; 31: 903–912.PubMedGoogle Scholar
  146. 146.
    Stauffer T, Guerini D, Gelio M, Carafoli E. Immunolocalization of the plasma membrane Ca2+ pump isoforms in the rat brain. Brain Res 1997; 748: 21–29.PubMedGoogle Scholar
  147. 147.
    Eberhard M, Erne P. Calcium and magnesium binding to rat parvalbumin. Eur J Biochem 1994; 222: 21–26.PubMedGoogle Scholar
  148. 148.
    Nägerl UV, Novo D, Mody I, Vergara JL. Binding kinetics of calbindin-D(28k) determined by flash photolysis of caged Ca2+. Biophys J 2000; 79: 3009–3018.PubMedGoogle Scholar
  149. 149.
    Stevens J, Rogers JH. Chick calretinin: purification composition, and metal binding activity of native and recombinant forms. Protein Expr Purif 1997; 9: 171–181.PubMedGoogle Scholar
  150. 150.
    Tiffer T, Lew VL. Apparent Ca2+ dissociation constant of Ca2+ chelators incorporated non-disruptively into intact human red cells. J Physiol (Lond) 1997; 505: 403–410.Google Scholar
  151. 151.
    Pethig R, Kuhn M, Payne R, Adler E, Chen TH, Jaffe LF. On the dissociation constants of BAPTA-type calcium buffers. Cell Calcium 1989; 10: 491–498.PubMedGoogle Scholar
  152. 152.
    Stout AK, Li-Smerin Y, Johnson JW, Reynolds IJ. Mechanisms of glutamate-stimulated Mg2+ influx and subsequent Mg2+ efflux in rat forebrain neurones in culture. Physiol (Lond) 1996; 492: 641–657.Google Scholar

Copyright information

© Springer 2002

Authors and Affiliations

  • Beat Schwaller
    • 1
  • Michael Meyer
    • 2
    • 3
  • Serge Schiffmann
    • 4
  1. 1.Institute of Histology and General EmbryologyUniversity of FribourgFribourgSwitzerland
  2. 2.Department of NeurobiochemistryMax Planck-Institute of NeurobiologyMartinsriedGermany
  3. 3.Institute of OphthalmologyUniversity College LondonLondonUK
  4. 4.Laboratory of Neurophysiology, Department of NeuroscienceUniversity Libre de Bruxelles, School of MedicineBrusselsBelgium

Personalised recommendations