Journal of NeuroVirology

, Volume 13, Issue 6, pp 483–495 | Cite as

Cocaine-mediated enhancement of virus replication in macrophages: Implications for human immunodeficiency virus-associated dementia

  • Navneet K. Dhillon
  • Rachel Williams
  • Fuwang Peng
  • Yi-jou Tsai
  • Sukhbir Dhillon
  • Brandon Nicolay
  • Milind Gadgil
  • Anil Kumar
  • Shilpa J. BuchEmail author


Injection drug use has been recognized as a major risk factor for acquired immunodeficiency syndrome (AIDS) from the outset of the epidemic. Cocaine, one of the most widely abused drugs in the United States, can both impair the functions of macrophages and CD4+ lymphocytes and also activate human immunodeficiency virus (HIV)-1 expression in these cells. Because the brain is the target organ for both cocaine and HIV, the objective of the present study was to explore the effects of cocaine on virus replication in macrophages, the target cells for the virus in the central nervous system (CNS). Cocaine markedly enhanced virus production in simian human immunodeficiency virus (SHIV)-infected monocyte-derived macrophages (MDMs) and in U1 cells, a chronically infected promonocytic cell line as monitored by enzyme-linked immunosorbent assay (ELISA) and immunocytochemistry. Cocaine treatment also resulted in the activation of nuclear factor (NF)-κB and transcriptional activation of the HIV-LTR (long terminal repeat) gag-GFP (green fluorescent protein). Analyses of chemokines in cocaine-treated macrophages by real-time reverse transcriptase—polymerase chain reaction (RT-PCR) and Luminex assays suggested increased expression of interleukin (IL)-10, a cytokine that is known to promote HIV replication in MDMs. In addition to enhancing IL-10 expression, cocaine also caused an up-regulation of the macrophage activation marker, human leukocyte antigen (HLA)-DR, in MDMs. The synergistic effect of cocaine on virus replication and its enhancement of host activation markers suggest that cocaine functions at multiple pathways to accelerate HIV-associated dementia (HAD).


cocaine HIV-1 IL-10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anthony JC, Vlahov D, Nelson KE, Cohn S, Astemborski J, Solomon L (1991). New evidence on intravenous cocaine use and the risk of infection with human immunodeficiency virus type 1. Am J Epidemiol 134: 1175–1189.PubMedGoogle Scholar
  2. Asensio VC, Campbell IL (1999). Chemokines in the CNS: plurifunctional mediators in diverse states. Trends Neurosci 22: 504–512.CrossRefPubMedGoogle Scholar
  3. Avants SK, Margolin A, McMahon TJ, Kosten TR (1997). Association between self-report of cognitive impairment, HIV status, and cocaine use in a sample of cocaine-dependent methadone-maintained patients. Addict Behav 22: 599–611.CrossRefPubMedGoogle Scholar
  4. Bagasra O, Pomerantz RJ (1993). Human immunodeficiency virus type 1 replication in peripheral blood mononuclear cells in the presence of cocaine. J Infect Dis 168: 1157–1164.PubMedGoogle Scholar
  5. Baldwin GC, Roth MD, Tashkin DP (1998). Acute and chronic effects of cocaine on the immune system and the possible link to AIDS. J Neuroimmunol 83: 133–138.CrossRefPubMedGoogle Scholar
  6. Baldwin GC, Tashkin DP, Buckley DM, Park AN, Dubinett SM, Roth MD (1997). Marijuana and cocaine impair alveolar macrophage function and cytokine production. Am J Respir Crit Care Med 156: 1606–1613.PubMedGoogle Scholar
  7. Bell JE, Brettle RP, Chiswick A, Simmonds P (1998). HIV encephalitis, proviral load and dementia in drug users and homosexuals with AIDS. Effect of neocortical involvement. Brain 12(Pt 11): 2043–2052.CrossRefGoogle Scholar
  8. Borghi P, Fantuzzi L, Varano B, Gessani S, Puddu P, Conti L, Capobianchi MR, Ameglio F, Belardelli F (1995). Induction of interleukin-10 by human immunodeficiency virus type 1 and its gp120 protein in human monocytes/macrophages. J Virol 69: 1284–1287.PubMedGoogle Scholar
  9. Buch S, Pinson D, King CL, Raghavan R, Hou Y, Li Z, Adany I, Hicks A, Villinger F, Kumar A, Narayan O (2001). Inhibitory and enhancing effects of IFN-gamma and IL-4 on SHIV(KU) replication in rhesus macaque macrophages: correlation between Th2 cytokines and productive infection in tissue macrophages during late-stage infection. Cytokine 13: 295–304.CrossRefPubMedGoogle Scholar
  10. Budka H (1991). Neuropathology of human immunodeficiency virus infection. Brain Pathol 1: 163–175.CrossRefPubMedGoogle Scholar
  11. Chaisson RE, Bacchetti P, Osmond D, Brodie B, Sande MA, Moss AR (1989). Cocaine use and HIV infection in intravenous drug users in San Francisco. JAMA 261: 561–565.CrossRefPubMedGoogle Scholar
  12. Chiasson MA, Stoneburner RL, Hildebrandt DS, Ewing WE, Telzak EE, Jaffe HW (1991). Heterosexual transmission of HIV-1 associated with the use of smokable freebase cocaine (crack). AIDS 5: 1121–1126.CrossRefPubMedGoogle Scholar
  13. Clerici M, Hakim FT, Venzon DJ, Blatt S, Hendrix CW, Wynn TA, Shearer GM (1993). Changes in interleukin-2 and interleukin-4 production in asymptomatic, human immunodeficiency virus-seropositive individuals. J Clin Invest 91: 759–765.CrossRefPubMedGoogle Scholar
  14. Denis M, Ghadirian E (1994). Dysregulation of interleukin 8, interleukin 10, and interleukin 12 release by alveolar macrophages from HIV type 1-infected subjects. AIDS Res Hum Retroviruses 10: 1619–1627.CrossRefPubMedGoogle Scholar
  15. Dhillon NK, Sui Y, Potula R, Dhillon S, Adany I, Li Z, Villinger F, Pinson D, Narayan O, Buch S (2005). Inhibition of pathogenic SHIV replication in macaques treated with antisense DNA of interleukin-4. Blood 105: 3094–3099.CrossRefPubMedGoogle Scholar
  16. Doherty MC, Garfein RS, Monterroso E, Brown D, Vlahov D (2000). Correlates of HIV infection among young adult short-term injection drug users. AIDS 14: 717–726.CrossRefPubMedGoogle Scholar
  17. Durvasula RS, Myers HF, Satz P, Miller EN, Morgenstern H, Richardson MA, Evans G, Forney D (2000). HIV-1, cocaine, and neuropsychological performance in African American men. J Int Neuropsychol Soc 6: 322–335.CrossRefPubMedGoogle Scholar
  18. Eisenstein TK, Hilburger ME (1998). Opioid modulation of immune responses: effects on phagocyte and lymphoid cell populations. J Neuroimmunol 83: 36–44.CrossRefPubMedGoogle Scholar
  19. Emiliani S, Van Lint C, Fischle W, Paras P Jr, Ott M, Brady J, Verdin E (1996). A point mutation in the HIV-1 Tat responsive element is associated with postintegration latency. Proc Natl Acad Sci U S A 93: 6377–6381.CrossRefPubMedGoogle Scholar
  20. Ferreira ID, Rosario VE, Cravo PV (2006). Real-time quantitative PCR with SYBR Green I detection for estimating copy numbers of nine drug resistance candidate genes in Plasmodium falciparum. Malar J 5: 1.CrossRefPubMedGoogle Scholar
  21. Fiala M, Gan XH, Zhang L, House SD, Newton T, Graves MC, Shapshak P, Stins M, Kim KS, Witte M, Chang SL (1998). Cocaine enhances monocyte migration across the blood-brain barrier. Cocaine’s connection to AIDS dementia and vasculitis? Adv Exp Med Biol 437: 199–205.PubMedGoogle Scholar
  22. Finnegan A, Roebuck KA, Nakai BE, Gu DS, Rabbi MF, Song S, Landay AL (1996). IL-10 cooperates with TNF-alpha to activate HIV-1 from latently and acutely infected cells of monocyte/macrophage lineage. J Immunol 156: 841–851.PubMedGoogle Scholar
  23. Friedman H, Newton C, Klein TW (2003). Microbial infections, immunomodulation, and drugs of abuse. Clin Microbiol Rev 16: 209–219.CrossRefPubMedGoogle Scholar
  24. Gardner B, Zhu LX, Roth MD, Tashkin DP, Dubinett SM, Sharma S (2004). Cocaine modulates cytokine and enhances tumor growth through sigma receptors. J Neuroimmunol 147: 95–98.CrossRefPubMedGoogle Scholar
  25. Glass JD, Fedor H, Wesselingh SL, McArthur JC (1995). Immunocytochemical quantitation of human immunodeficiency virus in the brain: correlations with dementia. Ann Neurol 38: 755–762.CrossRefPubMedGoogle Scholar
  26. Glass JD, Wesselingh SL, Selnes OA, McArthur JC (1993). Clinical-neuropathologic correlation in HIV-associated dementia. Neurology 43: 2230–2237.PubMedGoogle Scholar
  27. Goodkin K, Shapshak P, Metsch LR, McCoy CB, Crandall KA, Kumar M, Fujimura RK, McCoy V, Zhang BT, Reyblat S, Xin KQ, Kumar AM (1998). Cocaine abuse and HIV-1 infection: epidemiology and neuropathogenesis. J Neuroimmunol 83: 88–101.CrossRefPubMedGoogle Scholar
  28. Gray F, Adle-Biassette H, Brion F, Ereau T, le M, I, Levy V, Corcket G (2000). Neuronal apoptosis in human immunodeficiency virus infection. J NeuroVirol 6(Suppl 1): S38-S43.PubMedGoogle Scholar
  29. Hauser KF, El Hage N, Stiene-Martin A, Maragos WF, Nath A, Persidsky Y, Volsky DJ, Knapp PE (2007). HIV-1 neuropathogenesis: glial mechanisms revealed through substance abuse. J Neurochem 100: 567–586.CrossRefPubMedGoogle Scholar
  30. Hicks A, Potula R, Sui YJ, Villinger F, Pinson D, Adany I, Li Z, Long C, Cheney P, Marcario J, Novembre F, Mueller N, Kumar A, Major E, Narayan O, Buch S (2002). Neuropathogenesis of lentiviral infection in macaques: roles of CXCR4 and CCR5 viruses and interleukin-4 in enhancing monocyte chemoattractant protein-1 production in macrophages. Am J Pathol 161: 813–822.PubMedGoogle Scholar
  31. Kaul M, Garden GA, Lipton SA (2001). Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 410: 988–994.CrossRefPubMedGoogle Scholar
  32. Klein TW, Matsui K, Newton CA, Young J, Widen RE, Friedman H (1993). Cocaine suppresses proliferation of phytohemagglutinin-activated human peripheral blood T-cells. Int J Immunopharmacol 15: 77–86.CrossRefPubMedGoogle Scholar
  33. Larrat EP, Zierler S (1993). Entangled epidemics: cocaine use and HIV disease. J Psychoactive Drugs 25: 207–221.PubMedGoogle Scholar
  34. Mao JT, Huang M, Wang J, Sharma S, Tashkin DP, Dubinett SM (1996). Cocaine down-regulates IL-2-induced peripheral blood lymphocyte IL-8 and IFN-gamma production. Cell Immunol 172: 217–223.CrossRefPubMedGoogle Scholar
  35. Nair MPN, Mahajan S, Hou J, Sweet AM, Schwartz SA (2000). The stress hormone, cortisol, synergizes with HIV-1 gp-120 to induce apoptosis of normal human peripheral blood mononuclear cells. Cell Mol Biol 46: 1227–1238.PubMedGoogle Scholar
  36. Nath A (1999). Pathobiology of human immunodeficiency virus dementia. Semin Neurol 19: 113–127.CrossRefPubMedGoogle Scholar
  37. Nath A, Anderson C, Jones M, Maragos W, Booze R, Mactutus C, Bell J, Hauser KF, Mattson M (2000). Neurotoxicity and dysfunction of dopaminergic systems associated with AIDS dementia. J Psychopharmacol 14: 222–227.CrossRefPubMedGoogle Scholar
  38. Nath A, Hauser KF, Wojna V, Booze RM, Maragos W, Prendergast M, Cass W, Turchan JT (2002). Molecular basis for interactions of HIV and drugs of abuse. J Acquir Immune Defic Syndr 31(Suppl 2): S62-S69.PubMedGoogle Scholar
  39. Nath A, Maragos WF, Avison MJ, Schmitt FA, Berger JR (2001). Acceleration of HIV dementia with methamphetamine and cocaine. J NeuroVirol 7: 66–71.CrossRefPubMedGoogle Scholar
  40. Osborn L, Kunkel S, Nabel GJ (1989). Tumor necrosis factor alpha and interleukin 1 stimulate the human immunodeficiency virus enhancer by activation of the nuclear factor kappaB. Proc Natl Acad Sci U S A 86: 2336–2340.CrossRefPubMedGoogle Scholar
  41. Pantaleo G, Graziosi C, Fauci AS (1993). The immunopathogenesis of human-immunodeficiency-virus infection. N Engl J Med 328: 327–335.CrossRefPubMedGoogle Scholar
  42. Peterson PK, Gekker G, Chao CC, Schut R, Molitor TW, Balfour HH (1991). Cocaine potentiates HIV-1 replication in human peripheral blood mononuclear cell cocultures. Involvement of transforming growth factor-beta. J Immunol 146: 81–84.PubMedGoogle Scholar
  43. Peterson PK, Gekker G, Chao CC, Schut R, Verhoef J, Edelman CK, Erice A, Balfour HH, Jr (1992). Cocaine amplifies HIV-1 replication in cytomegalovirus-stimulated peripheral blood mononuclear cell cocultures. J Immunol 149: 676–680.PubMedGoogle Scholar
  44. Peterson PK, Gekker G, Schut R, Hu S, Balfour HH Jr, Chao CC (1993). Enhancement of HIV-1 replication by opiates and cocaine: the cytokine connection. Adv Exp Med Biol 335: 181–188.PubMedGoogle Scholar
  45. Peterson PK, Sharp BM, Gekker G, Portoghese PS, Sannerud K, Balfour HH (1990). Morphine promotes the growth of HIV-1 in human peripheral blood mononuclear cell cocultures. AIDS 4: 869–873.CrossRefPubMedGoogle Scholar
  46. Reyes MG, Faraldi F, Senseng CS, Flowers C, Fariello R (1991). Nigral degeneration in acquired immune deficiency syndrome (AIDS). Acta Neuropathol (Berl) 82: 39–44.CrossRefGoogle Scholar
  47. Roth MD, Tashkin DP, Choi R, Jamieson BD, Zack JA, Baldwin GC (2002). Cocaine enhances human immunodeficiency virus replication in a model of severe combined immunodeficient mice implanted with human peripheral blood leukocytes. J Infect Dis 185: 701–705.CrossRefPubMedGoogle Scholar
  48. Selwyn PA, Alcabes P, Hartel D, Buono D, Schoenbaum EE, Klein RS, Davenny K, Friedland GH (1992). Clinical manifestations and predictors of disease progression in drug users with human immunodeficiency virus infection. N Engl J Med 327: 1697–1703.CrossRefPubMedGoogle Scholar
  49. Shapshak P, Crandall KA, Xin KQ, Goodkin K, Fujimura RK, Bradley W, McCoy CB, Nagano I, Yoshioka M, Petito C, Sun NC, Srivastava AK, Weatherby N, Stewart R, Delgado S, Matthews A, Douyon R, Okuda K, Yang J, Zhangl BT, Cao XR, Shatkovsky S, Fernandez JB, Shah SM, Perper J (1996). HIV-1 neuropathogenesis and abused drugs: current reviews, problems, and solutions. Adv Exp Med Biol 402: 171–186.PubMedGoogle Scholar
  50. Smith MS, Niu Y, Li Z, Adany I, Pinson DM, Liu ZQ, Berry T, Sheffer D, Jia F, Narayan O (2002). Systemic infection and limited replication of SHIV vaccine virus in brains of macaques inoculated intracerebrally with infectious viral DNA. Virology 301: 130–135.CrossRefPubMedGoogle Scholar
  51. Srikanth P, Castillo RC, Sridharan G, John TJ, Zachariah A, Mathai D, Schwartz DH (2000). Increase in plasma IL-10 levels and rapid loss of CD4+ T cells among HIV-infected individuals in south India. Int J STD AIDS 11: 49–51.CrossRefPubMedGoogle Scholar
  52. Stanulis ED, Jordan SD, Rosecrans JA, Holsapple MP (1997). Disruption of Th1/Th2 cytokine balance by cocaine is mediated by corticosterone. Immunopharmacology 37: 25–33.CrossRefPubMedGoogle Scholar
  53. Steele AD, Henderson EE, Rogers TJ (2003). Mu-opioid modulation of HIV-1 coreceptor expression and HIV-1 replication. Virology 309: 99–107.CrossRefPubMedGoogle Scholar
  54. Stylianou E, Aukrust P, Kvale D, Muller F, Froland SS (1999). IL-10 in HIV infection: increasing serum IL-10 levels with disease progression—down-regulatory effect of potent anti-retroviral therapy. Clin Exp Immunol 116: 115–120.CrossRefPubMedGoogle Scholar
  55. Tyor WR, Middaugh LD (1999). Do alcohol and cocaine abuse alter the course of HIV-associated dementia complex? J Leukoc Biol 65: 475–481.PubMedGoogle Scholar
  56. Tyor WR, Wesselingh SL, Griffin JW, McArthur JC, Griffin DE (1995). Unifying hypothesis for the pathogenesis of HIV-associated dementia complex, vacuolar myelopathy, and sensory neuropathy. J Acquir Immune Defic Syndr Hum Retrovirol 9: 379–388.PubMedGoogle Scholar
  57. Weissman D, Poli G, Fauci AS (1995). IL-10 synergizes with multiple cytokines in enhancing HIV production in cells of monocytic lineage. J Acquir Immune Defic Syndr Hum Retrovirol 9: 442–449.PubMedGoogle Scholar
  58. Wiley CA, Achim CL, Christopherson C, Kidane Y, Kwok S, Masliah E, Mellors J, Radhakrishnan L, Wang G, Soontornniyomkij V (1999). HIV mediates a productive infection of the brain. AIDS 13: 2055–2059.CrossRefPubMedGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2007

Authors and Affiliations

  • Navneet K. Dhillon
    • 1
  • Rachel Williams
    • 1
  • Fuwang Peng
    • 1
  • Yi-jou Tsai
    • 1
  • Sukhbir Dhillon
    • 2
  • Brandon Nicolay
    • 1
  • Milind Gadgil
    • 1
  • Anil Kumar
    • 3
  • Shilpa J. Buch
    • 1
    Email author
  1. 1.Department of Molecular and Integrative Physiology, 5000 Wahl Hall EastUniversity of Kansas Medical CenterKansas CityUSA
  2. 2.Department of Microbiology, Immunology and Molecular GeneticsUniversity of Kansas Medical CenterKansas CityUSA
  3. 3.University of Missouri Kansas CityUSA

Personalised recommendations