Journal of NeuroVirology

, Volume 14, Issue 4, pp 292–300 | Cite as

Nonhuman primate models of NeuroAIDS

  • Rachel Williams
  • Sirosh Bokhari
  • Peter Silverstein
  • David Pinson
  • Anil Kumar
  • Shilpa BuchEmail author


Human Immunodeficiency virus (HIV), the virus that causes acquired immunodeficiency syndrome (AIDS), also manifests neurological complications. HIV-associated dementia (HAD) is the most severe form of HIV-induced neurocognitive disorders. HIV encephalitis (HIVE), the pathological correlate of HAD, is characterized by the formation of multinucleated giant cells and microglial nodules, astrocytosis, and neuronal damage and loss. Pathological evaluation of HAD disease progression in humans is not possible, with the only data collected being from individuals who have succumbed to the disorder, a snap shot of end-stage disease at best. Therefore, pertinent animal models have been developed to alleviate this gap of knowledge in the field of neurovirology and neuroinflammation. In general, the most widely used animal models are the simian immunodeficiency virus (SIV) and the chimeric simian/human immunodeficiency virus (SHIV) macaque model systems. Although both SIV and SHIV model systems are able to potentiate neuroinvasion and the concomitant neuropathology similar to that seen in the human syndromes, the innate differences between the two in disease pathogenesis and progression make for two separate, yet effective, systems for the study of HIV-associated neuropathology.


HIV macaque SHIV SIV 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bell JE (1998). The neuropathology of adult HIV infection. Rev Neurol (Paris) 154: 816–829.Google Scholar
  2. Blumberg BM, Gelbard HA, Epstein LG (1994). HIV-1 infection of the developing nervous system: central role of astrocytes in pathogenesis. Virus Res 32: 253–267.CrossRefPubMedGoogle Scholar
  3. Buch S, Pinson D, Hou Y, Adany I, Li Z, Mukherjee S, Jia F, Mackay G, Silverstein P, Kumar A, Narayan O (2000). Neuropathogenesis of chimeric simian human immunodeficiency virus infection in rhesus macaques. J Med Primatol 29: 96–106.CrossRefPubMedGoogle Scholar
  4. Buch S, Sui Y, Dhillon N, Potula R, Zien C, Pinson D, Li S, Dhillon S, Nicolay B, Sidelnik A, Li C, Villinger T, Bisarriya K, Narayan O (2004a). Investigations on four host response factors whose expression is enhanced in X4 SHIV encephalitis. J Neuroimmunol 157: 71–80.CrossRefPubMedGoogle Scholar
  5. Buch S, Sui Y, Potula R, Pinson D, Adany I, Li Z, Huang M, Li S, Dhillon N, Major E, Narayan O (2004b). Role of interleukin-4 and monocyte chemoattractant protein-1 in the neuropathogenesis of X4 simian human immunodeficiency virus infection in macaques. J Neuro Virol 10(Suppl 1): 118–124.Google Scholar
  6. Buch SJ, Villinger F, Pinson D, Hou Y, Adany I, Li Z, Dalal R, Raghavan R, Kumar A, Narayan O (2002). Innate differences between simian-human immunodeficiency virus (SHIV)(KU-2)-infected rhesus and pig-tailed macaques in development of neurological disease. Virology 295: 54–62.CrossRefPubMedGoogle Scholar
  7. Bucur SZ, Lackey DA, 3rd, Adams JW, Lee ME, Villinger F, Mayne A, Bray RA, Winton EF, Novembre F, Strobert EA, De Rosayro J, Dailey PJ, Ansari AA, Hillyer CD (1998). Hematologic and virologic effects of lineage-specific and non-lineage-specific recombinant human and rhesus cytokines in a cohort of SIVmac239-infected macaques. AIDS Res Hum Retroviruses 14: 651–660.CrossRefPubMedGoogle Scholar
  8. Chakrabarti L, Hurtrel M, Maire MA, Vazeux R, Dormont D, Montagnier L, Hurtrel B (1991). Early viral replication in the brain of SIV-infected rhesus monkeys. Am J Pathol 139: 1273–1280.PubMedGoogle Scholar
  9. Chebloune Y, Karr BM, Raghavan R, Singh DK, Leung K, Sheffer D, Pinson D, Foresman L, Narayan O (1998). Neuroinvasion by ovine lentivirus in infected sheep mediated by inflammatory cells associated with experimental allergic encephalomyelitis. J Neuro Virol 4: 38–48.Google Scholar
  10. Clements JE, Babas T, Mankowski JL, Suryanarayana K, Piatak M Jr, Tarwater PM, Lifson JD, Zink MC (2002). The central nervous system as a reservoir for simian immunodeficiency virus (SIV): steady-state levels of SIV DNA in brain from acute through asymptomatic infection. J Infect Dis 186: 905–913.CrossRefPubMedGoogle Scholar
  11. Clerici M, Levin JM, Kessler HA, Harris A, Berzofsky JA, Landay AL, Shearer GM (1994). HIV-specific T-helper activity in seronegative health care workers exposed to contaminated blood. JAMA 271: 42–46.CrossRefPubMedGoogle Scholar
  12. Clerici M, Shearer GM (1993). A TH1LTH2 switch is a critical step in the etiology of HIV infection. Immunol Today 14: 107–111.CrossRefPubMedGoogle Scholar
  13. Craig LE, Sheffer D, Meyer AL, Hauer D, Lechner F, Peterhans E, Adams RJ, Clements JE, Narayan O, Zink MC (1997). Pathogenesis of ovine lentiviral encephalitis: derivation of a neurovirulent strain by in vivo passage. J Neuro Virol 3: 417–27.Google Scholar
  14. da Cunha A, Mintz M, Eiden LE, Sharer LR (1997). A neuronal and neuroanatomical correlate of HIV-1 encephalopathy relative to HIV-1 encephalitis in HIV-1-infected children. J Neuropathol Exp Neurol 56: 974–987.CrossRefPubMedGoogle Scholar
  15. Edinger AL, Amedee A, Miller K, Doranz BJ, Endres M, Sharron M, Samson M, Lu ZH, Clements JE, Murphey-Corb M, Peiper SC, Parmentier M, Broder CC, Doms RW (1997). Differential utilization of CCR5 by macrophage and T cell tropic simian immunodeficiency virus strains. Proc Natl Acad Sci U S A 94: 4005–4010.CrossRefPubMedGoogle Scholar
  16. Gabuzda DH, Sobel RA (1987). HIV antigen in brains of patients with AIDS. Ann Neurol 22: 668.CrossRefPubMedGoogle Scholar
  17. Gendelman HE, Lipton SA, Tardieu M, Bukrinsky MI, Nottet HS (1994). The neuropathogenesis of HIV-1 infection. J Leukoc Biol 56: 389–398.PubMedGoogle Scholar
  18. Glass JD, Fedor H, Wesselingh SL, McArthur JC (1995). Immunocytochemical quantitation of human immunodeficiency virus in the brain: correlations with dementia. Ann Neurol 38: 755–762.CrossRefPubMedGoogle Scholar
  19. Harouse JM, Gettie A, Eshetu T, Tan RC, Bohm R, Blanchard J, Baskin G, Cheng-Mayer C (2001). Mucosal transmission and induction of simian AIDS by CCR5-specific simian/human immunodeficiency virus SHIV(SF162P3). J Virol 75: 1990–1995.CrossRefPubMedGoogle Scholar
  20. Harouse JM, Gettie A, Tan RC, Blanchard J, Cheng-Mayer C (1999). Distinct pathogenic sequela in rhesus macaques infected with CCR5 or CXCR4 utilizing SHIVs. Science 284: 816–819.CrossRefPubMedGoogle Scholar
  21. Joag SV (2000). Primate models of AIDS. Microbes Infect 2: 223–229.CrossRefPubMedGoogle Scholar
  22. Joag SV, Adams RJ, Foresman L, Galbreath D, Zink MC, Pinson DM, McClure H, Narayan O (1994). Early activation of PBMC and appearance of antiviral CD8+ cells influence the prognosis of SIV-induced disease in rhesus macaques. J Med Primatol 23: 108–116.PubMedGoogle Scholar
  23. Joag SV, Li Z, Foresman L, Pinson DM, Raghavan R, Zhuge W, Adany I, Wang C, Jia F, Sheffer D, Ranchalis J, Watson A, Narayan O (1997). Characterization of the pathogenic KU-SHIV model of acquired immunodeficiency syndrome in macaques. AIDS Res Hum Retroviruses 13: 635–645.CrossRefPubMedGoogle Scholar
  24. Joag SV, Li Z, Foresman L, Stephens EB, Zhao LJ, Adany I, Pinson DM, McClure HM, Narayan O (1996). Chimeric simian/human immunodeficiency virus that causes progressive loss of CD4+ T cells and AIDS in pig-tailed macaques. J Virol 70: 3189–3197.PubMedGoogle Scholar
  25. Kanmogne GD, Kennedy RC, Grammas P (2002). Infection of baboon microglia with SIV-HIV recombinant viruses: role of CD4 and chemokine receptors. AIDS Res Hum Retroviruses 18: 557–565.CrossRefPubMedGoogle Scholar
  26. Karlsson GB, Halloran M, Li J, Park IW, Gomila R, Reimann KA, Axthelm MK, Iliff SA, Letvin NL, Sodroski J (1997). Characterization of molecularly cloned simian-human immunodeficiency viruses causing rapid CD4+ lymphocyte depletion in rhesus monkeys. J Virol 71: 4218–4225.PubMedGoogle Scholar
  27. Kirchhoff F, Pohlmann S, Hamacher M, Means RE, Kraus T, Uberla K, Di Marzio P (1997). Simian immunodeficiency virus variants with differential T-cell and macrophage tropism use CCR5 and an unidentified cofactor expressed in CEMx174 cells for efficient entry. J Virol 71: 6509–6516.PubMedGoogle Scholar
  28. Kolson DL, Pomerantz RJ (1996). AIDS dementia and HIV-1-induced neurotoxicity: possible pathogenic associations and mechanisms. J Biomed Sci 3: 389–414.CrossRefPubMedGoogle Scholar
  29. Kuroda MJ, Schmitz JE, Charini WA, Nickerson CE, Lifton MA, Lord CI, Forman MA, Letvin NL (1999). Emergence of CTL coincides with clearance of virus during primary simian immunodeficiency virus infection in rhesus monkeys. J Immunol 162: 5127–5133.PubMedGoogle Scholar
  30. Lackner AA, Smith MO, Munn RJ, Martfeld DJ, Gardner MB, Marx PA, Dandekar S (1991). Localization of simian immunodeficiency virus in the central nervous system of rhesus monkeys. Am J Pathol 139: 609–621.PubMedGoogle Scholar
  31. Lackner AA, Vogel P, Ramos RA, Kluge JD, Marthas M (1994). Early events in tissues during infection with pathogenic (SIVmac239) and nonpathogenic (SIVmac1A11) molecular clones of simian immunodeficiency virus. Am J Pathol 145: 428–439.PubMedGoogle Scholar
  32. Lane JH, Sasseville VG, Smith MO, Vogel P, Pauley DR, Heyes MP, Lackner AA (1996). Neuroinvasion by simian immunodeficiency virus coincides with increased numbers of perivascular macrophages/microglia and intrathecal immune activation. J Neuro Virol 2: 423–432.Google Scholar
  33. Levy JA (1993). Pathogenesis of human immunodeficiency virus infection. Microbiol Rev 57: 183–289.PubMedGoogle Scholar
  34. Lipton SA, Gendelman HE (1995). Seminars in medicine of the Beth Israel Hospital, Boston. Dementia associated with the acquired immunodeficiency syndrome. N Engl J Med 332: 934–940.CrossRefPubMedGoogle Scholar
  35. Liu ZQ, Muhkerjee S, Sahni M, McCormick-Davis C, Leung K, Li Z, Gattone VH 2nd, Tian C, Doms RW, Hoffman TL, Raghavan R, Narayan O, Stephens EB (1999). Derivation and biological characterization of a molecular clone of SHIV(KU-2) that causes AIDS, neurological disease, and renal disease in rhesus macaques. Virology 260: 295–307.CrossRefPubMedGoogle Scholar
  36. Luciw PA, Pratt-Lowe E, Shaw KE, Levy JA, Cheng-Mayer C (1995). Persistent infection of rhesus macaques with T-cell-line-tropic and macrophage-tropic clones of simian/human immunodeficiency viruses (SHIV). Proc Natl Acad Sci U S A 92: 7490–7494.CrossRefPubMedGoogle Scholar
  37. Luciw PA, Shaw KE, Unger RE, Planelles V, Stout MW, Lackner JE, Pratt-Lowe E, Leung NJ, Banapour B, Marthas ML (1992). Genetic and biological comparisons of pathogenic and nonpathogenic molecular clones of simian immunodeficiency virus (SIVmac). AIDS Res Hum Retroviruses 8: 395–402.CrossRefPubMedGoogle Scholar
  38. Marcario JK, Riazi M, Adany I, Kenjale H, Fleming K, Marquis J, Nemon O, Mayo MS, Yankee T, Narayan O, Cheney PD (2008). Effect of morphine on the neuropathogenesis of SIVmac infection in Indian rhesus macaques. J Neuroimmune Pharmacol 3: 12–25.CrossRefPubMedGoogle Scholar
  39. Marcondes MC, Burdo TH, Sopper S, Huitron-Resendiz S, Lanigan C, Watry D, Flynn C, Zandonatti M, Fox HS (2007). Enrichment and persistence of virus-specific CTL in the brain of simian immunodeficiency virusinfected monkeys is associated with a unique cytokine environment. J Immunol 178: 5812–9.PubMedGoogle Scholar
  40. Marcondes MC, Burudi EM, Huitron-Resendiz S, Sanchez-Alavez M, Watry D, Zandonatti M, Henriksen SJ, Fox HS (2001). Highly activated CD8(+) T cells in the brain correlate with early central nervous system dysfunction in simian immunodeficiency virus infection. J Immunol 167: 5429–5438.PubMedGoogle Scholar
  41. Marcondes MC, Phillipson CA, Fox HS (2003). Distinct clonal repertoire of brain CD8+ cells in simian immunodeficiency virus infection. AIDS 17: 1605–1611.CrossRefPubMedGoogle Scholar
  42. Matano T, Shibata R, Siemon C, Connors M, Lane HC, Martin MA (1998). Administration of an anti-CD8 monoclonal antibody interferes with the clearance of chimeric simian/human immunodeficiency virus during primary infections of rhesus macaques. J Virol 72: 164–169.PubMedGoogle Scholar
  43. McArthur JC, Sacktor N, Selnes O (1999). Human immunodeficiency virus-associated dementia. Semin Neurol 19: 129–150.CrossRefPubMedGoogle Scholar
  44. Michaels J, Price RW, Rosenblum MK (1988). Microglia in the giant cell encephalitis of acquired immune deficiency syndrome: proliferation, infection and fusion. Acta Neuropathol (Berl) 76: 373–379.CrossRefGoogle Scholar
  45. Nath A (1999). Pathobiology of human immunodeficiency virus dementia. Semin Neurol 19: 113–127.CrossRefPubMedGoogle Scholar
  46. Navia BA, Jordan BD, Price RW (1986). The AIDS dementia complex: I. Clinical features. Ann Neurol 19: 517–524.CrossRefPubMedGoogle Scholar
  47. North TW, Van Rompay KK, Higgins J, Matthews TB, Wadford DA, Pedersen NC, Schinazi RF (2005). Suppression of virus load by highly active antiretroviral therapy in rhesus macaques infected with a recombinant simian immunodeficiency virus containing reverse transcriptase from human immunodeficiency virus type 1. J Virol 79: 7349–7354.CrossRefPubMedGoogle Scholar
  48. Poli G, Vicenzi E, Ghezzi S, Lazzarin A (1995). Cytokines in the acquired immunodeficiency syndrome and other infectious diseases. Int J Clin Lab Res 25: 128–134.CrossRefPubMedGoogle Scholar
  49. Potula R, Dhillion N, Sui Y, Zien CA, Funa K, Pinson D, Mayo MS, Singh DK, Narayan O, Buch S (2004). Association of platelet-derived growth factor-B chain with simian human immunodeficiency virus encephalitis. Am J Pathol 165: 815–824.PubMedGoogle Scholar
  50. Raghavan R, Cheney PD, Raymond LA, Joag SV, Stephens EB, Adany I, Pinson DM, Li Z, Marcario JK, Jia F, Wang C, Foresman L, Berman NE, Narayan O (1999). Morphological correlates of neurological dysfunction in macaques infected with neurovirulent simian immunodeficiency virus. Neuropathol Appl Neurobiol 25: 285–294.CrossRefPubMedGoogle Scholar
  51. Raghavan R, Stephens EB, Joag SV, Adany I, Pinson DM, Li Z, Jia F, Sahni M, Wang C, Leung K, Foresman L, Narayan O (1997). Neuropathogenesis of chimeric simian/human immunodeficiency virus infection in pig-tailed and rhesus macaques. Brain Pathol 7: 851–861.CrossRefPubMedGoogle Scholar
  52. Reimann KA, Li JT, Veazey R, Halloran M, Park IW, Karlsson GB, Sodroski J, Letvin NL (1996). A chimeric simian/human immunodeficiency virus expressing a primary patient human immunodeficiency virus type 1 isolate env causes an AIDS-like disease after in vivo passage in rhesus monkeys. J Virol 70: 6922–6928.PubMedGoogle Scholar
  53. Saito Y, Sharer LR, Epstein LG, Michaels J, Mintz M, Louder M, Golding K, Cvetkovich TA, Blumberg BM (1994). Overexpression of nef as a marker for restricted HIV-1 infection of astrocytes in postmortem pediatric central nervous tissues. Neurology 44: 474–481.PubMedGoogle Scholar
  54. Schmitz JE, Kuroda MJ, Santra S, Sasseville VG, Simon MA, Lifton MA, Racz P, Tenner-Racz K, Dalesandro M, Scallon BJ, Ghrayeb J, Forman MA, Montefiori DC, Rieber EP, Letvin NL, Reimann KA (1999a). Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science 283: 857–860.CrossRefPubMedGoogle Scholar
  55. Schmitz JE, Simon MA, Kuroda MJ, Lifton MA, Ollert MW, Vogel CW, Racz P, Tenner-Racz K, Scallon BJ, Dalesandro M, Ghrayeb J, Rieber EP, Sasseville VG, Reimann KA (1999b). A nonhuman primate model for the selective elimination of CD8+ lymphocytes using a mouse-human chimeric monoclonal antibody. Am J Pathol 154: 1923–1932.PubMedGoogle Scholar
  56. Schnittman SM, Fauci AS (1994). Human immunodeficiency virus and acquired immunodeficiency syndrome: an update. Adv Intern Med 39: 305–355.PubMedGoogle Scholar
  57. Sharer LR, Saito Y, Da Cunha A, Ung PC, Gelbard HA, Epstein LG, Blumberg BM (1996). In situ amplification and detection of HIV-1 DNA in fixed pediatric AIDS brain tissue. um Pathol 27: 614–617.Google Scholar
  58. Sharer LR, Saito Y, Epstein LG, Blumberg BM (1994). Detection of HIV-1 DNA in pediatric AIDS brain tissue by two-step ISPCR. Adv Neuroimmunol 4: 283–285.CrossRefPubMedGoogle Scholar
  59. Sharma DP, Anderson M, Zink MC, Adams RJ, Donnenberg AD, Clements JE, Narayan O (1992a). Pathogenesis of acute infection in rhesus macaques with a lymphocytetropic strain of simian immunodeficiency virus. J Infect Dis 166: 738–746.PubMedGoogle Scholar
  60. Sharma DP, Zink MC, Anderson M, Adams R, Clements JE, Joag SV, Narayan O (1992b). Derivation of neurotropic simian immunodeficiency virus from exclusively lymphocytetropic parental virus: pathogenesis of infection in macaques. J Virol 66: 3550–3556.PubMedGoogle Scholar
  61. Shibata R, Kawamura M, Sakai H, Hayami M, Ishimoto A, Adachi A (1991). Generation of a chimeric human and simian immunodeficiency virus infectious to monkey peripheral blood mononuclear cells. J Virol 65: 3514–3520.PubMedGoogle Scholar
  62. Shibata R, Sakai H, Kiyomasu T, Ishimoto A, Hayami M, Adachi A (1990). Generation and characterization of infectious chimeric clones between human immunodeficiency virus type 1 and simian immunodeficiency virus from an African green monkey. J Virol 64: 5861–5868.PubMedGoogle Scholar
  63. Singh DK, Chouduri R, Pacyniak E, Berman NE, Stephens EB (2003). Infection of human astrocytoma cells with simian-human immunodeficiency virus results in up-regulation of gene expression and altered growth properties. Neurosci Lett 340: 201–204.CrossRefPubMedGoogle Scholar
  64. Singh DK, McCormick C, Pacyniak E, Griffin D, Pinson DM, Sun F, Berman NE, Stephens EB (2002). Pathogenic and nef-interrupted simian-human immunodeficiency viruses traffic to the macaque CNS and cause astrocytosis early after inoculation. Virology 296: 39–51.CrossRefPubMedGoogle Scholar
  65. Singh DK, McCormick C, Pacyniak E, Lawrence K, Dalton SB, Pinson DM, Sun F, Berman NE, Calvert M, Gunderson RS, Wong SW, Stephens EB (2001). A simian human immunodeficiency virus with a nonfunctional Vpu (deltavpuSHIV(KU-1bMC33)) isolated from a macaque with neuro AIDS has selected for mutations in env and nef that contributed to its pathogenic phenotype. Virology 282: 123–140.CrossRefPubMedGoogle Scholar
  66. Smith MO, Heyes MP, Lackner AA (1995). Early intrathecal events in rhesus macaques (Macaca mulatta) infected with pathogenic or nonpathogenic molecular clones of simian immunodeficiency virus. Lab Invest 72: 547–558.PubMedGoogle Scholar
  67. Soderberg K, Denekamp L, Nikiforow S, Sautter K, Desrosiers RC, Alexander L (2002). A nucleotide substitution in the tRNA(Lys) primer binding site dramatically increases replication of recombinant simian immunodeficiency virus containing a human immunodeficiency virus type 1 reverse transcriptase. J Virol 76: 5803–5806.CrossRefPubMedGoogle Scholar
  68. Stephens EB, Galbreath D, Liu ZQ, Sahni M, Li Z, Lamb-Wharton R, Foresman L, Joag SV, Narayan O (1997). Significance of macrophage tropism of SIV in the macaque model of HIV disease. J Leukoc Biol 62: 12–19.PubMedGoogle Scholar
  69. Stephens EB, Jackson M, Cui L, Pacyniak E, Choudhuri R, Liverman CS, Salomon DS, Berman NE (2006). Early dysregulation of cripto-1 and immunomodulatory genes in the cerebral cortex in a macaque model of neuro AIDS. Neurosci Lett 410: 94–99.CrossRefPubMedGoogle Scholar
  70. Stephens EB, Liu ZQ, Zhu GW, Adany I, Joag SV, Foresman L, Berman NE, Narayan O (1995). Lymphocyte-tropic simian immunodeficiency virus causes persistent infection in the brains of rhesus monkeys. Virology 213: 600–614.CrossRefPubMedGoogle Scholar
  71. Stephens EB, Singh DK, Kohler ME, Jackson M, Pacyniak E, Berman NE (2003). The primary phase of infection by pathogenic simian-human immunodeficiency virus results in disruption of the blood-brain barrier. AIDS Res Hum Retroviruses 19: 837–846.CrossRefPubMedGoogle Scholar
  72. Sui Y, Potula R, Pinson D, Adany I, Li Z, Day J, Buch E, Segebrecht J, Villinger F, Liu Z, Huang M, Narayan O, Buch S (2003). Microarray analysis of cytokine and chemokine genes in the brains of macaques with SHIV-encephalitis. J Med Primatol 32: 229–239.CrossRefPubMedGoogle Scholar
  73. Uberla K, Stahl-Hennig C, Bottiger D, Matz-Rensing K, Kaup FJ, Li J, Haseltine WA, Fleckenstein B, Hunsmann G, Oberg B, et al (1995). Animal model for the therapy of acquired immunodeficiency syndrome with reverse transcriptase inhibitors. Proc Natl Acad Sci U S A 92: 8210–8214.CrossRefPubMedGoogle Scholar
  74. Weissman D, Rabin RL, Arthos J, Rubbert A, Dybul M, Swofford R, Venkatesan S, Farber JM, Fauci AS (1997). Macrophage-tropic HIV and SIV envelope proteins induce a signal through the CCR5 chemokine receptor. Nature 389: 981–985.CrossRefPubMedGoogle Scholar
  75. Wiley CA, Schrier RD, Nelson JA, Lampert PW, Oldstone MB (1986). Cellular localization of human immunodeficiency virus infection within the brains of acquired immune deficiency syndrome patients. Proc Natl Acad Sci U S A 83: 7089–7093.CrossRefPubMedGoogle Scholar
  76. Wu Z, Qian G, Zhen QL, Narayan O, Stephens EB (1996). Neutralization of SIVmac239/17E in lymphocyte cultures involves virus strain-specific linear and conformational epitopes encoded by different regions of the env gene including the “V3” domain. Virology 222: 184–192.CrossRefPubMedGoogle Scholar
  77. Zink MC, Amedee AM, Mankowski JL, Craig L, Didier P, Carter DL, Munoz A, Murphey-Corb M, Clements JE (1997). Pathogenesis of SIV encephalitis. Selection and replication of neurovirulent SIV. Am J Pathol 151: 793–803.PubMedGoogle Scholar
  78. Zink MC, Suryanarayana K, Mankowski JL, Shen A, Piatak M, Jr., Spelman JP, Carter DL, Adams RJ, Lifson JD, Clements JE (1999). High viral load in the cerebrospinal fluid and brain correlates with severity of simian immunodeficiency virus encephalitis. J Virol 73: 10480–10488.PubMedGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2008

Authors and Affiliations

  • Rachel Williams
    • 1
  • Sirosh Bokhari
    • 2
  • Peter Silverstein
    • 2
  • David Pinson
    • 3
  • Anil Kumar
    • 4
  • Shilpa Buch
    • 1
    Email author
  1. 1.Department of Molecular and Integrative PhysiologyKansas University Medical Center, Kansas CityKansas CityUSA
  2. 2.Department of Microbiology, Molecular Genetics, and ImmunologyUniversity of Kansas Medical CenterKansas CityUSA
  3. 3.Department of Pathology and Laboratory MedicineUniversity of Kansas Medical CenterKansas CityUSA
  4. 4.Division of Pharmacology, School of PharmacyUniversity of MissouriKansas CityUSA

Personalised recommendations