Journal of NeuroVirology

, Volume 12, Issue 3, pp 229–234

Expression of Toll-like receptor 3 in the human cerebellar cortex in rabies, herpes simplex encephalitis, and other neurological diseases

  • Alan C. Jackson
  • John P. Rossiter
  • Monique Lafon
Short Communication

Abstract

There is recent in vitro evidence that human neurons express the innate immune response receptor, Toll-like receptor-3 (TLR-3), and that expression is enhanced in viral infections. The authors examined the immunohistochemical expression of TLR-3 in the cerebellar cortex of postmortem human brains. Purkinje cells were found to express TLR-3 in all cases of rabies (4 of 4) and herpes simplex encephalitis (2 of 2) as well as in cases of amyotrophic lateral sclerosis (1 of 2), stroke (1 of 2), and Alzheimer’s disease (3 of 3). In cases of viral infection, direct viral infection was not necessary for enhanced neuronal TLR-3 expression, suggesting that soluble factors likely play an important role in inducing TLR-3 expression. In addition to neurons, occasional Bergmann glia expressed TLR-3 in some cases. This study has provided evidence that human brain neurons can express TLR-3 in vivo and suggests that neurons may play an important role in initiating an inflammatory reaction in a variety of neurological diseases.

Keywords

Alzheimer’s disease amyotrophic lateral sclerosis herpes simplex encephalitis neurons rabies stroke TLR-3 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001). Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413: 732–738.CrossRefPubMedGoogle Scholar
  2. Boulanger LM, Shatz CJ (2004). Immune signalling in neural development, synaptic plasticity and disease. Nat Rev Neurosci 5: 521–531.CrossRefPubMedGoogle Scholar
  3. Bsibsi M, Ravid R, Gveric D, van Noort JM (2002). Broad expression of Toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol 61: 1013–1021.PubMedGoogle Scholar
  4. Conzelmann KK (2005). Transcriptional activation of alpha/beta interferon genes: interference by nonsegmented negative-strand RNA viruses. J Virol 79: 5241–5248.CrossRefPubMedGoogle Scholar
  5. Corriveau RA, Huh GS, Shatz CJ (1998). Regulation of class I MHC gene expression in the developing and mature CNS by neural activity. Neuron 21: 505–520.CrossRefPubMedGoogle Scholar
  6. Farina C, Krumbholz M, Giese T, Hartmann G, Aloisi F, Meinl E (2005). Preferential expression and function of Toll-like receptor 3 in human astrocytes. J Neuroimmunol 159: 12–19.CrossRefPubMedGoogle Scholar
  7. Finberg RW, Kurt-Jones EA (2004). Viruses and Toll-like receptors. Microbes Infect 6: 1356–1360.CrossRefPubMedGoogle Scholar
  8. Guillot L, Le GR, Bloch S, Escriou N, Akira S, Chignard M, Si-Tahar M (2005). Involvement of toll-like receptor 3 in the immune response of lung epithelial cells to double-stranded RNA and influenza A virus. J Biol Chem 280: 5571–5580.CrossRefPubMedGoogle Scholar
  9. Huh GS, Boulanger LM, Du H, Riquelme PA, Brotz TM, Shatz CJ (2000). Functional requirement for class I MHC in CNS development and plasticity. Science 290: 2155–2159.CrossRefPubMedGoogle Scholar
  10. Ishii T, Hirota J, Mombaerts P (2003). Combinatorial co-expression of neural and immune multigene families in mouse vomeronasal sensory neurons. Curr Biol 13: 394–400.CrossRefPubMedGoogle Scholar
  11. Iwasaki Y, Tobita M (2002) Pathology. In: Rabies. Jackson AC and Wunner WH (eds). San Diego: Academic Press, pp 283–306.Google Scholar
  12. Jack CS, Arbour N, Manusow J, Montgrain V, Blain M, McCrea E, Shapiro A, Antel JP (2005). TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol 175: 4320–4330.PubMedGoogle Scholar
  13. Jackson AC (2002) Pathogenesis. In: Rabies. Jackson AC and Wunner WH (eds). San Diego: Academic Press, pp 245–282.Google Scholar
  14. Jackson AC, Melanson M, Rossiter JP (2002). Familial herpes simplex encephalitis [letter]. Ann Neurol 51: 406–407.CrossRefPubMedGoogle Scholar
  15. Jackson AC, Ye H, Ridaura-Sanz C, Lopez-Corella E (2001). Quantitative study of the infection in brain neurons in human rabies. J Med Virol 65: 614–618.CrossRefPubMedGoogle Scholar
  16. Jacobs BL, Langland JO (1996). When two strands are better than one: the mediators and modulators of the cellular responses to double-stranded RNA. Virology 219: 339–349.CrossRefPubMedGoogle Scholar
  17. Karpala AJ, Doran TJ, Bean AG (2005). Immune responses to dsRNA: implications for gene silencing technologies. Immunol Cell Biol 83: 211–216.CrossRefPubMedGoogle Scholar
  18. Kurt-Jones EA, Chan M, Zhou S, Wang J, Reed G, Bronson R, Arnold MM, Knipe DM, Finberg RW (2004). Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis. Proc Natl Acad Sci U S A 101: 1315–1320.CrossRefPubMedGoogle Scholar
  19. Lafon M, Prehaud C, Megret F, Lafage M, Mouillot G, Roa M, Moreau P, Rouas-Freiss N, Carosella ED (2005). Modulation of HLA-G expression in human neural cells after neurotropic viral infections. J Virol 79: 15226–15237.CrossRefPubMedGoogle Scholar
  20. Le Bon A, Tough DF (2002). Links between innate and adaptive immunity via type I interferon. Curr Opin Immunol 14: 432–436.CrossRefPubMedGoogle Scholar
  21. Loconto J, Papes F, Chang E, Stowers L, Jones EP, Takada T, Kumanovics A, Fischer LK, Dulac C (2003). Functional expression of murine V2R pheromone receptors involves selective association with the M10 and M1 families of MHC class Ib molecules. Cell 112: 607–618.CrossRefPubMedGoogle Scholar
  22. Lopez-Corella E, Jackson AC (1996). Rabies without Negri bodies: detection of rabies virus at autopsy by immunohistochemistry and in situ hybridization. Patologia (Mexico) 34: 39–41.Google Scholar
  23. Maier S, Geraghty DE, Weiss EH (1999). Expression and regulation of HLA-G in human glioma cell lines. Transplant Proc 31: 1849–1853.CrossRefPubMedGoogle Scholar
  24. Matsumoto M, Funami K, Tanabe M, Oshiumi H, Shingai M, Seto Y, Yamamoto A, Seya T (2003). Subcellular localization of Toll-like receptor 3 in human dendritic cells. J Immunol 171: 3154–3162.PubMedGoogle Scholar
  25. McGeer PL, McGeer EG (2002a). Inflammatory processes in amyotrophic lateral sclerosis. Muscle Nerve 26: 459–470.CrossRefPubMedGoogle Scholar
  26. McGeer PL, McGeer EG (2002b). Local neuroinflammation and the progression of Alzheimer’s disease. J NeuroVirol 8: 529–538.CrossRefPubMedGoogle Scholar
  27. McGeer PL, McGeer EG (2004). Inflammation and the degenerative diseases of aging. Ann N Y Acad Sci 1035: 104–116.CrossRefPubMedGoogle Scholar
  28. McKimmie CS, Fazakerley JK (2005). In response to pathogens, glial cells dynamically and differentially regulate Toll-like receptor gene expression. J Neuroimmunol 169: 116–125.CrossRefPubMedGoogle Scholar
  29. McKimmie CS, Johnson N, Fooks AR, Fazakerley JK (2005). Viruses selectively upregulate Toll-like receptors in the central nervous system. Biochem Biophys Res Commun 336: 925–933.CrossRefPubMedGoogle Scholar
  30. Miettinen M, Sareneva T, Julkunen I, Matikainen S (2001). IFNs activate toll-like receptor gene expression in viral infections. Genes Immun 2: 349–355.CrossRefPubMedGoogle Scholar
  31. Picard AC (1984). Human rabies acquired outside of Canada—Quebec. Can Dis Wkly Rep 10: 177–178.Google Scholar
  32. Pleasure SJ, Page C, Lee VM (1992). Pure, postmitotic, polarized human neurons derived from NTera 2 cells provide a system for expressing exogenous proteins in terminally differentiated neurons. J Neurosci 12: 1802–1815.PubMedGoogle Scholar
  33. Prehaud C, Megret F, Lafage M, Lafon M (2005). Viral infection switches TLR-3-positive human neurons to become strong producers of beta interferon. J Virol 79: 12893–12904.CrossRefPubMedGoogle Scholar
  34. Sato S, Sugiyama M, Yamamoto M, Watanabe Y, Kawai T, Takeda K, Akira S (2003). Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling. J Immunol 171: 4304–4310.PubMedGoogle Scholar
  35. Sen GC, Sarkar SN (2005). Transcriptional signaling by double-stranded RNA: role of TLR3. Cytokine Growth Factor Rev 16: 1–14.CrossRefPubMedGoogle Scholar
  36. Siren J, Pirhonen J, Julkunen I, Matikainen S (2005). IFN-alpha regulates TLR-dependent gene expression of IFN-alpha, IFN-beta, IL-28, and IL-29. J Immunol 174: 1932–1937.PubMedGoogle Scholar
  37. Takeda K, Akira S (2004). TLR signaling pathways. Semin Immunol 16: 3–9.CrossRefPubMedGoogle Scholar
  38. TenOever BR, Sharma S, Zou W, Sun Q, Grandvaux N, Julkunen I, Hemmi H, Yamamoto M, Akira S, Yeh WC, Lin R, Hiscott J (2004). Activation of TBK1 and IKKɛ kinases by vesicular stomatitis virus infection and the role of viral ribonucleoprotein in the development of interferon antiviral immunity. J Virol 78: 10636–10649.CrossRefPubMedGoogle Scholar
  39. Wang ZW, Sarmento L, Wang Y, Li XQ, Dhingra V, Tseggai T, Jiang B, Fu ZF (2005). Attenuated rabies virus activates, while pathogenic rabies virus evades, the host innate immune responses in the central nervous system. J Virol 79: 12554–12565.CrossRefPubMedGoogle Scholar
  40. Webster WA, Casey GA, Charlton KM, Picard AC, McLaughlin B (1985). Human rabies acquired outside of Canada. Can Dis Wkly Rep 11: 13–14.Google Scholar
  41. Yamada T, Horisberger MA, Kawaguchi N, Moroo I, Toyoda T (1994). Immunohistochemistry using antibodies to alpha-interferon and its induced protein, MxA, in Alzheimer’s and Parkinson’s disease brain tissues. Neurosci Lett 181: 61–64.CrossRefPubMedGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2006

Authors and Affiliations

  • Alan C. Jackson
    • 1
    • 2
    • 3
  • John P. Rossiter
    • 4
  • Monique Lafon
    • 1
  1. 1.Unité de Neuroimmunologie Virale, Département de NeuroscienceInstitut PasteurParis Cedex 15France
  2. 2.Department of Medicine (Neurology)Queen’s UniversityKingstonCanada
  3. 3.Department of Microbiology and ImmunologyQueen’s UniversityKingstonCanada
  4. 4.Department of Pathology and Molecular MedicineQueen’s UniversityKingstonCanada

Personalised recommendations