Journal of NeuroVirology

, Volume 14, Issue 4, pp 327–339 | Cite as

Neuronal injury in simian immunodeficiency virus and other animal models of neuroAIDS

  • Leslie Crews
  • Margaret R. Lentz
  • R. Gilberto González
  • Howard S. Fox
  • Eliezer Masliah


The success of antiretroviral therapy has reduced the incidence of severe neurological complication resulting from human immunodeficiency virus (HIV) infection. However, increased patient survival has been associated with an increased prevalence of protracted forms of HIV encephalitis leading to moderate cognitive impairment. NeuroAIDS remains a great challenge to patients, their families, and our society. Thus development of preclinical models that will be suitable for testing promising new compounds with neurotrophic and neuroprotective capabilities is of critical importance. The simian immunodeficiency virus (SIV)-infected macaque is the premiere model to study HIV neuropathogenesis. This model was central to the seminal work of Dr. Opendra “Bill” Narayan. Similar to patients with HIV encephalitis, in the SIV model there is injury to the synaptodendritic structure of excitatory pyramidal neurons and inhibitory calbindin-immunoreactive interneurons. This article, which is part of a special issue of the Journal of NeuroVirology in honor of Dr. Bill Narayan, discusses the most important neurodegenerative features in preclinical models of neuroAIDS and their potential for treatment development.


encephalitis gp120 HIV macaque SIV transgenic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achim CL, Wiley CA (1996). Inflammation in AIDS and the role of the macrophage in brain pathology. Curr Opin Neurol 9: 221–225.PubMedGoogle Scholar
  2. Alirezaei M, Watry DD, Flynn CF, Kiosses WB, Masliah E, Williams BR, Kaul M, Lipton SA, Fox HS (2007). Human immunodeficiency virus-1/surface glycoprotein 120 induces apoptosis through RNA-activated protein kinase signaling in neurons. J Neurosci 27: 11047–11055.PubMedGoogle Scholar
  3. Anderson ER, Boyle J, Zink WE, Persidsky Y, Gendelman HE, Xiong H (2003). Hippocampal synaptic dysfunction in a murine model of human immunodeficiency virus type 1 encephalitis. Neuroscience 118: 359–369.PubMedGoogle Scholar
  4. Bansal AK, Mactutus CF, Nath A, Maragos W, Hauser KF, Booze RM (2000). Neurotoxicity of HIV-1 proteins gp120 and Tat in the rat striatum. Brain Res 879: 42–49.PubMedGoogle Scholar
  5. Barker PB, Lee RR, McArthur JC (1995). AIDS dementia complex: evaluation with proton MR spectroscopic imaging. Radiology 195: 58–64.PubMedGoogle Scholar
  6. Bell JE (2004). An update on the neuropathology of HIV in the HAART era. Histopathology 45: 549–559.PubMedGoogle Scholar
  7. Bellizzi MJ, Lu SM, Masliah E, Gelbard HA (2005). Synaptic activity becomes excitotoxic in neurons exposed to elevated levels of platelet-activating factor. J Clin Invest 115: 3185–3192.PubMedGoogle Scholar
  8. Bissel SJ, Wang G, Ghosh M, Reinhart TA, Capuano S 3rd, Stefano Cole K, Murphey-Corb M, Piatak M, Jr, Lifson JD, Wiley CA (2002). Macrophages relate presynaptic and postsynaptic damage in simian immunodeficiency virus encephalitis. Am J Pathol 160: 927–941.PubMedGoogle Scholar
  9. Brandimarti R, Khan MZ, Fatatis A, Meucci O (2004). Regulation of cell cycle proteins by chemokine receptors: A novel pathway in human immunodeficiency virus neuropathogenesis? J Neuro Virol 10(Suppl 1): 108–112.Google Scholar
  10. Brew B, Rosenblum M, Cronin K, Price R (1995). AIDS dementia comples and HIV-1 brain infection: clinicalvirological correlations. Ann Neurol 38: 563–570.PubMedGoogle Scholar
  11. Brown J, Cooper-Kuhn CM, Kempermann G, Van Praag H, Winkler J, Gage FH, Kuhn HG (2003). Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis. Eur J Neurosci 17: 2042–2046.PubMedGoogle Scholar
  12. Bruce-Keller AJ, Chauhan A, Dimayuga FO, Gee J, Keller JN, Nath A (2003). Synaptic transport of human immunodeficiency virus-Tat protein causes neurotoxicity and gliosis in rat brain. J Neurosci 23: 8417–8422.PubMedGoogle Scholar
  13. Bruel-Jungerman E, Laroche S, Rampon C (2005). New neurons in the dentate gyrus are involved in the expression of enhanced long-term memory following environmental enrichment. Eur J Neurosci 21: 513–521.PubMedGoogle Scholar
  14. Budka H, Costanzi G, Cristina S, Lechi A, Parravicini C, Trabattoni R, Vago L (1987). Brain pathology induced by infection with the human immunodeficiency virus (HIV). A histological, immunocytochemical, and electron microscopical study of 100 autopsy cases. Acta Neuropathol (Berl) 75: 185–198.Google Scholar
  15. Buscemi L, Ramonet D, Geiger JD (2007). Human immunod-eficiency virus type-1 protein Tat induces tumor necrosis factor-alpha-mediated neurotoxicity. Neurobiol Dis 26: 661–670.PubMedGoogle Scholar
  16. Chana G, Everall IP, Crews L, Langford D, Adame A, Grant I, Cherner M, Lazzaretto D, Heaton R, Ellis R, Masliah E (2006). Cognitive deficits and degeneration of interneurons in HIV+ methamphetamine users. Neurology 67: 1486–1489.PubMedGoogle Scholar
  17. Chang L, Ernst T, Leonido-Yee M, Witt M, Speck O, Walot I, Miller EN (1999). Highly active antiretroviral therapy reverses brain metabolite abnormalities in mild HIV dementia. Neurology 53: 782–789.PubMedGoogle Scholar
  18. Cherner M, Masliah E, Ellis RJ, Marcotte TD, Moore DJ, Grant I, Heaton RK (2002). Neurocognitive dysfunction predicts postmortem findings of HIV encephalitis. Neurology 59: 1563–1567.PubMedGoogle Scholar
  19. Chong WK, Sweeney B, Wilkinson ID, Paley M, Hall-Craggs MA, Kendall BE, Shepard JK, Beecham M, Miller RF, Weller IV, et al (1993). Proton spectroscopy of the brain in HIV infection: correlation with clinical, immunologic, and MR imaging findings. Radiology 188: 119–124.PubMedGoogle Scholar
  20. Clements JE, Babas T, Mankowski JL, Suryanarayana K, Piatak M Jr, Tarwater PM, Lifson JD, Zink MC (2002). The central nervous system as a reservoir for simian im-munodeficiency virus (SIV): steady-state levels of SIV DNA in brain from acute through asymptomatic infection. J Infect Dis 186: 905–913.PubMedGoogle Scholar
  21. Del Corno M, Liu QH, Schols D, de Clercq E, Gessani S, Freedman BD, Collman RG (2001). HIV-1 gp120 and chemokine activation of Pyk2 and mitogen-activated protein kinases in primary macrophages mediated by calcium-dependent, pertussis toxin-insensitive chemokine receptor signaling. Blood 98: 2909–2916.PubMedGoogle Scholar
  22. Desrosiers RC (1990a). HIV-1 origins. A finger on the missing link. Nature 345: 288–289.PubMedGoogle Scholar
  23. Desrosiers RC (1990b). The simian immunodeficiency viruses. Annu Rev Immunol 8: 557–578.PubMedGoogle Scholar
  24. D’Hooge R, Franck F, Mucke L, De Deyn PP (1999). Agerelated behavioural deficits in transgenic mice expressing the HIV-1 coat protein gp120. Eur J Neurosci 11: 4398–4402.PubMedGoogle Scholar
  25. Diesing TS, Swindells S, Gelbard H, Gendelman HE (2002). HIV-1-associated dementia: a basic science and clinical perspective. AIDS Read 12: 358–368.PubMedGoogle Scholar
  26. Dou H, Birusingh K, Faraci J, Gorantla S, Poluektova LY, Maggirwar SB, Dewhurst S, Gelbard HA, Gendelman HE (2003). Neuroprotective activities of sodium valproate in a murine model of human immunodeficiency virus-1 encephalitis. J Neurosci 23: 9162–9170.PubMedGoogle Scholar
  27. Dou H, Ellison B, Bradley J, Kasiyanov A, Poluektova LY, Xiong H, Maggirwar S, Dewhurst S, Gelbard HA, Gendelman HE (2005). Neuroprotective mechanisms of lithium in murine human immunodeficiency virus-1 encephalitis. J Neurosci 25: 8375–8385.PubMedGoogle Scholar
  28. Ellis R, Langford D, Masliah E (2007). HIV and antiretroviral therapy in the brain: neuronal injury and repair. Nat Rev Neurosci 8: 33–44.PubMedGoogle Scholar
  29. Everall I, Luthert P, Lantos P (1991). Neuronal loss in the frontal cortex in HIV infection. Lancet 337: 1119–1121.PubMedGoogle Scholar
  30. Everall IP, Bell C, Mallory M, Langford D, Adame A, Rockestein E, Masliah E (2002). Lithium ameliorates HIV-gp120-mediated neurotoxicity. Mol Cell Neurosci 21: 493–501.PubMedGoogle Scholar
  31. Everall IP, Hansen LA, Masliah E (2005). The shifting patterns of HIV encephalitis neuropathology. Neurotox Res 8: 51–61.PubMedGoogle Scholar
  32. Fischer A, Sananbenesi F, Pang PT, Lu B, Tsai LH (2005). Opposing roles of transient and prolonged expression of p25 in synaptic plasticity and hippocampus-dependent memory. Neuron 48: 825–838.PubMedGoogle Scholar
  33. Fox L, Mallory M, Achim C, Masliah E (1997). Neurode-generation od somatostatin-immunoreactive neurons in HIV encephalitis. J Neuropathol Exp Neurol 56: 360–368.PubMedGoogle Scholar
  34. Gage FH, Kempermann G, Palmer TD, Peterson DA, Ray J (1998). Multipotent progenitor cells in the adult dentate gyrus. J Neurobiol 36: 249–266.PubMedGoogle Scholar
  35. Gao F, Bailes E, Robertson DL, Chen Y, Rodenburg CM, Michael SF, Cummins LB, Arthur LO, Peeters M, Shaw GM, Sharp PM, Hahn BH (1999). Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature 397: 436–441.PubMedGoogle Scholar
  36. Gelbard H, Nottet H, Swindells S, Jett M, Dzenko K, Genis P, White R, Wang L, Choi Y-B, Zhang D, Lipton S, Tourtellotte W, Epstein L, Gendelman H (1994). Platelet-activating factor: a candidate human immunodeficiency virus type 1-induced neurotoxin. J Virol 68: 4628–4635.PubMedGoogle Scholar
  37. Gendelman H, Lipton S, Tardieu M, Bukrinsky M, Nottet H (1994). The neuropathogenesis of HIV-1 infection. J Leukoc Biol 56: 389–398.PubMedGoogle Scholar
  38. Gendelman HE, Persidsky Y, Ghorpade A, Limoges J, Stins M, Fiala M, Morrisett R (1997). The neuropathogenesis of the AIDS dementia complex. AIDS 11(Suppl A): S35-S45.PubMedGoogle Scholar
  39. Giulian D, Vaca K, Noonan C (1990). Secretion of neuro-toxins by mononuclear phagocytes infected with HIV-1. Science 250: 1593–1596.PubMedGoogle Scholar
  40. Glass J, Fedor H, Wesselingh S, McArthur J (1995). Immunocytochemical quantification of human immunod-eficiency virus in the brain: correlations with dementia. Ann Neurol 38: 755–762.PubMedGoogle Scholar
  41. Gonzalez RG, Cheng LL, Westmoreland SV, Sakaie KE, Becerra LR, Lee PL, Masliah E, Lackner AA (2000). Early brain injury in the SIV-macaque model of AIDS. AIDS 14: 2841–2849.PubMedGoogle Scholar
  42. Gonzalez RG, Greco JB, He J, Lentz MR, O’Neil S, Pilkenton SJ, Ratai EM, Westmoreland S (2006). New insights into the neuroimmunity of SIV infection by magnetic resonance spectroscopy. J Neuroimmune Pharmacol 1: 152–159.PubMedGoogle Scholar
  43. Gonzalez-Scarano F, Martin-Garcia J (2005). The neuropathogenesis of AIDS. Nat Rev Immunol 5: 69–81.PubMedGoogle Scholar
  44. Gray F, Chretien F, Vallat-Decouvelaere AV, Scaravilli F (2003). The changing pattern of HIV neuropathology in the HAART era. J Neuropathol Exp Neurol 62: 429–440.PubMedGoogle Scholar
  45. Greco JB, Sakaie KE, Aminipour S, Lee PL, Chang LL, He J, Westmoreland S, Lackner AA, Gonzalez RG (2002). Magnetic resonance spectroscopy: an in vivo tool for monitoring cerebral injury in SIV-infected macaques. J Med Primatol 31: 228–236.PubMedGoogle Scholar
  46. Greco JB, Westmoreland SV, Ratai EM, Lentz MR, Sakaie K, He J, Sehgal PK, Masliah E, Lackner AA, Gonzalez RG (2004). In vivo 1H MRS of brain injury and repair during acute SIV infection in the macaque model of neuro AIDS. Magn Reson Med 51: 1108–1114.PubMedGoogle Scholar
  47. Hashimoto M, Sagara Y, Everall IP, Mallory M, Everson A, Langford D, Masliah E (2002). Fibroblast growth factor 1 regulates signaling via the GSK3beta pathway: implications for neuroprotection. J Biol Chem 277: 32985–32991.PubMedGoogle Scholar
  48. Haughey NJ, Mattson MP (2002). Calcium dysregulation and neuronal apoptosis by the HIV-1 proteins Tat and gp120. J Acquir Immune Defic Syndr 31(Suppl 2): S55-S61.PubMedGoogle Scholar
  49. Haughey NJ, Nath A, Mattson MP, Slevin JT, Geiger JD (2001). HIV-1 Tat through phosphorylation of NMDA receptors potentiates glutamate excitotoxicity. J Neurochem 78: 457–467.PubMedGoogle Scholar
  50. Heaton R, Grant I, Butters N, White D, Kirson D, Atkinson J, McCutchan J, Taylor M, Kelly M, Ellis R, Wolfson T, Velin R, Marcotte T, Hesselink J, Jernigan T, Cahndler J, Wallace M, Abramson I, Group H (1995). The HNRC 500—neuropsychology of HIV infection at different disease stages. J Int Neuropsych Soc 1: 231–251.Google Scholar
  51. Jarvik JG, Lenkinski RE, Grossman RI, Gomori JM, Schnall MD, Frank I (1993). Proton MR spectroscopy of HIV-infected patients: characterization of abnormalities with imaging and clinical correlation. Radiology 186: 739–744.PubMedGoogle Scholar
  52. Johansson JU, Lilja L, Chen XL, Higashida H, Meister B, Noda M, Zhong ZG, Yokoyama S, Berggren PO, Bark C (2005). Cyclin-dependent kinase 5 activators p35 and p39 facilitate formation of functional synapses. Brain Res Mol Brain Res 138: 215–227.PubMedGoogle Scholar
  53. Jones M, Olafson K, Del Bigio MR, Peeling J, Nath A (1998). Intraventricular injection of human immunodeficiency virus type 1 (HIV-1) tat protein causes inflammation, gliosis, apoptosis, and ventricular enlargement. J Neuropathol Exp Neurol 57: 563–570.PubMedGoogle Scholar
  54. Kaul M, Garden GA, Lipton SA (2001). Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 410: 988–994.PubMedGoogle Scholar
  55. Kaul M, Lipton SA (1999). Chemokines and activated macrophages in HIV gp120-induced neuronal apoptosis. Proc Natl Acad Sci U S A 96: 8212–8216.PubMedGoogle Scholar
  56. Kaul M, Lipton SA (2006). Mechanisms of neuronal injury and death in HIV-1 associated dementia. Curr HIV Res 4: 307–318.PubMedGoogle Scholar
  57. Kodama T, Mori K, Kawahara T, Ringler DJ, Desrosiers RC (1993). Analysis of simian immunodeficiency virus sequence variation in tissues of rhesus macaques with simian AIDS. J Virol 67: 6522–6534.PubMedGoogle Scholar
  58. Krathwohl MD, Kaiser JL (2004). HIV-1 promotes quiescence in human neural progenitor cells. J Infect Dis 190: 216–226.PubMedGoogle Scholar
  59. Lackner A, Smith M, Munn R, Martfeld D, Gardner M, Marx P, Dandekar S (1991). Localization of simian immunod-eficiency virus in the central nervous system of rhesus monkeys. Am J Pathol 139: 609–621.PubMedGoogle Scholar
  60. Lackner AA, Vogel P, Ramos RA, Kluge JD, Marthas M (1994). Early events in tissues during infection with pathogenic (SIVmac239) and nonpathogenic (SIV-mac1A11) molecular clones of simian immunodeficiency virus. Am J Pathol 145: 428–439.PubMedGoogle Scholar
  61. Langford D, Adame A, Grigorian A, Grant I, McCutchan JA, Ellis RJ, Marcotte TD, Masliah E (2003). Patterns of selective neuronal damage in methamphetamine-user AIDS patients. J Acquir Immune Defic Syndr 34: 467–474.PubMedGoogle Scholar
  62. Langford D, Grigorian A, Hurford R, Adame A, Crews L, Masliah E (2004). The role of mitochondrial alterations in the combined toxic effects of human immunodeficiency virus Tat protein and methamphetamine on calbindin-positive neurons. J Neuro Virol 10: 327–337.Google Scholar
  63. Langford D, Hurford R, Hashimoto M, Digicaylioglu M, Masliah E (2005). Signalling crosstalk in FGF2-mediated protection of endothelial cells from HIV-gp120. BMC Neurosci 6: 8.PubMedGoogle Scholar
  64. Langford D, Masliah E (2001). Crosstalk between components of the blood brain barrier and cells of the CNS in microglial activation in AIDS. Brain Pathol 11: 306–312.PubMedGoogle Scholar
  65. Langford TD, Letendre SL, Marcotte TD, Ellis RJ, McCutchan JA, Grant I, Mallory ME, Hansen LA, Archibald S, Jernigan T, Masliah E (2002). Severe, demyelinating leukoencephalopathy in AIDS patients on antiretroviral therapy. AIDS 16: 1019–1029.PubMedGoogle Scholar
  66. Lannuzel A, Barnier JV, Hery C, Huynh VT, Guibert B, Gray F, Vincent JD, Tardieu M (1997). Human immunodeficiency virus type 1 and its coat protein gp120 induce apoptosis and activate JNK and ERK mitogen-activated protein kinases in human neurons. Ann Neurol 42: 847–856.PubMedGoogle Scholar
  67. Laubenberger J, Haussinger D, Bayer S, Thielemann S, Schneider B, Mundinger A, Hennig J, Langer M (1996). HIV-related metabolic abnormalities in the brain: depiction with proton MR spectroscopy with short echo times. Radiology 199: 805–810.PubMedGoogle Scholar
  68. Lawrence DM, Durham LC, Schwartz L, Seth P, Maric D, Major EO (2004). Human immunodeficiency virus type 1 infection of human brain-derived progenitor cells. J Virol 78: 7319–7328.PubMedGoogle Scholar
  69. Lawrence DM, Major EO (2002). HIV-1 and the brain: connections between HIV-1-associated dementia, neuropathology and neuroimmunology. Microbes Infect 4: 301–308.PubMedGoogle Scholar
  70. Lee PL, Yiannoutsos CT, Ernst T, Chang L, Marra CM, Jarvik JG, Richards TL, Kwok EW, Kolson DL, Simpson D, Tang CY, Schifitto G, Ketonen LM, Meyerhoff DJ, Lenkinski RE, Gonzalez RG, Navia BA (2003). A multi-center 1H MRS study of the AIDS dementia complex: validation and preliminary analysis. J Magn Reson Imaging 17: 625–633.PubMedGoogle Scholar
  71. Lentz MR, Kim JP, Westmoreland SV, Greco JB, Fuller RA, Ratai EM, He J, Sehgal PK, Halpern EF, Lackner AA, Masliah E, Gonzalez RG (2005). Quantitative neuropathologic correlates of changes in ratio of N- acetylaspartate to creatine in macaque brain. Radiology 235: 461–468.PubMedGoogle Scholar
  72. Letendre SL, Woods SP, Ellis RJ, Atkinson JH, Masliah E, van den Brande G, Durelle J, Grant I, Everall I (2006). Lithium improves HIV-associated neurocognitive impairment. Aids 20: 1885–1888.PubMedGoogle Scholar
  73. Li W, Galey D, Mattson MP, Nath A (2005). Molecular and cellular mechanisms of neuronal cell death in HIV dementia. Neurotox Res 8: 119–134.PubMedGoogle Scholar
  74. Lie DC, Colamarino SA, Song HJ, Desire L, Mira H, Consiglio A, Lein ES, Jessberger S, Lansford H, Dearie AR, Gage FH (2005). Wnt signalling regulates adult hippocampal neurogenesis. Nature 437: 1370–1375.PubMedGoogle Scholar
  75. Lipton S (1992a). HIV-related neurotoxicity. Brain Pathol 1: 193–199.Google Scholar
  76. Lipton S (1992b). Requirement for macrophages in neuronal injury induced by HIV envelope protein gp120. Neuro Report 3: 913–915.Google Scholar
  77. Lipton SA, Brenneman DE, Silverstein FS, Masliah E, Mucke L (1995). gp120 and neurotoxicity in vivo. Trends Pharmacol Sci 16: 122.PubMedGoogle Scholar
  78. Lopez-Villegas D, Lenkinski RE, Frank I (1997). Biochemical changes in the frontal lobe of HIV-infected individuals detected by magnetic resonance spectroscopy. Proc Natl Acad Sci U S A 94: 9854–9859.PubMedGoogle Scholar
  79. Maggirwar SB, Tong N, Ramirez S, Gelbard HA, Dewhurst S (1999). HIV-1 Tat-mediated activation of glycogen synthase kinase-3beta contributes to Tat-mediated neurotoxicity. J Neurochem 73: 578–586.PubMedGoogle Scholar
  80. Maragos WF, Young KL, Turchan JT, Guseva M, Pauly JR, Nath A, Cass WA (2002). Human immunodeficiency virus-1 Tat protein and methamphetamine interact synergistically to impair striatal dopaminergic function. J Neurochem 83: 955–963.PubMedGoogle Scholar
  81. Marcondes MC, Burudi EM, Huitron-Resendiz S, Sanchez-Alavez M, Watry D, Zandonatti M, Henriksen SJ, Fox HS (2001). Highly activated CD8(+) T cells in the brain correlate with early central nervous system dysfunction in simian immunodeficiency virus infection. J Immunol 167: 5429–5438.PubMedGoogle Scholar
  82. Marcus CD, Taylor-Robinson SD, Sargentoni J, Ainsworth JG, Frize G, Easterbrook PJ, Shaunak S, Bryant DJ (1998). 1H MR spectroscopy of the brain in HIV-1-seropositive subjects: evidence for diffuse metabolic abnormalities. Metab Brain Dis 13: 123–136.PubMedGoogle Scholar
  83. Martin-Garcia J, Kolson DL, Gonzalez-Scarano F (2002). Chemokine receptors in the brain: their role in HIV infection and pathogenesis. AIDS 16: 1709–1730.PubMedGoogle Scholar
  84. Maschke M, Kastrup O, Esser S, Ross B, Hengge U, Hufnagel A (2000). Incidence and prevalence of neurological disorders associated with HIV since the introduction of highly active antiretroviral therapy (HAART). J Neurol Neurosurg Psychiatry 69: 376–380.PubMedGoogle Scholar
  85. Masliah E, Achim C, Ge N, DeTeresa R, Terry R, Wiley C (1992a). Spectrum of human immunodeficiency virusassociated neocortical damage. Ann Neurol 32: 321–329.PubMedGoogle Scholar
  86. Masliah E, Ge N, Achim C, DeTeresa R, Wiley C (1996). Patterns of neurodegeneration in HIV encephalitis. Neuro AIDS 1: 161–173.Google Scholar
  87. Masliah E, Ge N, Achim C, Hansen L, Wiley C (1992b). Selective neuronal vulnerability in HIV encephalitis. J Neuropathol Exp Neurol 51: 585–593.PubMedGoogle Scholar
  88. Masliah E, Ge N, Achim C, Wiley C (1995). Differential vulnerability of calbindin-immunoreactive neurons in HIV encephalitis. J Neuropathol Exp Neurol 54: 350–357.PubMedGoogle Scholar
  89. Masliah E, Heaton RK, Marcotte TD, Ellis RJ, Wiley CA, Mallory M, Achim CL, McCutchan JA, Nelson JA, Atkinson JH, Grant I (1997). Dendritic injury is a pathological substrate for human immunodeficiency virusrelated cognitive disorders. HNRC Group. The HIV Neurobehavioral Research Center. Ann Neurol 42: 963–972.PubMedGoogle Scholar
  90. Masliah E, Roberts ES, Langford D, Everall I, Crews L, Adame A, Rockenstein E, Fox HS (2004). Patterns of gene dysregulation in the frontal cortex of patients with HIV encephalitis. J Neuroimmunol 157: 163–175.PubMedGoogle Scholar
  91. Mattson MP (2002). Oxidative stress, perturbed calcium homeostasis, and immune dysfunction in Alzheimer’s disease. J Neuro Virol 8: 539–550.Google Scholar
  92. Mattson MP, Haughey NJ, Nath A (2005). Cell death in HIV dementia. Cell Death Differ 12(Suppl 1): 893–904.PubMedGoogle Scholar
  93. McArthur JC, Haughey N, Gartner S, Conant K, Pardo C, Nath A, Sacktor N (2003). Human immunodeficiency virus-associated dementia: an evolving disease. J Neuro Virol 9: 205–221.Google Scholar
  94. McArthur JC, McClernon DR, Cronin MF, Nance-Sproson TE, Saah AJ, St Clair M, Lanier ER (1997). Relationship between human immunodeficiency virus-associated dementia and viral load in cerebrospinal fluid and brain. Ann Neurol 42: 689–698.PubMedGoogle Scholar
  95. Menon DK, Ainsworth JG, Cox IJ, Coker RC, Sargentoni J, Coutts GA, Baudouin CJ, Kocsis AE, Harris JR (1992). Proton MR spectroscopy of the brain in AIDS dementia complex. J Comput Assist Tomogr 16: 538–542.PubMedGoogle Scholar
  96. Meucci O, Fatatis A, Simen AA, Bushell TJ, Gray PW, Miller RJ (1998). Chemokines regulate hippocampal neuronal signaling and gp120 neurotoxicity. Proc Natl Acad Sci U S A 95: 14500–14505.PubMedGoogle Scholar
  97. Meyerhoff DJ, Bloomer C, Cardenas V, Norman D, Weiner MW, Fein G (1999). Elevated subcortical choline metabolites in cognitively and clinically asymptomatic HIV+ patients. Neurology 52: 995–1003.PubMedGoogle Scholar
  98. Meyerhoff DJ, MacKay S, Bachman L, Poole N, Dillon WP, Weiner MW, Fein G (1993). Reduced brain Nacetylaspartate suggests neuronal loss in cognitively impaired human immunodeficiency virus-seropositive individuals: in vivo 1H magnetic resonance spectroscopic imaging. Neurology 43: 509–515.PubMedGoogle Scholar
  99. Minagar A, Shapshak P, Fujimura R, Ownby R, Heyes M, Eisdorfer C (2002). The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multiple sclerosis. J Neurol Sci 202: 13–23.PubMedGoogle Scholar
  100. Mirra S, del Rio C (1989). The fine structure of acquired immunodeficiency syndrome encephalopathy. Arch Pathol Lab Med 113: 858–865.PubMedGoogle Scholar
  101. Moore DJ, Masliah E, Rippeth JD, Gonzalez R, Carey CL, Cherner M, Ellis RJ, Achim CL, Marcotte TD, Heaton RK, Grant I (2006). Cortical and subcortical neurodegeneration is associated with HIV neurocognitive impairment. AIDS 20: 879–887.PubMedGoogle Scholar
  102. Narayan O, Joag S, Stephens E (1995). Selected models of HIV-induced neurological disease. Curr Topics Microbiol Immunol 202: 151–166.Google Scholar
  103. Nath A (1999). Pathobiology of human immunodeficiency virus dementia. Semin Neurol 19: 113–127.PubMedGoogle Scholar
  104. Nath A (2002). Human immunodeficiency virus (HIV) proteins in neuropathogenesis of HIV dementia. J Infect Dis 186(Suppl 2): S193-S198.PubMedGoogle Scholar
  105. Nath A, Maragos WF, Avison MJ, Schmitt FA, Berger JR (2001). Acceleration of HIV dementia with methamphetamine and cocaine. J Neuro Virol 7: 66–71.Google Scholar
  106. Okamoto S, Kang Y-J, Brechtel CW, Siviglia E, Russo R, Clemente A, Harrop A, McKercher S, Kaul M, Lipton SA (2007). HIV/gp120 decreases adult neural progenitor cell proliferation via checkpoint kinase-mediated cellcycle withdrawal and G1 arrest. Cell Stem Cell 1: 230–236.PubMedGoogle Scholar
  107. Olson AK, Eadie BD, Ernst C, Christie BR (2006). Environmental enrichment and voluntary exercise massively increase neurogenesis in the adult hippocampus via dissociable pathways. Hippocampus 16: 250–260.PubMedGoogle Scholar
  108. Orandle MS, MacLean AG, Sasseville VG, Alvarez X, Lackner AA (2002). Enhanced expression of proinflammatory cytokines in the central nervous system is associated with neuroinvasion by simian immunod-eficiency virus and the development of encephalitis. J Virol 76: 5797–5802.PubMedGoogle Scholar
  109. Persidsky Y, Gendelman HE (2002). Murine models for human immunodeficiency virus type 1-associated dementia: the development of new treatment testing paradigms. J Neuro Virol 8(Suppl 2): 49–52.Google Scholar
  110. Pulliam L, Clarke JA, McGuire D, McGrath MS (1994). Investigation of HIV-infected macrophage neurotoxin production from patients with AIDS dementia. Adv Neuroimmunol 4: 195–198.PubMedGoogle Scholar
  111. Pulliam L, Herndier B, Tang N, McGrath M (1991). Human immunodeficiency virus-infected macrophages produce soluble factors that cause histological and neurochemical alterations in cultured human brains. J Clin Invest 87: 503–512.PubMedGoogle Scholar
  112. Pulliam L, Zhou M, Stubblebine M, Bitler CM (1998). Differential modulation of cell death proteins in human brain cells by tumor necrosis factor alpha and platelet activating factor. J Neurosci Res 54: 530–538.PubMedGoogle Scholar
  113. Reid W, Sadowska M, Denaro F, Rao S, Foulke J Jr, Hayes N, Jones O, Doodnauth D, Davis H, Sill A, O’Driscoll P, Huso D, Fouts T, Lewis G, Hill M, Kamin-Lewis R, Wei C, Ray P, Gallo RC, Reitz M, Bryant J (2001). An HIV-1 transgenic rat that develops HIV-related pathology and immunologic dysfunction. Proc Natl Acad Sci U S A 98: 9271–9276.PubMedGoogle Scholar
  114. Rockenstein E, Torrance M, Adame A, Mante M, Bar-on P, Rose JB, Crews L, Masliah E (2007). Neuroprotective effects of regulators of the glycogen synthase kinase-3beta signaling pathway in a transgenic model of Alzheimer’s disease are associated with reduced amyloid precursor protein phosphorylation. J Neurosci 27: 1981–1991.PubMedGoogle Scholar
  115. Rusnati M, Urbinati C, Musulin B, Ribatti D, Albini A, Noonan D, Marchisone C, Waltenberger J, Presta M (2001). Activation of endothelial cell mitogen activated protein kinase ERK(1/2) by extracellular HIV-1 Tat protein. Endothelium 8: 65–74.PubMedGoogle Scholar
  116. Ryan LA, Cotter RL, Zink WE, 2nd, Gendelman HE, Zheng J (2002). Macrophages, chemokines and neuronal injury in HIV-1-associated dementia. Cell Mol Biol (Noisy-le-grand) 48: 137–150.Google Scholar
  117. Sacktor N, McDermott MP, Marder K, Schifitto G, Selnes OA, McArthur JC, Stern Y, Albert S, Palumbo D, Kieburtz K, De Marcaida JA, Cohen B, Epstein L (2002). HIV-associated cognitive impairment before and after the advent of combination therapy. J Neuro Virol 8: 136–142.Google Scholar
  118. Sanders VJ, Pittman CA, White MG, Wang G, Wiley CA, Achim CL (1998). Chemokines and receptors in HIV encephalitis. AIDS 12: 1021–1026.PubMedGoogle Scholar
  119. Schmitz JE, Kuroda MJ, Santra S, Sasseville VG, Simon MA, Lifton MA, Racz P, Tenner-Racz K, Dalesandro M, Scallon BJ, Ghrayeb J, Forman MA, Montefiori DC, Rieber EP, Letvin NL, Reimann KA (1999a). Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science 283: 857–860.PubMedGoogle Scholar
  120. Schmitz JE, Simon MA, Kuroda MJ, Lifton MA, Ollert MW, Vogel CW, Racz P, Tenner-Racz K, Scallon BJ, Dalesandro M, Ghrayeb J, Rieber EP, Sasseville VG, Reimann KA (1999b). A nonhuman primate model for the selective elimination of CD8+ lymphocytes using a mouse-human chimeric monoclonal antibody. Am J Pathol 154: 1923–1932.PubMedGoogle Scholar
  121. Schwartz GK, Shah MA (2005). Targeting the cell cycle: a new approach to cancer therapy. J Clin Oncol 23: 9408–9421.PubMedGoogle Scholar
  122. Simon MA, Chalifoux LV, Ringler DJ (1992). Pathologic features of SIV-induced disease and the association of macrophage infection with disease evolution. AIDS Res Hum Retroviruses 8: 327–337.PubMedGoogle Scholar
  123. Sopper S, Sauer U, Hemm S, Demuth M, Muller J, Stahl-Hennig C, Hunsmann G, ter Meulen V, Dorries R (1998). Protective role of the virus-specific immune response for development of severe neurologic signs in simian immunodeficiency virus-infected macaques. J Virol 72: 9940–9947.PubMedGoogle Scholar
  124. Speth C, Dierich MP, Sopper S (2005). HIV-infection of the central nervous system: the tightrope walk of innate immunity. Mol Immunol 42: 213–228.PubMedGoogle Scholar
  125. Stankoff B, Tourbah A, Suarez S, Turell E, Stievenart JL, Payan C, Coutellier A, Herson S, Baril L, Bricaire F, Calvez V, Cabanis EA, Lacomblez L, Lubetzki C (2001). Clinical and spectroscopic improvement in HIV-associated cognitive impairment. Neurology 56: 112–115.PubMedGoogle Scholar
  126. Stephens EB, Liu ZQ, Zhu GW, Adany I, Joag SV, Foresman L, Berman NE, Narayan O (1995). Lymphocyte-tropic simian immunodeficiency virus causes persistent infection in the brains of rhesus monkeys. Virology 213: 600–614.PubMedGoogle Scholar
  127. Sundar S, Cierpial M, Kamaraju L, Long S, Hsieh S, Lorenz C, Aaron M, Ritchie J, Weiss J (1991). Human immunodeficiency virus glycoprotein (gp120) infused into rat brain induces interleukin 1 to elevate pituitary-adrenal activity and decreased peripheral cellular immune responses. Proc Natl Acad Sci U S A 88: 11246–11250.PubMedGoogle Scholar
  128. Tarasow E, Wiercinska-Drapalo A, Kubas B, Dzienis W, Orzechowska-Bobkiewicz A, Prokopowicz D, Walecki J (2003). Cerebral MR spectroscopy in neurologically asymptomatic HIV-infected patients. Acta Radiol 44: 206–212.PubMedGoogle Scholar
  129. Toggas S, Masliah E, Mucke L (1996). Prevention of HIV-1 gp120-induced neuronal damage in the central nervous system of transgenic mice by the NMDA receptor atagonist memantine. Brain Res 706: 303–307.PubMedGoogle Scholar
  130. Toggas S, Masliah E, Rockenstein E, Mucke L (1994). Central nervous system damage produced by expression of the HIV-1 coat protein gp120 in transgenic mice. Nature 367: 188–193.PubMedGoogle Scholar
  131. Tracey I, Carr CA, Guimaraes AR, Worth JL, Navia BA, Gonzalez RG (1996). Brain choline-containing compounds are elevated in HIV-positive patients before the onset of AIDS dementia complex: a proton magnetic resonance spectroscopic study. Neurology 46: 783–788.PubMedGoogle Scholar
  132. Tracey I, Hamberg LM, Guimaraes AR, Hunter G, Chang I, Navia BA, Gonzalez RG (1998). Increased cerebral blood volume in HIV-positive patients detected by functional MRI. Neurology 50: 1821–1826.PubMedGoogle Scholar
  133. Tran PB, Miller RJ (2005). HIV-1, chemokines and neurogenesis. Neurotox Res 8: 149–158.PubMedGoogle Scholar
  134. Turchan J, Pocernich CB, Gairola C, Chauhan A, Schifitto G, Butterfield DA, Buch S, Narayan O, Sinai A, Geiger J, Berger JR, Elford H, Nath A (2003). Oxidative stress in HIV demented patients and protection ex vivo with novel antioxidants. Neurology 60: 307–314.PubMedGoogle Scholar
  135. van Marle G, Antony JM, Silva C, Sullivan A, Power C (2005). Aberrant cortical neurogenesis in a pediatric neuro AIDS model: neurotrophic effects of growth hormone. AIDS 19: 1781–1791.PubMedGoogle Scholar
  136. Vigorito M, LaShomb AL, Chang SL (2007). Spatial learning and memory in HIV-1 transgenic rats. J Neuroimmune Pharmacol 2: 319–328.PubMedGoogle Scholar
  137. Wang Z, Trillo-Pazos G, Kim SY, Canki M, Morgello S, Sharer LR, Gelbard HA, Su ZZ, Kang DC, Brooks AI, Fisher PB, Volsky DJ (2004). Effects of human immunodeficiency virus type 1 on astrocyte gene expression and function: potential role in neuropathogenesis. J Neuro Virol 10(Suppl 1): 25–32.Google Scholar
  138. Weis S, Haug H, Budka H (1993). Neuronal damage in the cerebral cortex of AIDS brains: a morphometric study. Acta Neuropathol 85: 185–189.PubMedGoogle Scholar
  139. Westmoreland SV, Halpern E, Lackner AA (1998). Simian immunodeficiency virus encephalitis in rhesus macaques is asociated with rapid disease progression. J Neuro Virol 4: 260–268.Google Scholar
  140. Westmoreland SV, Kolson D, Gonzalez-Scarano F (1996). Toxicity of TNF alpha and platelet activating factor for human NT2N neurons: a tissue culture model for human immunodeficiency virus dementia. J Neuro Virol 2: 118–126.Google Scholar
  141. Wiley C, Achim C (1994). HIV encephalitis is the pathologic correlate of dementia in AIDS. Ann Neurol 36: 673–676.PubMedGoogle Scholar
  142. Wiley C, Masliah E, Morey M, Lemere C, DeTeresa R, Grafe M, Hansen L, Terry R (1991a). Neocortical damage during HIV infection. Ann Neurol 29: 651–657.PubMedGoogle Scholar
  143. Wiley CA (2003). Detection of HIV-1 DNA in microglia/macrophages, astrocytes and neurons isolated from brain tissue with HIV-1 encephalitis by laser capture microdissection. Brain Pathol 13: 415; author reply 415–416.PubMedGoogle Scholar
  144. Wiley CA, Masliah E, Achim CL (1994). Measurement of CNS HIV burden and its association with neurologic damage. Adv Neuroimmunol 4: 319–325.PubMedGoogle Scholar
  145. Wiley CA, Schrier RD, Morey M, Achim C, Venable JC, Nelson JA (1991b). Pathogenesis of HIV encephalitis. Acta Pathol Jpn 41: 192–196.PubMedGoogle Scholar
  146. Wilkinson ID, Lunn S, Miszkiel KA, Miller RF, Paley MN, Williams I, Chinn RJ, Hall-Craggs MA, Newman SP, Kendall BE, Harrison MJ (1997). Proton MRS and quantitative MRI assessment of the short term neurological response to antiretroviral therapy in AIDS. J Neurol Neurosurg Psychiatry 63: 477–482.PubMedGoogle Scholar
  147. Williams K, Westmoreland S, Greco J, Ratai E, Lentz M, Kim WK, Fuller RA, Kim JP, Autissier P, Sehgal PK, Schinazi RF, Bischofberger N, Piatak M, Lifson JD, Masliah E, Gonzalez RG (2005). Magnetic resonance spectroscopy reveals that activated monocytes contribute to neuronal injury in SIV neuroAIDS. J Clin Invest 115: 2534–2545.PubMedGoogle Scholar
  148. Williams KC, Corey S, Westmoreland SV, Pauley D, Knight H, deBakker C, Alvarez X, Lackner AA (2001). Perivascular macrophages are the primary cell type productively infected by simian immunodeficiency virus in the brains of macaques: implications for the neuropathogenesis of AIDS. J Exp Med 193: 905–915.PubMedGoogle Scholar
  149. Xiong H, Zeng YC, Lewis T, Zheng J, Persidsky Y, Gendelman HE (2000). HIV-1 infected mononuclear phagocyte secretory products affect neuronal physiology leading to cellular demise: relevance for HIV-1-associated dementia. J Neuro Virol 6(Suppl 1): S14-S23.Google Scholar
  150. Yi Y, Lee C, Liu QH, Freedman BD, Collman RG (2004). Chemokine receptor utilization and macrophage signaling by human immunodeficiency virus type 1 gp120: Implications for neuropathogenesis. J Neuro Virol 10(Suppl 1): 91–96.Google Scholar
  151. Zink MC, Clements JE (2002). A novel simian immunodeficiency virus model that provides insight into mechanisms of human immunodeficiency virus central nervous system disease. J Neuro Virol 8(Suppl 2): 42–48.Google Scholar
  152. Zink MC, Spelman JP, Robinson RB, Clements JE (1998). SIV infection of macaques—modeling the progression to AIDS dementia. J Neuro Virol 4: 249–259.Google Scholar
  153. Zink WE, Anderson E, Boyle J, Hock L, Rodriguez-Sierra J, Xiong H, Gendelman HE, Persidsky Y (2002). Impaired spatial cognition and synaptic potentiation in a murine model of human immunodeficiency virus type 1 encephalitis. J Neurosci 22: 2096–2105.PubMedGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2008

Authors and Affiliations

  • Leslie Crews
    • 1
  • Margaret R. Lentz
    • 3
  • R. Gilberto González
    • 3
  • Howard S. Fox
    • 4
  • Eliezer Masliah
    • 1
    • 2
  1. 1.Department of PathologyUniversity of California San DiegoLa JollaUSA
  2. 2.Department of NeurosciencesUniversity of CaliforniaSan Diego, La JollaUSA
  3. 3.Division of Neuroradiology and the A.A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownUSA
  4. 4.Department of Molecular and Integrative NeuroscienceThe Scripps Research InstituteLa JollaUSA

Personalised recommendations