Journal of NeuroVirology

, Volume 14, Issue 3, pp 186–195

Human immunodeficiency virus type 1 gp120-mediated disruption of tight junction proteins by induction of proteasome-mediated degradation of zonula occludens-1 and -2 in human brain microvascular endothelial cells

  • Shinichi Nakamuta
  • Hiroshi Endo
  • Youichiro Higashi
  • Aoi Kousaka
  • Hiroshi Yamada
  • Mihiro Yano
  • Hiroshi Kido


The infiltration of human immunodeficiency virus (HIV)-1, such as by HIV-infected leukocytes, across an injured blood-brain barrier (BBB) is a characteristic pathologic manifestation of HIV-1—associated dementia. HIV-1 gp120 has been implicated as a cause of breakdown of tight junctions between endothelial cells of the BBB, though the disrupting molecular mechanisms are unexplained. This study offers a new explanation for the increased BBB microvascular permeability, due to the degradation of tight junction proteins by the proteasome induced by gp120, and the negative regulation of this process by the scaffold protein, 14-3-3τ. gp120 reduced the amount of zonula occludens (ZO)-1 and ZO-2 in human brain microvascular endothelial cells (HBMECs). The treatment of HBMECs with the proteasome inhibitor, lactacystin, blocked the degradation of ZO-1 and ZO-2, suggesting that these proteins were targeted by gp120 for degradation by the proteasome. gp120 also specifically increased the expression of 14-3-3τ in HBMECs, and its down-regulation by RNAi facilitated the breakdown of tight junction proteins induced by gp120. Our results demonstrate the novel molecular mechanisms of the BBB breakdown by gp120.


14-3-3 protein HIV-1 gp120 HIV-1—associated dementia proteasome tight junction protein 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aberle H, Bauer A, Stappert J, Kispert A, Kemler R (1997). β-Catenin is a target for the ubiquitin-proteasome pathway. EMBO J 16: 3797–3804.PubMedCrossRefGoogle Scholar
  2. Adle-Biassette H, Levy Y, Colombel M, Poron F, Natchev S, Keohane C, Gray F (1995). Neuronal apoptosis in HIV infection in adults. Neuropathol Appl Neurobiol 21: 218–227.PubMedCrossRefGoogle Scholar
  3. An SF, Giometto B, Scaravilli T, Tavolato B, Gray F, Scaravilli F (1996). Programmed cell death in brains of HIV-1-positive AIDS and pre-AIDS patients. Acta Neuropathol 91: 169–173.PubMedCrossRefGoogle Scholar
  4. Annunziata P, Cioni C, Toneatto S, Paccagnini E (1998). HIV-1 gp120 increases the permeability of rat brain endothelium cultures by a mechanisms involving substance P. AIDS 12: 2377–2385.PubMedCrossRefGoogle Scholar
  5. Arese M, Ferrandi C, Primo L, Camussi G, Bussolino F (2000). HIV-1 Tat protein stimulates in vivo vascular permeability and lymphomononuclear cell recruitment. J Immunol 166: 1380–1388.Google Scholar
  6. Banks WA, Akerstrom V, Kastin AJ (1998). Adsorptive endocytosis mediates the passage of HIV-1 across the blood-brain barrier: evidence for a post-internalization coreceptor. J Cell Sci 111: 533–540.PubMedGoogle Scholar
  7. Berg D, Holzmann C, Riess O (2003). 14-3-3 Proteins in the nervous system. Nat Rev Neurosci 4: 752–762.PubMedCrossRefGoogle Scholar
  8. Boston PF, Jackson P, Thompson RJ (1982). Human 14-3-3 protein: radioimmunoassay, tissue distribution, and cerebrospinal fluid levels in patients with neurological disorders. J Neurochem 38: 1475–1482.PubMedCrossRefGoogle Scholar
  9. Boven LA, Middel J, Verhoef J, DeGroot CJ, Nottet HS (2000). Monocyte infiltration is highly associated with loss of tight junction protein zonula occludens in HIV-1-associated dementia. Neuropathol Appl Neurobiol 26: 356–360.PubMedCrossRefGoogle Scholar
  10. Budka H (1991). Neuropathology of human immunodeficiency virus infection. Brain Pathol 1: 163–175.PubMedCrossRefGoogle Scholar
  11. Celine F, Tilloy-Ellul A, Chevalier S, Charuel C, Pointis G (2004). Sertoli cell junctional proteins as early targets for different classes of reproductive toxicants. Reprod Toxicol 18: 413–421.CrossRefGoogle Scholar
  12. Conklin DS, Galaktionov K, Bearch D (1995). 14-3-3 proteins associate with cdc2 5 phosphatases. Proc Natl Acad Sci U S A 92: 7892–7896.PubMedCrossRefGoogle Scholar
  13. Dallasta LM, Pisarov LA, Esplen JE, Werley JV, Moses AV, Nelson JA, Achim CL (1999). Blood-brain barrier tight junction disruption in HIV encephalitis. Am J Pathol 155: 1915–1927.PubMedCrossRefGoogle Scholar
  14. Everall IP, Luthert PJ, Lantos PL (1991). Neuronal loss in the frontal cortex in HIV infection. Lancet 337: 1119–1121.PubMedCrossRefGoogle Scholar
  15. Fanning AS, Jameson BJ, Jesaitis LA, Anderson JM (1998). The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem 273: 29745–29753.PubMedCrossRefGoogle Scholar
  16. Fink C, Weigel R, Hembes T, Lauke-Wettwer H, Kliesch S, Bergmann M, Brehm RH (2006). Altered expression of ZO-1 and ZO-2 in Sertoli cells and loss of blood-testis barrier integrity in testicular carcinoma in situ. Neoplasia 8: 1019–1027.PubMedCrossRefGoogle Scholar
  17. Fischer S, Wobben M, Marti HH, Renz D, Schaper W (2002). Hypoxia-induced hyperpermeability in brain microvessel endothelial cells involves VEGF-mediated changes in the expression of zonula occludens-1. Microvasc Res 63: 70–80.PubMedCrossRefGoogle Scholar
  18. Fu H, Xia K, Pallas DC, Cui C, Conroy K, Narsimhan RP, Mamon H, Collier RJ, Roberts TM (1994). Interaction of the protein kinase Raf-1 with 14-3-3 proteins. Science 266: 126–129.PubMedCrossRefGoogle Scholar
  19. Gardner TW, Lesher T, Khin S, VU C, Barber AJ, Brennan WA (1996). Histamine reduces ZO-1 tight-junction protein expression in cultured retinal microvascular endothelial cells. Biochem J 320: 717–721.PubMedGoogle Scholar
  20. Helke KL, Queen SE, Tarwater PM, Turchan-Cholewo J, Nath A, Zink MC, Irani DN, Manknowski JL (2005). 14-3-3 Protein in CSF: an early predictor of SIV CNS disease. J Neuropathol Exp Neurol 64: 202–208.PubMedGoogle Scholar
  21. Hsich G, Kenney K, Gibbs CJ, Lee KH, Harrington MG. (1996). The 14-3-3 brain protein in cerebrospinal fluid as a marker for transmissible spongiform encephalopathies. N Engl J Med 335: 24–30.CrossRefGoogle Scholar
  22. Kanmogne GD, Primeaux C, Grammas P (2005). HIV-1 gp120 proteins alter tight junction protein expression and brain endothelial cell permeability: implication for the pathogenesis of HIV-associated dementia. J Neuropathol Exp Neurol 64: 498–505.PubMedGoogle Scholar
  23. Kanmogne GD, Schall K, Leibhart J, Knipe B, Gendelman HE, Persidsky Y (2007). HIV-1 gp120 compromises blood-brain barrier integrity and enhance monocyte migration across blood-brain barrier: implication for viral neuropathogenesis. J Cereb Blood Flow Metab 27: 123–134.PubMedCrossRefGoogle Scholar
  24. Kim TA, Avraham HK, Koh YH, Jiang S, Avraham S (2003). HIV-1 Tat-mediated apoptosis in human brain microvascular endothelial cells. J Immunol 170: 2629–2637.PubMedGoogle Scholar
  25. Laing JG, Beyer EC (1995). The gap junction protein connexin43 is degraded via the ubiquitin proteasome pathway. J Biol Chem 270: 26399–26403.PubMedCrossRefGoogle Scholar
  26. Luabeya MK, Dallasta LM, Achim CL, Pauza CD, Hamilton RL (2000). Blood-brain barrier disruption in simian immunodeficiency virus encephalitis. Neuropathol Appl Neurobiol 26: 454–462.PubMedCrossRefGoogle Scholar
  27. Mark KS, Davis TP (2002). Cerebral microvascular changes in permeability and tight junctions induced by hypoxiareoxygenation. Am J Physiol Heart Circ Physiol 282: H1485-H1494.PubMedGoogle Scholar
  28. Namikawa K, Su Q, Kiryu-Seo S, Kiyama H (1998). Enhanced expression of 14-3-3 family members in injured motoneurons. Mol Brain Res 55: 315–320.PubMedCrossRefGoogle Scholar
  29. Nottet HS, Persidsky Y, Sasseville VG, Nukuna AN, Bock P, Zhai QH, Sharer LR, McComb RD, Swindells S, Soderland C, Gendelman HE (1996). Mechanisms for the transendothelial migration of HIV-1-infected monocytes into brain. J Immunol 156: 1284–1295.PubMedGoogle Scholar
  30. Obsil T, Ghirlando R, Klein DC, Ganguly S, Dyda F (2001). Crystal structure of the 14-3-3 zeta: serotonin N-acetyltransferase complex: a role for scaffolding in enzyme regulation. Cell 105: 257–267.PubMedCrossRefGoogle Scholar
  31. Oshima T, Flores SC, Vaitaitis G, Coe LL, Joh T, Park JH, Zhu Y, Alexander B, Alexander JS (2000). HIV-1 Tat increases endothelial solute permeability through tyrosine kinase and mitogen-activated protein kinase-dependent pathways. AIDS 14: 475–482.PubMedCrossRefGoogle Scholar
  32. Persidsky Y, Stins M, Way D, Witte MH, Weinand M, Kim KS, Bock P, Gendelman HE, Fiala M (1997). A model for monocyte migration through the blood-brain barrier during HIV-1 encephalitis. J Immunol 158: 3499–3510.PubMedGoogle Scholar
  33. Petito CK, Robert B (1995). Evidence of apoptotic cell death in HIV encephalitis. Am J Pathol 146: 1121–1130.PubMedGoogle Scholar
  34. Power C, Kong PA, Crawford TO, Wesselingh S, Glass JD, McArthur JC, Trapp BD (1993). Cerebral white matter changes in acquired immunodeficiency syndrome dementia: alternations of the blood-brain barrier. Ann Neurol 34: 339–350.PubMedCrossRefGoogle Scholar
  35. Price RW, Perry SW (1994). HIV, AIDS, and brain. New York: Raven Press.Google Scholar
  36. Pu H, Tian J, Ibolya EA, Hayashi K, Flora G, Hennig B, Toborek M (2005). HIV-1 Tat protein-induced alternations of ZO-1 expression are mediated by redox-regulated ERK1/2 activation. J Cereb Blood Flow Metab 25: 1325–1335.PubMedCrossRefGoogle Scholar
  37. Reuther GW, Fu H, Cripe LD, Collier RJ, Pendergast AM (1994). Association of the protein kinase-c-Bcr and Bcr-Abl with proteins of the 14-3-3 family. Science 266: 129–133.PubMedCrossRefGoogle Scholar
  38. Rincon-Choles H, Vasylyeva TL, Pergola PE, Basant B, Bhandari K, Zhang JH, Wang W, Gorin Y, Barnes JL, Abboud HE (2006). ZO-1 expression and phosphorylation in diabetic nephropathy. Diabetes 55: 894–900.PubMedCrossRefGoogle Scholar
  39. Satoh J, Tabunoki H, Nanri Y, Arima K, Yamamura T (2006). Human astrocytes express 14-3-3 sigma in response to oxidative and DNA-damaging stresses. Neurosci Res 56: 61–72.PubMedCrossRefGoogle Scholar
  40. Suzuki A, Hirata M, Kamimura K, Maniwa R, Yamanaka T, Mizuno K, Kishikawa M, Hirose H, Amano Y, Izumi N, Miwa Y, Ohno S (2004). aPKC Acts Upstream of PAR-1b in both the establishment and maintenance of mammalian epithelial polarity. Curr Biol 14: 1425–1435.PubMedCrossRefGoogle Scholar
  41. Traweger A, Fang D, Liu YC, Stelzhammer W, Krizbai IA, Fresser F, Bauer HC, Bauer H (2002). The tight junction-specific protein occludin is a functional target of the E3 ubiquitin-protein ligase itch. J Biol Chem 277: 10201–10208PubMedCrossRefGoogle Scholar
  42. Tsukamoto T, Nigam SK (1999). Cell-cell dissociation upon epithelial cell scattering requires a step mediated by the proteasome. J Biol Chem 274: 24579–24584.PubMedCrossRefGoogle Scholar
  43. Tsukita S, Furuse M, Itoh M (1999). Structural and signaling molecules come together at tight junctions. Curr Opin Cell Biol 11: 628–633.PubMedCrossRefGoogle Scholar
  44. Wakabayashi H, Yano M, Tachikawa N, Oka S, Maeda M, Kido H (2001). Increased concentration of 14-3-3ε, γ and ζ isoforms in cerebrospinal fluid of AIDS patients with neuronal destruction. Clin Chim Acta 312: 97–105.PubMedCrossRefGoogle Scholar
  45. Wiley CA, Masliah E, Morey M, Lemere C, DeTeresa R, Grafe M, Hansen L, Terry R (1991). Neocortical damage during HIV infection. Ann. Neurol 29: 651–657.PubMedCrossRefGoogle Scholar
  46. Yano M, Nakamuta S, Shiota M, Endo H, Kido H (2007). Gatekeeper role of 14-3-3τ protein in HIV-1 gp120-mediated apoptosis of human endothelial cells by inactivation of Bad. AIDS 21: 911–920.PubMedCrossRefGoogle Scholar
  47. Yano M, Nakamuta S, Wu X, Okumura Y, Kido H (2006). A novel function of 14-3-3 protein: 14-3-3ζ is a heat-shock-related molecular chaperone that dissolves thermal-aggregated Proteins. Mol Biol Cell 17: 4769–4779.PubMedCrossRefGoogle Scholar
  48. Youakim A, Ahdieh M (1999). Interferon-γ decreases barrier function in T84 cells by reducing ZO-1 levels and disrupting apical actin. Am J Physiol 276: G1279-G1288.PubMedGoogle Scholar
  49. Zerr I, Bodemer M, Gefeller O, Otto M, Poser S, Wiltfang J, Windl O, Kretzschmar HA, Weber T (2000). Detection of 14-3-3 protein in the cerebrospinal fluid supports the diagnosis of Creutzfeldt-Jakob disease. Ann Neurol 43: 683–684.Google Scholar
  50. Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ (1996). Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-XL. Cell 87: 619–628.PubMedCrossRefGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2008

Authors and Affiliations

  • Shinichi Nakamuta
    • 1
  • Hiroshi Endo
    • 1
  • Youichiro Higashi
    • 1
  • Aoi Kousaka
    • 1
  • Hiroshi Yamada
    • 1
  • Mihiro Yano
    • 1
  • Hiroshi Kido
    • 1
  1. 1.Division of Enzyme Chemistry, Institute for Enzyme Researchthe University of TokushimaTokushimaJapan

Personalised recommendations