Journal of NeuroVirology

, Volume 15, Issue 2, pp 176–186 | Cite as

Lithium therapy for human immunodeficiency virus type 1-associated neurocognitive impairment

  • Giovanni Schifitto
  • Jianhui Zhong
  • David Gill
  • Derick R. Peterson
  • Michelle D. Gaugh
  • Tong Zhu
  • Madalina Tivarus
  • Kim Cruttenden
  • Sanjay B. Maggirwar
  • Howard E. Gendelman
  • Stephen Dewhurst
  • Harris A. Gelbard
Article

Abstract

The objective of this study was to assess lithium safety and tolerability and to explore its impact on cognition, function, and neuroimaging biomarkers in human immunodeficiency virus (HIV)-infected subjects with cognitive impairment. Fifteen cognitively impaired HIV-infected subjects were enrolled in this 10-week open-label study of lithium 300 mg twice daily. Neuroimaging was performed at baseline and following 10 weeks of treatment and included magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI), and functional MRI (fMRI). Thirteen of the 14 subjects (93%) that complied with the study visits were able to complete the study on lithium and 11 out of 13 (79%) completed the study at the originally assigned dose of 300 mg twice daily. There were no significant changes in CD4+ lymphocyte cell count and plasma HIV RNA. Cognitive performance and depressive mood did not improve significantly after the 10-week lithium treatment; however, neuroimaging revealed a decrease in the glutamate+glutamine (Glx) peak in the frontal gray matter, increased fractional anisotropy, and decreased mean diffusivity in several brain areas, and changes in brain activation patterns, suggestive of improvement. These results suggest that lithium can be used safely in HIV-infected individuals with cognitive impairment. Furthermore, the neuroimaging results suggest that lithium may improve HIV-associated central nervous system (CNS) injury; thus, further investigations of lithium as an adjunctive treatment for HIV-associated cognitive impairment are warranted.

Keywords

HIV lithium cognitive impairment neuroimaging fMRI 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander DC, Pierpaoli C, Basser PJ, Gee JC (2001). Spatial transformations of diffusion tensor magnetic resonance images. IEEE Trans Med Imaging 20: 1131–1139.CrossRefPubMedGoogle Scholar
  2. Andersson JL, Skare S (2002). A model-based method for retrospective correction of geometric distortions in diffusion-weighted EPI. Neuroimage 16: 177–199.CrossRefPubMedGoogle Scholar
  3. Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, Clifford DB, Cinque P, Epstein LG, Goodkin K, Gisslen M, Grant I, Heaton RK, Joseph J, Marder K, Marra CM, McArthur JC, Nunn M, Price RW, Pulliam L, Robertson KR, Sacktor N, Valcour V, Wojna VE (2007). Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69: 1789–1799.CrossRefPubMedGoogle Scholar
  4. Bellizzi MJ, Lu SM, Masliah E, Gelbard HA (2005). Synaptic activity becomes excitotoxic in neurons exposed to elevated levels of platelet-activating factor. J Clin Invest 115: 3185–3192.CrossRefPubMedGoogle Scholar
  5. Chang L, Ernst T, Leonido-Yee M, Walot I, Singer E (1999). Cerebral metabolite abnormalities correlate with clinical severity of HIV-1 cognitive motor complex. Neurology 52: 100–108.PubMedGoogle Scholar
  6. Cox RW (1996). AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29: 162–173.CrossRefPubMedGoogle Scholar
  7. Cross DA, Alessi DR, Cohen P, Andjelkovic M, Hemmings BA (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378: 785–789.CrossRefPubMedGoogle Scholar
  8. Crowder RJ, Freeman RS (1998). Phosphatidylinositol 3-kinase and Akt protein kinase are necessary and sufficient for the survival of nerve growth factordependent sympathetic neurons. J Neurosci 18: 2933–2943.PubMedGoogle Scholar
  9. Dana Consortium on Therapy for HIV Dementia and Related Cognitive Disorders (1996). Clinical confirmation of the American Academy of Neurology algortihm for HIV-1-associated cognitive motor disorder. Neurology, 47: 1247–1253.Google Scholar
  10. Dou H, Ellison B, Bradley J, Kasiyanov A, Poluektova LY, Xiong H, Maggirwar S, Dewhurst S, Gelbard HA, Gendelman HE (2005). Neuroprotective mechanisms of lithium in murine human immunodeficiency virus-1 encephalitis. J Neurosci 25: 8375–8385.CrossRefPubMedGoogle Scholar
  11. Du J, Gray NA, Falke CA, Chen W, Yuan P, Szabo ST, Einat H, Manji HK (2004). Modulation of synaptic plasticity by antimanic agents: the role of AMPA glutamate receptor subunit 1 synaptic expression 67. J Neurosci 24: 6578–6589.CrossRefPubMedGoogle Scholar
  12. Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM, Segal RA, Kaplan DR, Greenberg ME (1997). Regulation of neuronal survival by the serinethreonine protein kinase Akt. Science 275: 661–665.CrossRefPubMedGoogle Scholar
  13. Friedman SD, Dager SR, Parow A, Hirashima F, Demopulos C, Stoll AL, Lyoo IK, Dunner DL, Renshaw PF (2004). Lithium and valproic acid treatment effects on brain chemistry in bipolar disorder. Biol Psychiatry 56: 340–348.CrossRefPubMedGoogle Scholar
  14. Garavan H, Ross TJ, Li SJ, Stein EA (2000). A parametric manipulation of central executive functioning. Cerebral Cortex 10: 585–592.CrossRefPubMedGoogle Scholar
  15. Glass JD, Wesselingh SL, Selnes OA, McArthur JC (1993). Clinical-neuropathologic correlation in HIV-associated dementia. Neurology 43: 2230–2237.PubMedGoogle Scholar
  16. Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS (2001). A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14: 21–36.CrossRefPubMedGoogle Scholar
  17. Grimes CA, Jope RS (2001). The multifaceted roles of glycogen synthase kinase 3β in cellular signaling. Prog Neurobiol 65: 391–426.CrossRefPubMedGoogle Scholar
  18. Gruetter R, Adriany G, Choi IY, Henry PG, Lei H, Oz G (2003). Localized in vivo 13C NMR spectroscopy of the brain. NMR Biomed 16: 313–338.CrossRefPubMedGoogle Scholar
  19. Hashimoto R, Hough C, Nakazawa T, Yamamoto T, Chuang DM (2002). Lithium protection against glutamate excitotoxicity in rat cerebral cortical neurons: involvement of NMDA receptor inhibition possibly by decreasing NR2B tyrosine phosphorylation. J Neurochem 80: 589–597.CrossRefPubMedGoogle Scholar
  20. Hua K, Zhang J, Wakana S, Jiang H, Li X, Reich DS, Calabresi PA, Pekar JJ, van Zijl PC, Mori S (2008). Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification. Neuroimage 39: 336–347.CrossRefPubMedGoogle Scholar
  21. Kaul M, Garden GA, Lipton SA (2001). Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 410: 988–994.CrossRefPubMedGoogle Scholar
  22. Krupp LB, LaRocca NG, Muir-Nash J, Steinberg AD (1989). The fatigue severity scale. Application to patients with multiple sclerosis and systemic lupus erythematosus. Arch Neurol 46: 1121–1123.PubMedGoogle Scholar
  23. Letendre SL, Woods SP, Ellis RJ, Atkinson JH, Masliah E, van den BG, Durelle J, Grant I, Everall I, Group HNRC (2006). Lithium improves HIV-associated neurocognitive impairment. AIDS 20: 1885–1888.CrossRefPubMedGoogle Scholar
  24. Maggirwar SB, Tong N, Ramirez S, Gelbard HA, Dewhurst S (1999). HIV-1 Tat-mediated activiation of glycogen sytnhase kinase-3 beta contributes to Tat-mediated neurotoxicity. J Neurochem 73: 578–586.CrossRefPubMedGoogle Scholar
  25. Marder K, Albert SM, McDermott MP, McArthur JC, Schifitto G, Selnes OA, Sacktor N, Stern Y, Palumbo D, Kieburtz K, Cohen B, Orme C, Epstein LG (2003). Inter-rater reliability of a clinical staging of HIV-associated cognitive impairment. Neurology 60: 1467–1473.PubMedGoogle Scholar
  26. Miller TM, Tansey MG, Johnson EMJr, Creedon DJ (1997). Inhibition of phosphatidylinositol 3-kinase activity blocks depolarization- and insulin-like growth factor-I mediated survival of cerebellar granule cells. J Biol Chem 272: 9847–9853.CrossRefPubMedGoogle Scholar
  27. Monkul ES, Matsuo K, Nicoletti MA, Dierschke N, Hatch JP, Dalwani M, Brambilla P, Caetano S, Sassi RB, Mallinger AG, Soares JC (2007). Prefrontal gray matter increases in healthy individuals after lithium treatment: a voxel-based morphometry study. Neurosci Lett 429: 7–11.CrossRefPubMedGoogle Scholar
  28. Mori S, Oishi K, Jiang H, Jiang L, Li X, Akhter K, Hua K, Faria AV, Mahmood A, Woods R, Toga AW, Pike GB, Neto PR, Evans A, Zhang J, Huang H, Miller MI, van ZP, Mazziotta J (2008). Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. Neuroimage 40: 570–582.CrossRefPubMedGoogle Scholar
  29. Mori S, Zhang J (2006). Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51: 527–539.CrossRefPubMedGoogle Scholar
  30. Nonaka S, Hough CJ, Chuang DM (1998). Chronic lithium treatment robustly protects neurons in the central nervous system against excitotoxicity by inhibiting N-methyl-d-aspartate receptor-mediated calcium influx. Proc Natl Acad Sci U S A 95: 2642–2647.CrossRefPubMedGoogle Scholar
  31. Perry SW, Hamilton JA, Tjoelker LW, Dbaibo G, Dzenko KA, Epstein LG, Hannun Y, Whittaker JS, Dewhurst S, Gelbard HA (1999). Platelet-activating factor receptor activation: an initiator step in HIV-1 neuropathogenesis. J Biol Chem 273: 17660–17664.CrossRefGoogle Scholar
  32. Phillips ML, Travis MJ, Fagiolini A, Kupfer DJ (2008). Medication effects in neuroimaging studies of bipolar disorder. American Journal of Psychiatry 165: 313–320.CrossRefPubMedGoogle Scholar
  33. Provencher SW (1993). Estimation of metabolite concentrations from localized in vivo proton NMR spectra6. Magn Reson Med 30: 672–679.CrossRefPubMedGoogle Scholar
  34. Provencher SW (2001). Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed 14: 260–264.CrossRefPubMedGoogle Scholar
  35. Radloff LL (1977). The CES-D: a self-report depression scale for research in the general population. Appl Psychol Meas 1: 385–401.CrossRefGoogle Scholar
  36. Sacktor N (2006). Magnetic resonance spectroscopy abnormalities using a 3.0 tesla field strength in individuals with HIV dementia. Ann Neurol 60 Suppl 3: S24-S24.Google Scholar
  37. Sacktor N, McDermott MP, Marder K, Schifitto G, Selnes OA, McArthur JC, Stern Y, Albert S, Palumbo D, Kieburtz K, deMarcaida JA, Cohen B, Epstein L (2002). HIV-associated cognitive impairment before and after the advent of combination therapy. J NeuroVirol 8: 136–142.CrossRefPubMedGoogle Scholar
  38. Sanchez JF, Sniderhan LF, Williamson AL, Fan S, Chakraborty-Sett S, Maggirwar SB (2003). Glycogen synthase kinase 3β-mediated apoptosis of primary cortical astrocytes involves inhibition of nuclear factor κB signaling. Mol Cell Biol 23: 4649–4662.CrossRefPubMedGoogle Scholar
  39. Schifitto G, Navia BA, Yiannoutsos CT, Marra CM, Chang L, Ernst T, Jarvik JG, Miller EN, Singer EJ, Ellis RJ, Kolson DL, Simpson D, Nath A, Berger J, Shriver SL, Millar LL, Colquhoun D, Lenkinski R, Gonzalez RG, Lipton SA (2007a). Memantine and HIV-associated cognitive impairment: a neuropsychological and proton magnetic resonance spectroscopy study. AIDS 21: 1877–1886.CrossRefPubMedGoogle Scholar
  40. Schifitto G, Peterson DR, Zhong J, Ni H, Cruttenden K, Gaugh M, Gendelman HE, Boska M, Gelbard H (2006). Valproic acid adjunctive therapy for HIV-associated cognitive impairment: a first report. Neurology 66: 919–921.CrossRefPubMedGoogle Scholar
  41. Schifitto G, Yiannoutsos CT, Ernst T, Navia B, Sacktor N, Nath A, Clifford DB (2007b). Impact of selegiline transdermal system on measures of brain metabolism and markers of oxidative stress in HIV infected individuals with cognitive impairment. J NeuroVirol 13: 122–123.Google Scholar
  42. Shibuya-Tayoshi S, Tayoshi S, Sumitani S, Ueno S, Harada M, Ohmori T (2008). Lithium effects on brain glutamatergic and GABAergic systems of healthy volunteers as measured by proton magnetic resonance spectroscopy. Prog Neuropsychopharmacol Biol Psychiatry 32: 249–256.CrossRefPubMedGoogle Scholar
  43. Sibson NR, Mason GF, Shen J, Cline GW, Herskovits AZ, Wall JE, Behar KL, Rothman DL, Shulman RG (2001). In vivo (13)C NMR measurement of neurotransmitter glutamate cycling, anaplerosis and TCA cycle flux in rat brain during. J Neurochem 76: 975–989.CrossRefPubMedGoogle Scholar
  44. Yao R, Cooper GM (1995). Requirement for phosphatidylinositol-3 kinase in the prevention of apoptsis by nerve growth factor. Science 267: 2003–2006.CrossRefPubMedGoogle Scholar
  45. Yildiz-Yesiloglu A, Ankerst DP (2006). Neurochemical alterations of the brain in bipolar disorder and their implications for pathophysiology: a systematic review of the in vivo proton magnetic resonance spectroscopy findings. Prog Neuropsychopharmacol Biol Psychiatry 30: 969–995.CrossRefPubMedGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2009

Authors and Affiliations

  • Giovanni Schifitto
    • 1
    • 3
    • 9
  • Jianhui Zhong
    • 2
    • 3
  • David Gill
    • 4
  • Derick R. Peterson
    • 5
  • Michelle D. Gaugh
    • 1
  • Tong Zhu
    • 2
  • Madalina Tivarus
    • 3
  • Kim Cruttenden
    • 1
  • Sanjay B. Maggirwar
    • 6
  • Howard E. Gendelman
    • 7
  • Stephen Dewhurst
    • 8
  • Harris A. Gelbard
    • 1
    • 8
  1. 1.Department of NeurologyUniversity of RochesterRochesterUSA
  2. 2.Department of Biomedical EngineeringUniversity of RochesterRochesterUSA
  3. 3.Department of Imaging SciencesUniversity of RochesterRochesterUSA
  4. 4.Department of NeurologyPennsylvania State UniversityHersheyUSA
  5. 5.Department of Biostatistics and Computational BiologyUniversity of RochesterRochesterUSA
  6. 6.Department of Microbiology, and ImmunologyUniversity of RochesterRochesterUSA
  7. 7.Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaUSA
  8. 8.Department of Center for Neural Development and DiseaseUniversity of RochesterRochesterUSA
  9. 9.Department of Neurology, Movement & Inherited Neurologic DisordersClinical Trials Coordination CenterRochesterUSA

Personalised recommendations