Advertisement

Journal of NeuroVirology

, Volume 12, Issue 1, pp 65–71 | Cite as

Regulation of human endogenous retrovirus W protein expression by herpes simplex virus type 1: Implications for multiple sclerosis

  • Klemens RuprechtEmail author
  • Karola Obojes
  • Verena Wengel
  • Felix Gronen
  • Kwang Sik Kim
  • Hervé Perron
  • Jürgen Schneider-Schaulies
  • Peter Rieckmann
Short Communication

Abstract

The multiple sclerosis-associated retrovirus (MSRV), originally identified in cell cultures from patients with multiple sclerosis (MS), is closely related to the human endogenous retrovirus family W (HERV-W). Recently, HERV-W gag and env protein expression was demonstrated in MS lesions in situ. Here, the authors show that HERV-W gag and env proteins are induced by herpes simplex virus type 1 (HSV-1) in neuronal and brain endothelial cells in vitro. The transactivation of HERV-W proteins by HSV-1 could enhance their potential oligodendrotoxic and immunopathogenic effects, representing a mechanism by which HSV-1, and possibly also other herpesviruses associated with MS, may be linked to the pathogenesis of this disease.

Keywords

cerebral endothelial cells herpes simplex virus type 1 human endogenous retrovirus W IMR-32 multiple sclerosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antony JM, van Marie G, Opii W, Butterfield DA, Mallet F, Yong VW, Wallace JL, Deacon RM, Warren K, Power C (2004). Human endogenous retrovirus glycoproteinmediated induction of redox reactants causes oligodendrocyte death and demyelination. Nat Neurosci 7: 1088–1095.PubMedCrossRefGoogle Scholar
  2. Barnett MH, Prineas JW (2004). Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol 55: 458–468.PubMedCrossRefGoogle Scholar
  3. Blond J-L, Beseme F, Duret L, Bouton O, Bedin F, Perron H, Mandrand B, Mallet F (1999). Molecular characterization and placental expression of HERV-W, a new human endogenous retrovirus family. J Virol 73: 1175–1185.PubMedGoogle Scholar
  4. Christensen T (2005). Association of human endogenous retroviruses with multiple sclerosis and possible interactions with herpes viruses. Rev Med Virol 15: 179–211.PubMedCrossRefGoogle Scholar
  5. Cook SD, Rohowsky-Kochan C, Bansil S, Dowling PC (1995). Evidence for multiple sclerosis as an infectious disease. Acta Neurol Scand Suppl 161: 34–42.PubMedCrossRefGoogle Scholar
  6. Dalgleish AG (1997). Viruses and multiple sclerosis. Acta Neurol Scand Suppl 169: 8–15.PubMedCrossRefGoogle Scholar
  7. de Parseval N, Lazar V, Casella JF, Benit L, Heidmann T (2003). Survey of human genes of retroviral origin: identification and transcriptome of the genes with coding capacity for complete envelope proteins. J Virol 77: 10414–10422.PubMedCrossRefGoogle Scholar
  8. Dolei A, Serra C, Mameli G, Pugliatti M, Sechi G, Cirotto MC, Rosati G, Sotgiu S (2002). Multiple sclerosisassociated retrovirus (MSRV) in Sardinian MS patients. Neurology 58: 471–473.PubMedGoogle Scholar
  9. Fan H (1997). Leukemogenesis by Moloney murine leukemia virus: a multistep process. Trends Microbiol 5: 74–82.PubMedCrossRefGoogle Scholar
  10. Garson JA, Tuke PW, Giraud G, Paranhos-Baccala G, Perron H (1998). Detection of virion-associated MSRV-RNA in serum of patients with multiple sclerosis. Lancet 351: 33.PubMedCrossRefGoogle Scholar
  11. Karlsson H, Bachmann S, Schroder J, McArthur J, Torrey EF, Yolken RH (2001). Retroviral RNA identified in the cerebrospinal fluids and brains of individuals with schizophrenia. Proc Natl Acad Sci U S A 98: 4634–4639.PubMedCrossRefGoogle Scholar
  12. Komurian-Pradel F, Paranhos-Baccala G, Bedin F, Ounanian-Paraz A, Sodoyer M, Ott C, Rajoharison A, Garcia E, Mallet F, Mandrand B, Perron H (1999). Molecular cloning and characterization of MSRV-related sequences associated with retrovirus-like particles. Virology 260: 1–9.PubMedCrossRefGoogle Scholar
  13. Kurtzke JF (2000). Multiple sclerosis in time and space— geographic clues to cause. J NeuroVirol 6: S134-S140.PubMedGoogle Scholar
  14. Kwun HJ, Han HJ, Lee WJ, Kim HS, Jang KL (2002). Transactivation of the human endogenous retrovirus K long terminal repeat by herpes simplex virus type 1 immediate early protein 0. Virus Res 86: 93–100.PubMedCrossRefGoogle Scholar
  15. Lafon M, Jouvin-Marche E, Marche PN, Perron H (2002). Human viral superantigens: to be or not to be transactivated? Trends Immunol 23: 238–239; author reply 239.PubMedCrossRefGoogle Scholar
  16. Lee WJ, Kwun HJ, Kim HS, Jang KL (2003). Activation of the human endogenous retrovirus W long terminal repeat by herpes simplex virus type 1 immediate early protein 1. Mol Cells 15: 75–80.PubMedGoogle Scholar
  17. Mallet F, Bouton O, Prudhomme S, Cheynet V, Oriol G, Bonnaud B, Lucotte G, Duret L, Mandrand B (2004). The endogenous retroviral locus ERVWE1 is a bona fide gene involved in hominoid placental physiology. Proc Natl Acad Sci USA 101: 1731–1736.PubMedCrossRefGoogle Scholar
  18. Noseworthy JH (1999). Progress in determining the causes and treatment of multiple sclerosis. Nature 399: A40-A47.PubMedGoogle Scholar
  19. Nowak J, Januszkiewicz D, Pernak M, Liwen I, Zawada M, Rembowska J, Nowicka K, Lewandowski K, Hertmanowska H, Wender M (2003). Multiple sclerosisassociated virus-related pol sequences found both in multiple sclerosis and healthy donors are more frequently expressed in multiple sclerosis patients. J NeuroVirol 9: 112–117.PubMedGoogle Scholar
  20. Palmarini M, Mura M, Spencer TE (2004). Endogenous betaretroviruses of sheep: teaching new lessons in retroviral interference and adaptation. J Gen Virol 85: 1–13.PubMedCrossRefGoogle Scholar
  21. Palu G, Benetti L, Calistri A (2001). Molecular basis of the interactions between herpes simplex viruses and HIV-1. Herpes 8: 50–55.PubMedGoogle Scholar
  22. Perron H, Garson JA, Bedin F, Beseme F, Paranhos-Baccala G, Komurian-Pradel F, Mallet F, Tuke PW, Voisset C, Blond JL, Lalande B, Seigneurin JM, Mandrand B (1997). Molecular identification of a novel retrovirus repeatedly isolated from patients with multiple sclerosis. Proc Natl Acad Sci U S A 94: 7583–7588.PubMedCrossRefGoogle Scholar
  23. Perron H, Geny C, Laurent A, Mouriquand C, Pellat J, Ferret J, Seigneurin JM (1989). Leptomeningeal cell line from multiple sclerosis with reverse transcriptase activity and viral particles. Res Virol 140: 551–561.PubMedCrossRefGoogle Scholar
  24. Perron H, Jouvin-Marche E, Michel M, Ounanian-Paraz A, Camelo S, Dumon A, Jolivet-Reynaud C, Marcel F, Souillet Y, Borel E, Gebuhrer L, Santoro L, Marcel S, Seigneurin JM, Marche PN, Lafon M (2001). Multiple sclerosis retrovirus particles and recombinant envelope trigger an abnormal immune response in vitro, by inducing polyclonal V beta 16 T-lymphocyte activation. Virology 287: 321–332.PubMedCrossRefGoogle Scholar
  25. Perron H, Lazarini F, Ruprecht K, Pechoux-Longin C, Seilhean D, Sazdovitch V, Creange A, Battail-Poirot N, Sibai G, Santoro L, Jolivet M, Darlix J-L, Rieckmann P, Arzberger T, Hauw J-J, Lassmann H (2005). Human endogenous retrovirus (HERV)-W env and gag proteins: physiological expression in human brain and pathophysiological modulation in multiple sclerosis lesions. J NeuroVirol 11: 23–33.PubMedCrossRefGoogle Scholar
  26. Perron H, Suh H, Lalande B, Gratacap B, Laurent A, Stoebner P, Seigneurin JM (1993). Herpes simplex virus ICP0 and ICP4 immediate early proteins strongly enhance expression of a retrovirus harboured by a leptomeningeal cell line from a patient with multiple sclerosis. J Gen Virol 74: 65–72.PubMedCrossRefGoogle Scholar
  27. Roizman B, Sears AE (1996). Herpes simplex viruses and their replication. In: Fields virology. Fields BN, Knipe DM, Howley PM (eds). Philadelphia: Lippincott-Raven Publishers, pp 2231–2278.Google Scholar
  28. Ruprecht K, Kuhlmann T, Seif F, Hummel V, Kruse N, Briick W, Rieckmann P (2001). Effects of oncostatin M on human cerebral endothelial cells and expression in inflammatory brain lesions. J Neuropathol Exp Neurol 60: 1087–1098.PubMedGoogle Scholar
  29. Ruprecht K, Perron H (2005). Exposure to infant siblings during early life and risk of multiple sclerosis. JAMA 293: 2089; author reply 2089–2090.PubMedCrossRefGoogle Scholar
  30. Schiavetti F, Thonnard J, Colau D, Boon T, Coulie PG (2002). A human endogenous retroviral sequence encoding an antigen recognized on melanoma by cytolytic T lymphocytes. Cancer Res 62: 5510–5516.PubMedGoogle Scholar
  31. Schon U, Seifarth W, Baust C, Hohenadl C, Erfle V, Leib-Mosch C (2001). Cell type-specific expression and promoter activity of human endogenous retroviral long terminal repeats. Virology 279: 280–291.PubMedCrossRefGoogle Scholar
  32. Simmons A (2001). Herpesviruses and multiple sclerosis. Herpes 8: 60–63.PubMedGoogle Scholar
  33. Sotgiu S, Serra C, Mameli G, Pugliatti M, Rosati G, Arru G, Dolei A (2002). Multiple sclerosis-associated retrovirus and MS prognosis: an observational study. Neurology 59: 1071–1073.PubMedGoogle Scholar
  34. Sutkowski N, Conrad B, Thorley-Lawson DA, Huber BT (2001). Epstein-Barr virus transactivates the human endogenous retrovirus HERV-K18 that encodes a superantigen. Immunity 15: 579–589.PubMedCrossRefGoogle Scholar
  35. Villoslada P, Oksenberg JR (2004). Chromosome 7q21-22 and multiple sclerosis. J Neuroimmunol 150: 1–2.PubMedCrossRefGoogle Scholar
  36. Voisset C, Blancher A, Perron H, Mandrand B, Mallet F, Paranhos-Baccala G (1999). Phylogeny of a novel family of human endogenous retrovirus sequences, HERV-W, in humans and other primates. AIDS Res Hum Retroviruses 15: 1529–1533.PubMedCrossRefGoogle Scholar
  37. Voisset C, Bouton O, Bedin F, Duret L, Mandrand B, Mallet F, Paranhos-Baccala G (2000). Chromosomal distribution and coding capacity of the human endogenous retrovirus HERV-W family. AIDS Res Hum Retroviruses 16: 731–740.PubMedCrossRefGoogle Scholar
  38. Xu L, Wrona J, Dudley JP (1996). Exogenous mouse mammary tumor virus (MMTV) infection induces endogenous MMTV sag expression. Virology 215: 113–123.PubMedCrossRefGoogle Scholar
  39. Yi JM, Kim HM, Kim HS (2004). Expression of the human endogenous retrovirus HERV-W family in various human tissues and cancer cells. J Gen Virol 85: 1203–1210.PubMedCrossRefGoogle Scholar
  40. Yolken R (2004). Viruses and schizophrenia: a focus on herpes simplex virus. Herpes 11(Suppl 2): 83A-88A.PubMedGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2006

Authors and Affiliations

  • Klemens Ruprecht
    • 1
    • 5
    Email author
  • Karola Obojes
    • 1
    • 2
  • Verena Wengel
    • 1
  • Felix Gronen
    • 1
  • Kwang Sik Kim
    • 3
  • Hervé Perron
    • 4
  • Jürgen Schneider-Schaulies
    • 2
  • Peter Rieckmann
    • 1
  1. 1.Clinical Research Unit for Multiple Sclerosis and Neuroimmunology, Department of NeurologyJulius-Maximilians UniversityWürzburgGermany
  2. 2.Institute for Virology and ImmunobiologyJulius-Maximilians UniversityWürzburgGermany
  3. 3.Department of PediatricsJohns Hopkins University School of MedicineBaltimoreUSA
  4. 4.R&DbioMérieuxMarcy L’EtoileFrance
  5. 5.Department of PsychiatryJulius-Maximilians UniversityWürzburgGermany

Personalised recommendations