Journal of NeuroVirology

, Volume 11, Issue 2, pp 107–128 | Cite as

Human immunodeficiency virus type 1 genetic diversity in the nervous system: Evolutionary epiphenomenon or disease determinant?



Over the past decade there has been a revolution in the understanding and care of human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS)-associated disease. Much of this progress stems from a broader recognition of the importance of differences in viral types, including receptor preference(s), replication properties, and reservoirs, as contributing factors to immunosuppresion and disease progression. In contrast, there is limited conceptualizatin of viral diversity and turnover in the brain and circulation in relation to neurocognitive impairments. Herein, the authors review current concepts regarding viral molecular diversity and phenotypes together with features of HIV-1 neuroinvasion, neurotropism, neurovirulence, and neurosusceptiblity. Viral genetic and antigenic diversity is reduced within the brain compared to blood or other systemic organs within individuals. Conversely, viral molecular heterogeneity is greater in patients with HIV-associated dementia compared to nondemented patients, depending on the viral gene examined. Individual viral proteins exert multiple neuropathogenic effects, although the neurological consequences of different viral polymorphisms remain uncertain. Nonetheless, host genetic polymorphisms clearly influence neurological disease outcomes and likely dictate both acquired and innate immune responses, which in turn shape viral evolution within the host. Emerging issues include widespread antiretroviral therapy resistance and increasing awareness of viral superinfections together with viral recombination, all of which are likely to impact on both HIV genetic variation and neuropathogenesis. With the increasing prevalence of HIV-induced neurocognitive disabilities, despite marked improvements in managing immunosuppression, it remains imperative to fully define and understand the mechanisms by which viral dynamics and diversity contribute to neurological disease, permitting the development of new therapeutic strategies.


brain HIV-1 molecular diversity neuropathogenesis selection pressures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamson DC, Kopnisky KL, Dawson TM, Dawson VL (1999). Mechanisms and structural determinants of HIV-1 coat protein, gp41-induced neurotoxicity. J Neurosci 19: 64–71.PubMedGoogle Scholar
  2. Adamson DC, Wildemann B, Sasaki M, Glass JD, McArthur JC, Christov VI, Dawson TM, Dawson VL (1996). Immunologic NO synthase: elevation in severe AIDS dementia and induction by HIV-1 gp41. Science 274: 1917–1921.PubMedCrossRefGoogle Scholar
  3. Addo MM, Altfeld M, Rathod A, Yu M, Yu XG, Goulder PJ, Rosenberg ES, Walker BD (2002). HIV-1 Vpu represents a minor target for cytotoxic T lymphocytes in HIV-1 infection. AIDS 16: 1071–1073.PubMedCrossRefGoogle Scholar
  4. Agnarsdottir G, Thorsteinsdottir H, Oskarsson T, Matthiasdottir S, St Haflidadottir B, Andresson OS, Andresdottir V (2000). The long terminal repeat is a determinant of cell tropism of maedivisna virus. J Gen Virol 81(Pt 8: 1901–1905.Google Scholar
  5. Ait-Khaled M, McLaughlin JE, Johnson MA, Emery VC (1995). Distinct HIV-1 long terminal repeat quasispecies present in nervous tissues compared to that in lung, blood and lymphoid tissues of an AIDS patient. AIDS 9: 675–683.PubMedCrossRefGoogle Scholar
  6. Albright AV, Shieh JT, Itoh T, Lee B, Pleasure D, O’Connor MJ, Doms RW, Gonzalez-Scarano F (1999). Microglia express CCR5, CXCR4, and CCR3, but of these, CCR5 is the principal coreceptor for human immunodeficiency virus type 1 dementia isolates. J Virol 73: 205–213.PubMedGoogle Scholar
  7. Altfeld M, Addo MM, Eldridge RL, Yu XG, Thomas S, Khatri A, Strick D, Phillips MN, Cohen GB, Islam SA, Kalams SA, Brander C, Goulder PJ, Rosenberg ES, Walker BD (2001). Vpr is preferentially targeted by CTL during HIV-1 infection. J Immunol 167: 2743–2752.PubMedGoogle Scholar
  8. Altfeld M, Allen TM, Yu XG, Johnston MN, Agrawal D, Korber BT, Montefiori DC, O’Connor DH, Davis BT, Lee PK, Maier EL, Harlow J, Goulder PJ, Brander C, Rosenberg ES, Walker BD (2002). HIV-1 superinfection despite broad CD8+ T-cell responses containing replication of the primary virus. Nature 420: 434–439.PubMedCrossRefGoogle Scholar
  9. Andresdottir V, Tang X, Agnarsdottir G, Andresson OS, Georgsson G, Skraban R, Torsteinsdottir S, Rafnar B, Benediktsdottir E, Matthiasdottir S, Arnadottir S, Hognadottir S, Palsson PA, Petursson G (1998). Biological and genetic differences between lungand brain-derived isolates of maedi-visna virus. Virus Genes 16: 281–293.PubMedCrossRefGoogle Scholar
  10. Bagasra O, Lavi E, Bobroski L, Khalili K, Pestaner JP, Tawadros R, Pomerantz RJ (1996). Cellular reservoirs of HIV-1 in the central nervous system of infected individuals: identification by the combination of in situ polymerase chain reaction and immunohistochemistry. AIDS 10: 573–585.PubMedCrossRefGoogle Scholar
  11. Ball JK, Holmes EC, Whitwell H, Desselberger U (1994). Genomic variation of human immunodeficiency virus type 1 (HIV-1): molecular analyses of HIV-1 in sequential blood samples and various organs obtained at autopsy. J Gen Virol 75: 67–79.PubMedCrossRefGoogle Scholar
  12. Barks JD, Liu XH, Sun R, Silverstein FS (1997). gp120, a human immunodeficiency virus-1 coat protein, augments excitotoxic hippocampal injury in perinatal rats. Neuroscience 76: 397–409.PubMedCrossRefGoogle Scholar
  13. Barouch DH, Kunstman J, Kuroda MJ, Schmitz JE, Santra S, Peyerl FW, Krivulka GR, Beaudry K, Lifton MA, Gorgone DA, Montefiori DC, Lewis MG, Wolinsky SM, Letvin NL (2002). Eventual AIDS vaccine failure in a rhesus monkey by viral escape from cytotoxic T lymphocytes. Nature 415: 335–339.PubMedCrossRefGoogle Scholar
  14. Beilke MA, Minagawa H, Stone G, Leon-Monzon M, Gibbs CJ Jr, (1991). Neutralizing antibody responses in patients with AIDS with neurologic complications. J Lab Clin Med 118: 585–588.PubMedGoogle Scholar
  15. Bell JE, Busuttil A, Ironside JW, Rebus S, Donaldson YK, Simmonds P, Peutherer JF (1993). Human immunodeficiency virus and the brain: investigation of virus load and neuropathologic changes in pre-AIDS subjects. J Infect Dis 168: 818–824.PubMedGoogle Scholar
  16. Berger EA, Murphy PM, Farber JM (1999). Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol 17: 657–700.PubMedCrossRefGoogle Scholar
  17. Berger JR, Nath A, Greenberg RN, Andersen AH, Greene RA, Bognar A, Avison MJ (2000). Cerebrovascular changes in the basal ganglia with HIV dementia. Neurology 54: 921–926.PubMedGoogle Scholar
  18. Berrada F, Ma D, Michaud J, Doucet G, Giroux L, Kessous-Elbaz A (1995). Neuronal expression of human immunodeficiency virus type 1 Env proteins in transgenic mice: distribution in the central nervous system and pathological alterations. J Virol 69: 6770–6778.PubMedGoogle Scholar
  19. Blackard JT, Cohen DE, Mayer KH (2002). Human immunodeficiency virus superinfection and recombination: Current state of knowledge and potential clinical consequences. Clin Infect Dis 34: 1108–1114.PubMedCrossRefGoogle Scholar
  20. Brack-Werner R, Kleinschmidt A, Ludvigsen A, Mellert W, Neumann M, Herrmann R, Khim MC, Burny A, Muller-Lantzsch N, Stavrou D, et al. (1992). Infection of human brain cells by HIV-1: restricted virus production in chronically infected human glial cell lines. AIDS 6: 273–285.PubMedCrossRefGoogle Scholar
  21. Bratanich AC, Liu C, McArthur JC, Fudyk T, Glass JD, Mittoo S, Klassen GA, Power C (1998). Brain-derived HIV-1 tat sequences from AIDS patients with dementia show increased molecular heterogeneity. J NeuroVirol 4: 387–393.PubMedCrossRefGoogle Scholar
  22. Brew BJ, Dore G (2000). Decreasing incidence of CNS AIDS defining events associated with antiretroviral therapy. Neurology 55: 1424.PubMedGoogle Scholar
  23. Brew BJ, Rosenblum M, Cronin K, Price RW (1995). AIDS dementia complex and HIV-1 brain infection: Clinicalvirological correlations. Ann Neurol 38: 563–570.PubMedCrossRefGoogle Scholar
  24. Brown AJ, Cleland A (1996). Independent evolution of the env and pol genes of HIV-1 during zidovudine therapy. AIDS 10: 1067–1073.PubMedGoogle Scholar
  25. Buch S, Pinson D, Hou Y, Adany I, Li Z, Mukherjee S, Jia F, Mackay G, Silverstein P, Kumar A, Narayan O (2000). Neuropathogenesis of chimeric simian human immunodeficiency virus infection in rhesus macaques. J Med Primatol 29: 96–106.PubMedCrossRefGoogle Scholar
  26. Bukrinsky MI, Sharova N, Dempsey MP, Stanwick TL, Bukrinskaya AG, Haggerty S, Stevenson M (1992). Active nuclear import of human immunodeficiency virus type 1 preintegration complexes. Proc Natl Acad Sci U S A 89: 6580–6584.PubMedCrossRefGoogle Scholar
  27. Burudi EM, Marcondes MC, Watry DD, Zandonatti M, Taffe MA, Fox HS (2002). Regulation of indoleamine 2,3-dioxygenase expression in simian immunodeficiency virus-infected monkey brains. J Virol 76: 12233–12241.PubMedCrossRefGoogle Scholar
  28. Cara A, Vargas J Jr, Keller M, Jones S, Mosoian A, Gurtman A, Cohen A, Parkas V, Wallach F, Chusid E, Gelman IH, Klotman ME (2002). Circular viral DNA and anomalous junction sequence in PBMC of HIVinfected individuals with no detectable plasma HIV RNA. Virology 292: 1–5.PubMedCrossRefGoogle Scholar
  29. Carotenuto P, Looij D, Keldermans L, de Wolf F, Goudsmit J (1998). Neutralizing antibodies are positively associated with CD4+ T-cell counts and T-cell function in long-term AIDS-free infection. AIDS 12: 1591–1600.PubMedCrossRefGoogle Scholar
  30. Carrington M, Dean M, Martin MP, O’Brien SJ (1999a). Genetics of HIV-1 infection: chemokine receptor CCR5 polymorphism and its consequences. Hum Mol Genet 8: 1939–1945.PubMedCrossRefGoogle Scholar
  31. Carrington M, Nelson GW, Martin MP, Kissner T, Vlahov D, Goedert JJ, Kaslow R, Buchbinder S, Hoots K, O’Brien SJ (1999b). HLA and HIV-1: heterozygote advantage and B*35 – Cw*04 disadvantage. Science 283: 1748–1752.PubMedCrossRefGoogle Scholar
  32. Cecilia D, Kleeberger C, Munoz A, Giorgi JV, Zolla-Pazner S (1999). A longitudinal study of neutralizing antibodies and disease progression in HIV-1-infected subjects. J Infect Dis 179: 1365–1374.PubMedCrossRefGoogle Scholar
  33. Chan SY, Speck RF, Power C, Gaffen SL, Chesebro B, Goldsmith MA (1999). V3 recombinants indicate a central role for CCR5 as a coreceptor in tissue infection by human immunodeficiency virus type 1. J Virol 73: 2350–2358.PubMedGoogle Scholar
  34. Chang J, Jozwiak R, Wang B, Ng T, Ge YC, Bolton W, Dwyer DE, Randle C, Osborn R, Cunningham AL, Saksena NK (1998). Unique HIV type 1 V3 region sequences derived from six different regions of brain: region-specific evolution within host-determined quasispecies. AIDS Res Hum Retroviruses 14: 25–30.PubMedCrossRefGoogle Scholar
  35. Chen P, Flory E, Avots A, Jordan BW, Kirchhoff F, Ludwig S, Rapp UR (2000). Transactivation of naturally occurring HIV-1 long terminal repeats by the JNK signaling pathway. The most frequent naturally occurring length polymorphism sequence introduces a novel binding site for AP-1 factors. J Biol Chem 275: 20382–20390.PubMedCrossRefGoogle Scholar
  36. Cheng J, Nath A, Knudsen B, Hochman S, Geiger JD, Ma M, Magnuson DS (1998). Neuronal excitatory properties of human immunodeficiency virus type 1 Tat protein. Neuroscience 82: 97–106.PubMedCrossRefGoogle Scholar
  37. Chiao C, Bader T, Stenger JE, Baldwin W, Brady J, Barrett JC (2001). HIV type 1 Tat inhibits tumor necrosis factor α-induced repression of tumor necrosis factor receptor p55 and amplifies tumor necrosis factor α activity in stably tat-transfected HeLa Cells. AIDS Res Hum Retroviruses 17: 1125–1132.PubMedCrossRefGoogle Scholar
  38. Cho MW, Lee MK, Carney MC, Berson JF, Doms RW, Martin MA (1998). Identification of determinants on a dualtropic human immunodeficiency virus type 1 envelope glycoprotein that confer usage of CXCR4. J Virol 72: 2509–2515.PubMedGoogle Scholar
  39. Choe H, Farzan M, Sun Y, Sullivan N, Rollins B, Ponath PD, Wu L, Mackay CR, LaRosa G, Newman W, Gerard N, Gerard C, Sodroski J (1996). The β-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 85: 1135–1148.PubMedCrossRefGoogle Scholar
  40. Clayton F, Kotler DP, Kuwada SK, Morgan T, Stepan C, Kuang J, Le J, Fantini J (2001). Gp120-induced Bob/GPR15 activation: a possible cause of human immunodeficiency virus enteropathy. Am J Pathol 159: 1933–1939.PubMedGoogle Scholar
  41. Clements JE, Zink MC (1996). Molecular biology and pathogenesis of animal lentivirus infections. Clin Microbiol Rev 9: 100–117.PubMedGoogle Scholar
  42. Coffin JM (1995). HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science 267: 483–489.PubMedCrossRefGoogle Scholar
  43. Collman R, Balliet JW, Gregory SA, Friedman HM, Kolson DL, Nathanson N, Srinivasan A (1992). An infectious molecular clone of an unusual macrophage-tropic and highly cytopathic strain of human immunodeficiency virus type 1. J Virol 66: 7517–7521.PubMedGoogle Scholar
  44. Conant K, Garzino-Demo A, Nath A, McArthur JC, Halliday W, Power C, Gallo RC, Major EO (1998). Induction of monocyte chemoattractant protein-1 in HIV-1 Tatstimulated astrocytes and elevation in AIDS dementia. Proc Natl Acad Sci U S A 95: 3117–3121.PubMedCrossRefGoogle Scholar
  45. Corboy JR, Buzy JM, Zink MC, Clements JE (1992). Expression directed from HIV long terminal repeats in the central nervous system of transgenic mice. Science 258: 1804–1808.PubMedCrossRefGoogle Scholar
  46. Corboy JR, Garl PJ (1997). HIV-1 LTR DNA sequence variation in brain-derived isolates. J NeuroVirol 3: 331–341.PubMedCrossRefGoogle Scholar
  47. Corder EH, Robertson K, Lannfelt L, Bogdanovic N, Eggertsen G, Wilkins J, Hall C (1998). HIV-infected subjects with the E4 allele for APOE have excess dementia and peripheral neuropathy. Nat Med 4: 1182–1184.PubMedCrossRefGoogle Scholar
  48. Davis LE, Hjelle BL, Miller VE, Palmer DL, Llewellyn AL, Merlin TL, Young SA, Mills RG, Wachsman W, Wiley CA (1992). Early viral brain invasion in iatrogenic human immunodeficiency virus infection. Neurology 42: 1736–1739.PubMedGoogle Scholar
  49. De Luca A, Ciancio BC, Larussa D, Murri R, Cingolani A, Rizzo MG, Giancola ML, Ammassari A, Ortona L (2002). Correlates of independent HIV-1 replication in the CNS and of its control by antiretrovirals. Neurology 59: 342–347.PubMedGoogle Scholar
  50. Dean M, Carrington M, O’Brien SJ (2002). Balanced polymorphism selected by genetic versus infectious human disease. Annu Rev Genomics Hum Genet 3: 263–292.PubMedCrossRefGoogle Scholar
  51. DeFillipis VR, Villarreal LP (2001). Virus Evolution. In: Fields virology. Knipe DM, Howley PM (eds). Philadelphia: Lippincott Williams & Wilkins, pp 353–370.Google Scholar
  52. Demuth M, Czub S, Sauer U, Koutsilieri E, Haaft P, Heeney J, Stahl-Hennig C, ter Meulen V, Sopper S (2000). Relationship between viral load in blood, cerebrospinal fluid, brain tissue and isolated microglia with neurological disease in macaques infected with different strains of SIV. J NeuroVirol 6: 187–201.PubMedCrossRefGoogle Scholar
  53. Domingo E, Holland JJ (1999). Origin and evolution of viruses. New York, Academic Press.Google Scholar
  54. Doranz BJ, Rucker J, Yi Y, Smyth RJ, Samson M, Peiper SC, Parmentier M, Collman RG, Doms RW (1996). A dualtropic primary HIV-1 isolate that uses fusin and the β-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell 85: 1149–1158.PubMedCrossRefGoogle Scholar
  55. Dore GJ, Correll PK, Li Y, Kaldor JM, Cooper DA, Brew BJ (1999). Changes to AIDS dementia complex in the era of highly active antiretroviral therapy. AIDS 13: 1249–1253.PubMedCrossRefGoogle Scholar
  56. Dreyer EB, Kaiser PK, Offermann JT, Lipton SA (1990). HIV-1 coat protein neurotoxicity prevented by calcium channel antagonists. Science 248: 364–367.PubMedCrossRefGoogle Scholar
  57. Eggers C, Stuerenburg HJ, Schafft T, Zollner B, Feucht HH, Stellbrink HJ, van Lunzen J (2000). Rapid clearance of human immunodeficiency virus type 1 from ventricular cerebrospinal fluid during antiretroviral treatment. Ann Neurol 47: 816–819.PubMedCrossRefGoogle Scholar
  58. Eigen M (1971). Self-organization of matter and evolution of biological macromolecules. Naturwissenschaften 58: 465–523.PubMedCrossRefGoogle Scholar
  59. Eigen M, Biebricher CK (1988). Sequence space and quasispecies distribution. In: RNA genetics. Domingo E, Holland JJ, Ahlquist P (eds). Boca Raton, FL: CRC Press, pp 211–245Google Scholar
  60. Ellis RJ, Gamst AC, Capparelli E, Spector SA, Hsia K, Wolfson T, Abramson I, Grant I, McCutchan JA (2000). Cerebrospinal fluid HIV RNA originates from both local CNS and systemic sources. Neurology 54: 927–936.PubMedGoogle Scholar
  61. Ellis RJ, Hsia K, Spector SA, Nelson JA, Heaton RK, Wallace MR, Abramson I, Atkinson JH, Grant I, McCutchan JA (1997). Cerebrospinal fluid human immunodeficiency virus type 1 RNA levels are elevated in neurocognitively impaired individuals with acquired immunodeficiency syndrome. HIV Neurobehavioral Research Center Group. Ann Neurol 42: 679–688.PubMedCrossRefGoogle Scholar
  62. Estable MC, Bell B, Hirst M, Sadowski I (1998). Naturally occurring human immunodeficiency virus type 1 long terminal repeats have a frequently observed duplication that binds RBF-2 and represses transcription. J Virol 72: 6465–6474.PubMedGoogle Scholar
  63. Estable MC, Bell B, Merzouki A, Montaner JS, O’Shaughnessy MV, Sadowski IJ (1996). Human immunodeficiency virus type 1 long terminal repeat variants from 42 patients representing all stages of infection display a wide range of sequence polymorphism and transcription activity. J Virol 70: 4053–4062.PubMedGoogle Scholar
  64. Evans DT, O’Connor DH, Jing P, Dzuris JL, Sidney J, da Silva J, Allen TM, Horton H, Venham JE, Rudersdorf RA, Vogel T, Pauza CD, Bontrop RE, DeMars R, Sette A, Hughes AL, Watkins DI (1999). Virus-specific cytotoxic T-lymphocyte responses select for amino-acid variation in simian immunodeficiency virus Env and Nef. Nat Med 5: 1270–1276.PubMedCrossRefGoogle Scholar
  65. Fang G, Zhu G, Burger H, Keithly JS, Weiser B (1998). Minimizing DNA recombination during long RT-PCR. J Virol Methods 76: 139–148.PubMedCrossRefGoogle Scholar
  66. Fawell S, Seery J, Daikh Y, Moore C, Chen LL, Pepinsky B, Barsoum J (1994). Tat-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci U S A 91: 664–668.PubMedCrossRefGoogle Scholar
  67. Flynn G, Maru S, Loughlin J, Romero IA, Male D (2003). Regulation of chemokine receptor expression in human microglia and astrocytes. J Neuroimmunol 136: 84–93.PubMedCrossRefGoogle Scholar
  68. Freed EO, Martin MA (2001). HIVs and their replication. In: Fields virology. Knipe DM, Howley PM (eds). Philadelphia: Lippincott Williams & Wilkins, pp 1971–2041.Google Scholar
  69. Frost SD, Gunthard HF, Wong JK, Havlir D, Richman DD, Leigh Brown AJ (2001). Evidence for positive selection driving the evolution of HIV-1 envunder potent antiviral therapy. Virology 284: 250–258.PubMedCrossRefGoogle Scholar
  70. Gabuzda D, Wang J (2000). Chemokine receptors and mechanisms of cell death in HIV neuropathogenesis. J NeuroVirol 6(Suppl 1): S24-S32.PubMedGoogle Scholar
  71. Garcia F, Plana M, Ortiz GM, Bonhoeffer S, Soriano A, Vidal C, Cruceta A, Arnedo M, Gil C, Pantaleo G, Pumarola T, Gallart T, Nixon DF, Miro JM, Gatell JM (2001). The virological and immunological consequences of structured treatment interruptions in chronic HIV-1 infection. AIDS 15: F29-F40.PubMedCrossRefGoogle Scholar
  72. Garden GA (2002). Microglia in human immunodeficiency virus-associated neurodegeneration. Glia 40: 240–251.PubMedCrossRefGoogle Scholar
  73. Gaschen B, Taylor J, Yusim K, Foley B, Gao F, Lang D, Novitsky V, Haynes B, Hahn BH, Bhattacharya T, Korber B (2002). Diversity considerations in HIV-1 vaccine selection. Science 296: 2354–2360.PubMedCrossRefGoogle Scholar
  74. Gatanaga H, Oka S, Ida S, Wakabayashi T, Shioda T, Iwamoto A (1999). Active HIV-1 redistribution and replication in the brain with HIV encephalitis. Arch Virol 144: 29–43.PubMedCrossRefGoogle Scholar
  75. Gemma C, Smith EM, Hughes TK Jr, Opp MR (2000). Human immunodeficiency virus glycoprotein 160 induces cytokine mRNA expression in the rat central nervous system. Cell Mol Neurobiol 20: 419–431.PubMedCrossRefGoogle Scholar
  76. Ghezzi S, Noonan DM, Aluigi MG, Vallanti G, Cota M, Benelli R, Morini M, Reeves JD, Vicenzi E, Poli G, Albini A (2000). Inhibition of CXCR4-dependent HIV-1 infection by extracellular HIV-1 Tat. Biochem Biophys Res Commun 270: 992–996.PubMedCrossRefGoogle Scholar
  77. Gonzalez E, Rovin BH, Sen L, Cooke G, Dhanda R, Mummidi S, Kulkarni H, Bamshad MJ, Telles V, Anderson SA, Walter EA, Stephan KT, Deucher M, Mangano A, Bologna R, Ahuja SS, Dolan MJ, Ahuja SK (2002). HIV-1 infection and AIDS dementia are influenced by a mutant MCP-1 allele linked to increased monocyte infiltration of tissues and MCP-1 levels. Proc Natl Acad Sci U S A 99: 13795–13800.PubMedCrossRefGoogle Scholar
  78. Gorry PR, Bristol G, Zack JA, Ritola K, Swanstrom R, Birch CJ, Bell JE, Bannert N, Crawford K, Wang H, Schols D, De Clercq E, Kunstman K, Wolinsky SM, Gabuzda D (2001). Macrophage tropism of human immunodeficiency virus type 1 isolates from brain and lymphoid tissues predicts neurotropism independent of coreceptor specificity. J Virol 75: 10073–10089.PubMedCrossRefGoogle Scholar
  79. Gorry PR, Howard JL, Churchill MJ, Anderson JL, Cunningham A, Adrian D, McPhee DA, Purcell DF (1999). Diminished production of human immunodeficiency virus type 1 in astrocytes results from inefficient translation of gag, env, and nef mRNAs despite efficient expression of Tat and Rev. J Virol 73: 352–361.PubMedGoogle Scholar
  80. Gorry PR, Taylor J, Holm GH, Mehle A, Morgan T, Cayabyab M, Farzan M, Wang H, Bell JE, Kunstman K, Moore JP, Wolinsky SM, Gabuzda D (2002). Increased CCR5 affinity and reduced CCR5/CD4 dependence of a neurovirulent primary human immunodeficiency virus type 1 isolate. J Virol 76: 6277–6292.PubMedCrossRefGoogle Scholar
  81. Gottlieb GS, Nickle DC, Jensen MA, Wong KG, Grobler J, Li F, Liu SL, Rademeyer C, Learn GH, Karim SS, Williamson C, Corey L, Margolick JB, Mullins JI (2004). Dual HIV-1 infection associated with rapid disease progression. Lancet 363: 619–622.PubMedCrossRefGoogle Scholar
  82. Goulder PJ, Altfeld MA, Rosenberg ES, Nguyen T, Tang Y, Eldridge RL, Addo MM, He S, Mukherjee JS, Phillips MN, Bunce M, Kalams SA, Sekaly RP, Walker BD, Brander C (2001). Substantial differences in specificity of HIV-specific cytotoxic T cells in acute and chronic HIV infection. J Exp Med 193: 181–194.PubMedCrossRefGoogle Scholar
  83. Goulder PJ, Walker BD (1999). The great escape—AIDS viruses and immune control. Nat Med 5: 1233–1235.PubMedCrossRefGoogle Scholar
  84. Grant RS, Naif H, Thuruthyil SJ, Nasr N, Littlejohn T, Takikawa O, Kapoor V (2000). Induction of indoleamine 2,3-dioxygenase in primary human macrophages by HIV-1. Redox Rep 5: 105–107.PubMedCrossRefGoogle Scholar
  85. Gruol DL, Yu N, Parsons KL, Billaud JN, Elder JH, Phillips TR (1998). Neurotoxic effects of feline immunodeficiency virus, FIV-PPR. J NeuroVirol 4: 415–425.PubMedCrossRefGoogle Scholar
  86. Hannibal MC, Markovitz DM, Clark N, Nabel GJ (1993). Differential activation of human immunodeficiency virus type 1 and 2 transcription by specific T-cell activation signals. J Virol 67: 5035–5040.PubMedGoogle Scholar
  87. Hasenkrug KJ, Robertson SJ, Porti J, McAtee F, Nishio J, Chesebro B (1996). Two separate envelope regions influence induction of brain disease by a polytropic murine retrovirus (FMCF98). J Virol 70: 4825–4828.PubMedGoogle Scholar
  88. He J, Chen Y, Farzan M, Choe H, Ohagen A, Gartner S, Busciglio J, Yang X, Hofmann W, Newman W, Mackay CR, Sodroski J, Gabuzda D (1997). CCR3 and CCR5 are coreceptors for HIV-1 infection of microglia. Nature 385: 645–649.PubMedCrossRefGoogle Scholar
  89. Henderson AJ, Connor RI, Calame KL (1996). C/EBP activators are required for HIV-1 replication and proviral induction in monocytic cell lines. Immunity 5: 91–101.PubMedCrossRefGoogle Scholar
  90. Henderson AJ, Zou X, Calame KL (1995). C/EBP proteins activate transcription from the human immunodeficiency virus type 1 long terminal repeat in macrophages/monocytes. J Virol 69: 5337–5344.PubMedGoogle Scholar
  91. Hiebenthal-Millow K, Kirchhoff F (2002). The most frequent naturally occurring length polymorphism in the HIV-1 LTR has little effect on proviral transcription and viral replication. Virology 292: 169–175.PubMedCrossRefGoogle Scholar
  92. Hoffman TL, Stephens EB, Narayan O, Doms RW (1998). HIV type I envelope determinants for use of the CCR2b, CCR3, STRL33, and APJ coreceptors. Proc Natl Acad Sci U S A 95: 11360–11365.PubMedCrossRefGoogle Scholar
  93. Hogan TH, Krebs FC, Wigdahl B (2002). Regulation of human immunodeficiency virus type 1 gene expression and pathogenesis by CCAAT/enhancer binding proteins in cells of the monocyte/macrophage lineage. J NeuroVirol 8: 21–26.PubMedCrossRefGoogle Scholar
  94. Hogan TH, Stauff DL, Krebs FC, Gartner S, Quiterio SJ, Wigdahl B (2003). Structural and functional evolution of human immunodeficiency virus type 1 long terminal repeat CCAAT/enhancer binding protein sites and their use as molecular markers for central nervous system disease progression. J NeuroVirol 9: 55–68.PubMedGoogle Scholar
  95. Holmes C, El-Okl M, Williams AL, Cunningham C, Wilcockson D, Perry VH (2003). Systemic infection, interleukin 1β, and cognitive decline in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 74: 788–789.PubMedCrossRefGoogle Scholar
  96. Huang KJ, Alter GM, Wooley DP (2002). The reverse transcriptase sequence of human immunodeficiency virus type 1 is under positive evolutionary selection within the central nervous system. J NeuroVirol 8: 281–294.PubMedCrossRefGoogle Scholar
  97. Hudson L, Liu J, Nath A, Jones M, Raghavan R, Narayan O, Male D, Everall I (2000). Detection of the human immunodeficiency virus regulatory protein Tat in CNS tissues. J NeuroVirol 6: 145–155.PubMedCrossRefGoogle Scholar
  98. Hughes ES, Bell JE, Simmonds P (1997). Investigation of the dynamics of the spread of human immunodeficiency virus to brain and other tissues by evolutionary analysis of sequences from the p17gag and env genes. J Virol 71: 1272–1280.PubMedGoogle Scholar
  99. Janssen RS, Nwanyanwu OC, Selik RM, Stehr-Green JK (1992). Epidemiology of human immunodeficiency virus encephalopathy in the United States. Neurology 42: 1472–1476.PubMedGoogle Scholar
  100. Jeeninga RE, Hoogenkamp M, Armand-Ugon M, de Baar M, Verhoef K, Berkhout B (2000). Functional differences between the long terminal repeat transcriptional promoters of human immunodeficiency virus type 1 subtypes A through G. J Virol 74: 3740–3751.PubMedCrossRefGoogle Scholar
  101. Johnson RT (1998). Viral infections of the nervous system, 2nd ed. Philadelphia: Lippincott-Raven.Google Scholar
  102. Johnson RT, Glass JD, McArthur JC, Chesebro BW (1996). Quantitation of human immunodeficiency virus in brains of demented and nondemented patients with acquired immunodeficiency syndrome. Ann Neurol 39: 392–395.PubMedCrossRefGoogle Scholar
  103. Johnston JB, Jiang Y, van Marle G, Mayne MB, Ni W, Holden J, McArthur JC, Power C (2000). Lentivirus infection in the brain induces matrix metalloproteinase expression: role of envelope diversity. J Virol 74: 7211–7220.PubMedCrossRefGoogle Scholar
  104. Johnston JB, Silva C, Hiebert T, Buist R, Dawood MR, Peeling J, Power C (2002a). Neurovirulence depends on virus input titer in brain in feline immunodeficiency virus infection: evidence for activation of innate immunity and neuronal injury. J NeuroVirol 8: 420–431.PubMedCrossRefGoogle Scholar
  105. Johnston JB, Silva C, Power C (2002b). Envelope genemediated neurovirulence in feline immunodeficiency virus infection: induction of matrix metalloproteinases and neuronal injury. J Virol 76: 2622–2633.PubMedCrossRefGoogle Scholar
  106. Johnston JB, Zhang K, Silva C, Shalinsky DR, Conant K, Ni W, Corbett D, Yong VW, Power C (2001). HIV-1 Tat neurotoxicity is prevented by matrix metalloproteinase inhibitors. Ann Neurol 49: 230–241.PubMedCrossRefGoogle Scholar
  107. Jones M, Olafson K, Del Bigio MR, Peeling J, Nath A (1998). Intraventricular injection of human immunodeficiency virus type 1 (HIV1) Tat protein causes inflammation, gliosis, apoptosis, and ventricular enlargement. J Neuropathol Exp Neurol 57: 563–570.PubMedCrossRefGoogle Scholar
  108. Jordan-Sciutto KL, Wang G, Murphy-Corb M, Wiley CA (2000). Induction of cell-cycle regulators in simian immunodeficiency virus encephalitis. Am J Pathol 157: 497–507.PubMedGoogle Scholar
  109. Jost S, Bernard MC, Kaiser L, Yerly S, Hirschel B, Samri A, Autran B, Goh LE, Perrin L (2002). A patient with HIV-1 superinfection. N Engl J Med 347: 731–736.PubMedCrossRefGoogle Scholar
  110. Kaiser PK, Offermann JT, Lipton SA (1990). Neuronal injury due to HIV-1 envelope protein is blocked by anti-gp120 antibodies but not by anti-CD4 antibodies. Neurology 40: 1757–1761.PubMedGoogle Scholar
  111. Kamps CA, Lin YC, Wong PK (1991). Oligomerization and transport of the envelope protein of Moloney murine leukemia virus-TB and of ts1, a neurovirulent temperature-sensitive mutant of MoMuLV-TB. Virology 184: 687–694.PubMedCrossRefGoogle Scholar
  112. Kanki PJ, Hamel DJ, Sankale JL, Hsieh C, Thior I, Barin F, Woodcock SA, Gueye-Ndiaye A, Zhang E, Montano M, Siby T, Marlink R, I ND, Essex ME, S MB (1999). Human immunodeficiency virus type 1 subtypes differ in disease progression. J Infect Dis 179: 68–73.PubMedCrossRefGoogle Scholar
  113. Kaul M, Garden GA, Lipton SA (2001). Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 410: 988–994.PubMedCrossRefGoogle Scholar
  114. Keswani SC, Pardo CA, Cherry CL, Hoke A, McArthur JC (2002). HIV-associated sensory neuropathies. AIDS 16: 2105–2117.PubMedCrossRefGoogle Scholar
  115. Khanna KV, Yu XF, Ford DH, Ratner L, Hildreth JK, Markham RB (2000). Differences among HIV-1 variants in their ability to elicit secretion of TNF-α. J Immunol 164: 1408–1415.PubMedGoogle Scholar
  116. Kinter A, Arthos J, Cicala C, Fauci AS (2000). Chemokines, cytokines and HIV: a complex network of interactions that influence HIV pathogenesis. Immunol Rev 177: 88–98.PubMedCrossRefGoogle Scholar
  117. Klein RS, Williams KC, Alvarez-Hernandez X, Westmoreland S, Force T, Lackner AA, Luster AD (1999). Chemokine receptor expression and signaling in macaque and human fetal neurons and astrocytes: implications for the neuropathogenesis of AIDS. J Immunol 163: 1636–1646.PubMedGoogle Scholar
  118. Koken SE, van Wamel JL, Goudsmit J, Berkhout B, Geelen JL (1992). Natural variants of the HIV-1 long terminal repeat: analysis of promoters with duplicated DNA regulatory motifs. Virology 191: 968–972.PubMedCrossRefGoogle Scholar
  119. Kolson DL, Collman R, Hrin R, Balliet JW, Laughlin M, McGann KA, Debouck C, Gonzalez-Scarano F (1994). Human immunodeficiency virus type 1 Tat activity in human neuronal cells: uptake and trans-activation. J Gen Virol 75: 1927–1934.PubMedCrossRefGoogle Scholar
  120. Korber B, Gaschen B, Yusim K, Thakallapally R, Kesmir C, Detours V (2001). Evolutionary and immunological implications of contemporary HIV-1 variation. Br Med Bull 58: 19–42.PubMedCrossRefGoogle Scholar
  121. Korber BT, Kunstman KJ, Patterson BK, Furtado M, McEvilly MM, Levy R, Wolinsky SM (1994). Genetic differences between bloodand brain-derived viral sequences from human immunodeficiency virus type 1-infected patients: evidence of conserved elements in the V3 region of the envelope protein of brainderived sequences. J Virol 68: 7467–7481.PubMedGoogle Scholar
  122. Kreisberg JF, Kwa D, Schramm B, Trautner V, Connor R, Schuitemaker H, Mullins JI, van’t Wout AB, Goldsmith MA (2001). Cytopathicity of human immunodeficiency virus type 1 primary isolates depends on coreceptor usage and not patient disease status. J Virol 75: 8842–8847.PubMedCrossRefGoogle Scholar
  123. Lafrenie RM, Wahl LM, Epstein JS, Hewlett IK, Yamada KM, Dhawan S (1996). HIV-1-Tat modulates the function of monocytes and alters their interactions with microvessel endothelial cells. A mechanism of HIV pathogenesis. J Immunol 156: 1638–1645.Google Scholar
  124. Lane TE, Buchmeier MJ, Watry DD, Fox HS (1996). Expression of inflammatory cytokines and inducible nitric oxide synthase in brains of SIV-infected rhesus monkeys: applications to HIV-induced central nervous system disease. Mol Med 2: 27–37.PubMedGoogle Scholar
  125. Lanier ER, Sturge G, McClernon D, Brown S, Halman M, Sacktor N, McArthur J, Atkinson JH, Clifford D, Price RW, Simpson D, Torres G, Catalan J, Marder K, Power C, Hall C, Romero C, Brew B (2001). HIV-1 reverse transcriptase sequence in plasma and cerebrospinal fluid of patients with AIDS dementia complex treated with Abacavir. AIDS 15: 747–751.PubMedCrossRefGoogle Scholar
  126. Lavreys L, Baeten JM, Overbaugh J, Panteleeff DD, Chohan BH, Richardson BA, Mandaliya K, Ndinya-Achola JO, Kreiss JK (2002). Virus load during primary human immunodeficiency virus (HIV) type 1 infection is related to the severity of acute HIV illness in Kenyan women. Clin Infect Dis 35: 77–81.PubMedCrossRefGoogle Scholar
  127. Lazarini F, Seilhean D, Rosenblum O, Suarez S, Conquy L, Uchihara T, Sazdovitch V, Mokhtari K, Maisonobe T, Boussin F, Katlama C, Bricaire F, Duyckaerts C, Hauw JJ (1997). Human immunodeficiency virus type 1 DNA and RNA load in brains of demented and nondemented patients with acquired immunodeficiency syndrome. J NeuroVirol 3: 299–303.PubMedCrossRefGoogle Scholar
  128. Lipsitch M, Nowak MA, Ebert D, May RM (1995). The population dynamics of vertically and horizontally transmitted parasites. Proc R Soc Lond B Biol Sci 260: 321–327.CrossRefGoogle Scholar
  129. Lipton SA, Gendelman HE (1995). Seminars in medicine of the Beth Israel Hospital, Boston. Dementia associated with the acquired immunodeficiency syndrome. N Engl J Med 332: 934–940.PubMedCrossRefGoogle Scholar
  130. Little SJ (2000). Transmission and prevalence of HIV resistance among treatment-naive subjects. Antivir Ther 5: 33–40.PubMedGoogle Scholar
  131. Little SJ, Holte S, Routy JP, Daar ES, Markowitz M, Collier AC, Koup RA, Mellors JW, Connick E, Conway B, Kilby M, Wang L, Whitcomb JM, Hellmann NS, Richman DD (2002). Antiretroviral-drug resistance among patients recently infected with HIV. N Engl J Med 347: 385–394.PubMedCrossRefGoogle Scholar
  132. Liu SL, Schacker T, Musey L, Shriner D, McElrath MJ, Corey L, Mullins JI (1997). Divergent patterns of progression to AIDS after infection from the same source: human immunodeficiency virus type 1 evolution and antiviral responses. J Virol 71: 4284–4295.PubMedGoogle Scholar
  133. Liu Y, Tang XP, McArthur JC, Scott J, Gartner S (2000). Analysis of human immunodeficiency virus type 1 gp160 sequences from a patient with HIV dementia: evidence for monocyte trafficking into brain. J NeuroVirol 6(Suppl 1): S70-S81.PubMedGoogle Scholar
  134. Loomis-Price LD, Cox JH, Mascola JR, Van Cott TC, Michael NL, Fouts TR, Redfield RR, Robb ML, Wahren B, Sheppard HW, Birx DL (1998). Correlation between humoral responses to human immunodeficiency virus type 1 envelope and disease progression in early-stage infection. J Infect Dis 178: 1306–1316.PubMedCrossRefGoogle Scholar
  135. Lucas SB, Hounnou A, Peacock C, Beaumel A, Djomand G, N’Gbichi JM, Yeboue K, Honde M, Diomande M, Giordano C, et al. (1993). The mortality and pathology of HIV infection in a west African city. AIDS 7: 1569–1579.PubMedCrossRefGoogle Scholar
  136. Lukashov VV, Kuiken CL, Goudsmit J (1995). Intrahost human immunodeficiency virus type 1 evolution is related to length of the immunocompetent period. J Virol 69: 6911–6916.PubMedGoogle Scholar
  137. Lynch WP, Robertson SJ, Portis JL (1995). Induction of focal spongiform neurodegeneration in developmentally resistant mice by implantation of murine retrovirusinfected microglia. J Virol 69: 1408–1419.PubMedGoogle Scholar
  138. Lynch WP, Sharpe AH (2000). Differential glycosylation of the Cas-Br-E Env protein is associated with retrovirusinduced spongiform neurodegeneration. J Virol 74: 1558–1565.PubMedCrossRefGoogle Scholar
  139. Malim MH, Emerman M (2001). HIV-1 sequence variation: drift, shift, and attenuation. Cell 104: 469–472.PubMedCrossRefGoogle Scholar
  140. Marcondes MC, Burudi EM, Huitron-Resendiz S, Sanchez-Alavez M, Watry D, Zandonatti M, Henriksen SJ, Fox HS (2001). Highly activated CD8(+) T cells in the brain correlate with early central nervous system dysfunction in simian immunodeficiency virus infection. J Immunol 167: 5429–5438.PubMedGoogle Scholar
  141. Markham RB, Wang WC, Weisstein AE, Wang Z, Munoz A, Templeton A, Margolick J, Vlahov D, Quinn T, Farzadegan H, Yu XF (1998). Patterns of HIV-1 evolution in individuals with differing rates of CD4 T cell decline. Proc Natl Acad Sci USA 95: 12568–12573.PubMedCrossRefGoogle Scholar
  142. Martin J, LaBranche CC, Gonzalez-Scarano F (2001). Differential CD4/CCR5 utilization, gp120 conformation, and neutralization sensitivity between envelopes from a microglia-adapted human immunodeficiency virus type 1 and its parental isolate. J Virol 75: 3568–3580.PubMedCrossRefGoogle Scholar
  143. Martin-Garcia J, Kolson DL, Gonzalez-Scarano F (2002). Chemokine receptors in the brain: their role in HIV infection and pathogenesis. AIDS 16: 1709–1730.PubMedCrossRefGoogle Scholar
  144. Mayne M, Bratanich AC, Chen P, Rana F, Nath A, Power C (1998). HIV-1 Tat molecular diversity and induction of TNF-α: Implications for HIV-induced neurological disease. Neuroimmunomodulation 5: 184–192.PubMedCrossRefGoogle Scholar
  145. McArthur JC, Hoover DR, Bacellar H, Miller EN, Cohen BA, Becker JT, Graham NM, McArthur JH, Selnes OA, Jacobson LP, et al. (1993). Dementia in AIDS patients: incidence and risk factors. Multicenter AIDS Cohort Study. Neurology 43: 2245–2252.PubMedGoogle Scholar
  146. McArthur JC, McClernon DR, Cronin MF, Nance-Sproson TE, Saah AJ, St Clair M, Lanier ER (1997). Relationship between human immunodeficiency virus-associated dementia and viral load in cerebrospinal fluid and brain. Ann Neurol 42: 689–698.PubMedCrossRefGoogle Scholar
  147. McClernon DR, Lanier R, Gartner S, Feaser P, Pardo CA, St Clair M, Liao Q, McArthur JC (2001). HIV in the brain: RNA levels and patterns of zidovudine resistance. Neurology 57: 1396–1401.PubMedGoogle Scholar
  148. McMichael AJ, Rowland-Jones SL (2001). Cellular immune responses to HIV. Nature 410: 980–987.PubMedCrossRefGoogle Scholar
  149. Mellors JW, Munoz A, Giorgi JV, Margolick JB, Tassoni CJ, Gupta P, Kingsley LA, Todd JA, Saah AJ, Detels R, Phair JP, Rinaldo CR Jr. (1997). Plasma viral load and CD4+ lymphocytes as prognostic markers of HIV-1 infection. Ann Intern Med 126: 946–954.PubMedGoogle Scholar
  150. Messam CA, Major EO (2000). Stages of restricted HIV-1 infection in astrocyte cultures derived from human fetal brain tissue. J NeuroVirol 6(Suppl 1): S90-S94.PubMedGoogle Scholar
  151. Mollace V, Nottet HS, Clayette P, Turco MC, Muscoli C, Salvemini D, Perno CF (2001). Oxidative stress and neuroAIDS: triggers, modulators and novel antioxidants. Trends Neurosci 24: 411–416.PubMedCrossRefGoogle Scholar
  152. Morris A, Marsden M, Halcrow K, Hughes ES, Brettle RP, Bell JE, Simmonds P (1999). Mosaic structure of the human immunodeficiency virus type 1 genome infecting lymphoid cells and the brain: evidence for frequent in vivo recombination events in the evolution of regional populations. J Virol 73: 8720–8731.PubMedGoogle Scholar
  153. Munoz-Fernandez MA, Navarro J, Garcia A, Punzon C, Fernandez-Cruz E, Fresno M (1997). Replication of human immunodeficiency virus-1 in primary human T cells is dependent on the autocrine secretion of tumor necrosis factor through the control of nuclear factorkappa B activation. J Allergy Clin Immunol 100: 838–845.PubMedCrossRefGoogle Scholar
  154. Murray EA, Rausch DM, Lendvay J, Sharer LR, Eiden LE (1992). Cognitive and motor impairments associated with SIV infection in rhesus monkeys. Science 255: 1246–1249.PubMedCrossRefGoogle Scholar
  155. Narayan O, Joag SV, Stephens EB (1995). Selected models of HIV-induced neurological disease. Curr Top Microbiol Immunol 202: 151–166.PubMedGoogle Scholar
  156. Natarajan V, Bosche M, Metcalf JA, Ward DJ, Lane HC, Kovacs JA (1999). HIV-1 replication in patients with undetectable plasma virus receiving HAART. Highly active antiretroviral therapy. Lancet 353: 119–120.PubMedCrossRefGoogle Scholar
  157. Nath A (2002). Human immunodeficiency virus (HIV) proteins in neuropathogenesis of HIV dementia. J Infect Dis 186(Suppl 2): S193-S198.PubMedCrossRefGoogle Scholar
  158. Nath A, Conant K, Chen P, Scott C, Major EO (1999). Transient exposure to HIV-1 Tat protein results in cytokine production in macrophages and astrocytes. A hit and run phenomenon. J Biol Chem 274: 17098–17102.Google Scholar
  159. Nath A, Psooy K, Martin C, Knudsen B, Magnuson DS, Haughey N, Geiger JD (1996). Identification of a human immunodeficiency virus type 1 Tat epitope that is neuroexcitatory and neurotoxic. J Virol 70: 1475–1480.PubMedGoogle Scholar
  160. Neilson JR, John GC, Carr JK, Lewis P, Kreiss JK, Jackson S, Nduati RW, Mbori-Ngacha D, Panteleeff DD, Bodrug S, Giachetti C, Bott MA, Richardson BA, Bwayo J, Ndinya-Achola J, Overbaugh J (1999). Subtypes of human immunodeficiency virus type 1 and disease stage among women in Nairobi, Kenya. J Virol 73: 4393–4403.PubMedGoogle Scholar
  161. Neuenburg JK, Brodt HR, Herndier BG, Bickel M, Bacchetti P, Price RW, Grant RM, Schlote W (2002). HIV-related neuropathology, 1985 to 1999: rising prevalence of HIV encephalopathy in the era of highly active antiretroviral therapy. J Acquir Immune Defic Syndr 31: 171–177.PubMedGoogle Scholar
  162. Neumann M, Felber BK, Kleinschmidt A, Froese B, Erfle V, Pavlakis GN, Brack-Werner R (1995). Restriction of human immunodeficiency virus type 1 production in a human astrocytoma cell line is associated with a cellular block in Rev function. J Virol 69: 2159–2167.PubMedGoogle Scholar
  163. Nguyen MD, D’Aigle T, Gowing G, Julien JP, Rivest S (2004). Exacerbation of motor neuron disease by chronic stimulation of innate immunity in a mouse model of amyotrophic lateral sclerosis. J Neurosci 24: 1340–1349.PubMedCrossRefGoogle Scholar
  164. Nottet HS, Persidsky Y, Sasseville VG, Nukuna AN, Bock P, Zhai QH, Sharer LR, McComb RD, Swindells S, Soderland C, Gendelman HE (1996). Mechanisms for the transendothelial migration of HIV-1-infected monocytes into brain. J Immunol 156: 1284–1295.PubMedGoogle Scholar
  165. Nowak MA, Sigmund K (2004). Evolutionary dynamics of biological games. Science 303: 793–799.PubMedCrossRefGoogle Scholar
  166. Nuovo GJ, Gallery F, MacConnell P, Braun A (1994). In situ detection of polymerase chain reaction-amplified HIV-1 nucleic acids and tumor necrosis factor-α RNA in the central nervous system. Am J Pathol 144: 659–666.PubMedGoogle Scholar
  167. O’Brien SJ, Moore JP (2000). The effect of genetic variation in chemokines and their receptors on HIV transmission and progression to AIDS. Immunol Rev 177: 99–111.PubMedCrossRefGoogle Scholar
  168. Ohagen A, Ghosh S, He J, Huang K, Chen Y, Yuan M, Osathanondh R, Gartner S, Shi B, Shaw G, Gabuzda D (1999). Apoptosis induced by infection of primary brain cultures with diverse human immunodeficiency virus type 1 isolates: evidence for a role of the envelope. J Virol 73: 897–906.PubMedGoogle Scholar
  169. Overbaugh J, Bangham CR (2001). Selection forces and constraints on retroviral sequence variation. Science 292: 1106–1109.PubMedCrossRefGoogle Scholar
  170. Pang S, Koyanagi Y, Miles S, Wiley C, Vinters HV, Chen IS (1990). High levels of unintegrated HIV-1 DNA in brain tissue of AIDS dementia patients. Nature 343: 85–89.PubMedCrossRefGoogle Scholar
  171. Patel CA, Mukhtar M, Harley S, Kulkosky J, Pomerantz RJ (2002). Lentiviral expression of HIV-1 Vpr induces apoptosis in human neurons. J NeuroVirol 8: 86–99.PubMedCrossRefGoogle Scholar
  172. Patel CA, Mukhtar M, Pomerantz RJ (2000). Human immunodeficiency virus type 1 Vpr induces apoptosis in human neuronal Cells. J Virol 74: 9717–9726.PubMedCrossRefGoogle Scholar
  173. Patrick MK, Johnston JB, Power C (2002). Lentiviral neuropathogenesis: comparative neuroinvasion, neurotropism, neurovirulence, and host neurosusceptibility. J Virol 76: 7923–7931.PubMedCrossRefGoogle Scholar
  174. Pattarini R, Pittaluga A, Raiteri M (1998). The human immunodeficiency virus-1 envelope protein gp120 binds through its V3 sequence to the glycine site of N-methylD-aspartate receptors mediating noradrenaline release in the hippocampus. Neuroscience 87: 147–157.PubMedCrossRefGoogle Scholar
  175. Pauza CD, Trivedi P, McKechnie TS, Richman DD, Graziano FM (1994). 2-LTR circular viral DNA as a marker for human immunodeficiency virus type 1 infection in vivo. Virology 205: 470–478.PubMedCrossRefGoogle Scholar
  176. Peruzzi F, Gordon J, Darbinian N, Amini S (2002). Tatinduced deregulation of neuronal differentiation and survival by nerve growth factor pathway. J NeuroVirol 8: 91–96.PubMedCrossRefGoogle Scholar
  177. Peterson KE, Robertson SJ, Portis JL, Chesebro B (2001). Differences in cytokine and chemokine responses during neurological disease induced by polytropic murine retroviruses Map to separate regions of the viral envelope gene. J Virol 75: 2848–2856.PubMedCrossRefGoogle Scholar
  178. Philippon V Vellutini C, Gambarelli D, Harkiss G, Arbuthnott G, Metzger D, Roubin R, Filippi P (1994). The basic domain of the lentiviral Tat protein is responsible for damages in mouse brain: Involvement of cytokines. Virology 205: 519–529.PubMedCrossRefGoogle Scholar
  179. Pierson T, Hoffman TL, Blankson J, Finzi D, Chadwick K, Margolick JB, Buck C, Siliciano JD, Doms RW, Siliciano RF (2000). Characterization of chemokine receptor utilization of viruses in the latent reservoir for human immunodeficiency virus type 1. J Virol 74: 7824–7833.PubMedCrossRefGoogle Scholar
  180. Pilgrim AK, Pantaleo G, Cohen OJ, Fink LM, Zhou JY, Zhou JT, Bolognesi DP, Fauci AS, Montefiori DC (1997). Neutralizing antibody responses to human immunodeficiency virus type 1 in primary infection and long-termnonprogressive infection. J Infect Dis 176: 924–932.PubMedCrossRefGoogle Scholar
  181. Poli A, Pistello M, Carli MA, Abramo F, Mancuso G, Nicoletti E, Bendinelli M (1999). Tumor necrosis factor-α and virus expression in the central nervous system of cats infected with feline immunodeficiency virus. J NeuroVirol 5: 465–473.PubMedCrossRefGoogle Scholar
  182. Poluektova LY, Munn DH, Persidsky Y, Gendelman HE (2002). Generation of cytotoxic T cells against virusinfected human brain macrophages in a murine model of HIV-1 encephalitis. J Immunol 168: 3941–3949.PubMedGoogle Scholar
  183. Poulsen DJ, Favara C, Snyder EY, Portis J, Chesebro B (1999). Increased neurovirulence of polytropic mouse retroviruses delivered by inoculation of brain with infected neural stem cells. Virology 263: 23–29.PubMedCrossRefGoogle Scholar
  184. Poulsen DJ, Robertson SJ, Favara CA, Portis JL, Chesebro BW (1998). Mapping of a neurovirulence determinant within the envelope protein of a polytropic murine retrovirus: induction of central nervous system disease by low levels of virus. Virology 248: 199–207.PubMedCrossRefGoogle Scholar
  185. Power C, Buist R, Johnston JB, Del Bigio MR, Ni W, Dawood MR, Peeling J (1998a). Neurovirulence in feline immunodeficiency virus-infected neonatal cats is viral strain specific and dependent on systemic immune suppression. J Virol 72: 9109–9115.PubMedGoogle Scholar
  186. Power C, Gill MJ, Johnson RT (2002). Progress in clinical neurosciences: the neuropathogenesis of HIV infection: host-virus interaction and the impact of therapy. Can J Neurol Sci 29: 19–32.PubMedGoogle Scholar
  187. Power C, Johnson RT (2001). Neuroimmune and neurovirological aspects of human immunodeficiency virus infection. Adv Virus Res 56: 389–433.PubMedCrossRefGoogle Scholar
  188. Power C, Kong PA, Crawford TO, Wesselingh S, Glass JD, McArthur JC, Trapp BD (1993). Cerebral white matter changes in acquired immunodeficiency syndrome dementia Aalterations of the blood-brain barrier. Ann Neurol 34: 339–350.PubMedCrossRefGoogle Scholar
  189. Power C, McArthur JC, Nath A, Wehrly K, Mayne M, Nishio J, Langelier T, Johnson RT, Chesebro B (1998b). Neuronal death induced by brain-derived human immunodeficiency virus type 1 envelope genes differs between demented and nondemented AIDS patients. J Virol 72: 9045–9053.PubMedGoogle Scholar
  190. Price RW, Paxinos EE, Grant RM, Drews B, Nilsson A, Hoh R, Hellmann NS, Petropoulos CJ, Deeks SG (2001). Cerebrospinal fluid response to structured treatment interruption after virological failure. AIDS 15: 1251–1259.PubMedCrossRefGoogle Scholar
  191. Quasney MW, Zhang Q, Sargent S, Mynatt M, Glass J, McArthur J (2001). Increased frequency of the tumor necrosis factor-α-308 A allele in adults with human immunodeficiency virus dementia. Ann Neurol 50: 157–162.PubMedCrossRefGoogle Scholar
  192. Rambaut A, Posada D, Crandall KA, Holmes EC (2004). The causes and consequences of HIV evolution. Nat Rev Genet 5: 52–61.PubMedCrossRefGoogle Scholar
  193. Ranki A, Nyberg M, Ovod V, Haltia M, Elovaara I, Raininko R, Haapasalo H, Krohn K (1995). Abundant expression of HIV Nef and Rev proteins in brain astrocytes in vivo is associated with dementia. AIDS 9: 1001–1008.PubMedCrossRefGoogle Scholar
  194. Rappaport J, Joseph J, Croul S, Alexander G, Del Valle L, Amini S, Khalili K (1999). Molecular pathway involved in HIV-1-induced CNS pathology: role of viral regulatory protein, Tat. J Leukoc Biol 65: 458–465.PubMedGoogle Scholar
  195. Reddy RT, Achim CL, Sirko DA, Tehranchi S, Kraus FG, Wong-Staal F, Wiley CA (1996). Sequence analysis of the V3 loop in brain and spleen of patients with HIV encephalitis. AIDS Res Hum Retroviruses 12: 477–482.PubMedCrossRefGoogle Scholar
  196. Rey-Cuille M, Berthier J, Bomsel-Demontoy M, Chaduc Y, Montagnier L, Hovanessian AG, Chakrabarti LA (1998). Simian immunodeficiency virus replicates to high levels in sooty mangabeys without inducing disease. J Virol 72: 3872–3886.PubMedGoogle Scholar
  197. Richman DD (2001). HIV chemotherapy. Nature 410: 995–1001.PubMedCrossRefGoogle Scholar
  198. Robertson SJ, Hasenkrug KJ, Chesebro B, Portis JL (1997). Neurologic disease induced by polytropic murine retroviruses: Neurovirulence determined by efficiency of spread to microglial cells. J Virol 71: 5287–5294.PubMedGoogle Scholar
  199. Ross HA, Rodrigo AG (2002). Immune-mediated positive selection drives human immunodeficiency virus type 1 molecular variation and predicts disease duration. J Virol 76: 11715–11720.PubMedCrossRefGoogle Scholar
  200. Ross HL, Gartner S, McArthur JC, Corboy JR, McAllister JJ, Millhouse S, Wigdahl B (2001). HIV-1 LTR C/EBP binding site sequence configurations preferentially encountered in brain lead to enhanced C/EBP factor binding and increased LTR-specific activity. J NeuroVirol 7: 235–249.PubMedCrossRefGoogle Scholar
  201. Ruiz L, Carcelain G, Martinez-Picado J, Frost S, Marfil S, Paredes R, Romeu J, Ferrer E, Morales-Lopetegi K, Autran B, Clotet B (2001). HIV dynamics and T-cell immunity after three structured treatment interruptions in chronic HIV-1 infection. AIDS 15: F19-F27.PubMedCrossRefGoogle Scholar
  202. Ryzhova EV, Crino P, Shawver L, Westmoreland SV, Lackner AA, Gonzalez-Scarano F (2002). Simian immunodeficiency virus encephalitis: analysis of envelope sequences from individual brain multinucleated giant cells and tissue samples. Virology 297: 57–67.PubMedCrossRefGoogle Scholar
  203. Sacktor N, McDermott MP, Marder K, Schifitto G, Selnes OA, McArthur JC, Stern Y, Albert S, Palumbo D, Kieburtz K, De Marcaida JA, Cohen B, Epstein L (2002). HIVassociated cognitive impairment before and after the advent of combination therapy. J NeuroVirol 8: 136–142.PubMedCrossRefGoogle Scholar
  204. Saito Y, Sharer LR, Epstein LG, Michaels J, Mintz M, Louder M, Golding K, Cvetkovich TA, Blumberg BM (1994). Overexpression of Nef as a marker for restricted HIV-1 infection of astrocytes in postmortem pediatric central nervous tissues. Neurology 44: 474–481.PubMedGoogle Scholar
  205. Salomon H, Wainberg MA, Brenner B, Quan Y, Rouleau D, Cote P, LeBlanc R, Lefebvre E, Spira B, Tsoukas C, Sekaly RP, Conway B, Mayers D, Routy JP (2000). Prevalence of HIV-1 resistant to antiretroviral drugs in 81 individuals newly infected by sexual contact or injecting drug use. Investigators of the Quebec Primary Infection Study. AIDS 14: F17-F23.PubMedCrossRefGoogle Scholar
  206. Sanchez-Ramon S, Ma Bellon J, Resino S, Canto-Nogues C, Gurbindo D, Ramos J-T, Munoz-Fernandez M (2003). Low blood CD8+ T-Lymphocytes and high circulating monocytes are predictors of HIV-1-Associated progressive encephalopathy in children. Pediatrics 111: 168–175.CrossRefGoogle Scholar
  207. Sanders VJ, Wiley CA, Hamilton RL (2001). The mechanisms of neuronal damage in retroviral infections of the nervous system. Curr Top Microbiol Immunol 253: 179–201.PubMedGoogle Scholar
  208. Sankale JL, De La Tour RS, Marlink RG, Scheib R, Mboup S, Essex ME, Kanki PJ (1996). Distinct quasi-species in the blood and the brain of an HIV-2-infected individual. Virology 226: 418–423.PubMedCrossRefGoogle Scholar
  209. Sasseville VG, Lackner AA (1997). Neuropathogenesis of simian immunodeficiency virus infection in macaque monkeys. J NeuroVirol 3: 1–9.PubMedCrossRefGoogle Scholar
  210. Sasseville VG, Smith MM, Mackay CR, Pauley DR, Mansfield KG, Ringler DJ, Lackner AA (1996). Chemokine expression in simian immunodeficiency virus-induced AIDS encephalitis. Am J Pathol 149: 1459–1467.PubMedGoogle Scholar
  211. Schrager LK, D’Souza MP (1998). Cellular and anatomical reservoirs of HIV-1 in patients receiving potent antiretroviral combination therapy. JAMA 280: 67–71.PubMedCrossRefGoogle Scholar
  212. Schramm B, Penn ML, Speck RF, Chan SY, De Clercq E, Schols D, Connor RI, Goldsmith MA (2000). Viral entry through CXCR4 is a pathogenic factor and therapeutic target in human immunodeficiency virus type 1 disease. J Virol 74: 184–192.PubMedCrossRefGoogle Scholar
  213. Schwartz C, Catez P, Rohr O, Lecestre D, Aunis D, Schaeffer E (2000). Functional interactions between C/EBP, Sp1, and COUP-TF regulate human immunodeficiency virus type 1 gene transcription in human brain cells. J Virol 74: 65–73.PubMedCrossRefGoogle Scholar
  214. Sei S, Boler AM, Nguyen GT, Stewart SK, Yang QE, Edgerly M, Wood LV, Brouwers P, Venzon DJ (2001). Protective effect of CCR5 A32 heterozygosity is restricted by SDF-1 genotype in children with HIV-1 infection. AIDS 15: 1343–1352.PubMedCrossRefGoogle Scholar
  215. Shankarappa R, Margolick JB, Gange SJ, Rodrigo AG, Upchurch D, Farzadegan H, Gupta P, Rinaldo CR, Learn GH, He X, Huang XL, Mullins JI (1999). Consistent viral evolutionary changes associated with the progression of human immunodeficiency virus type 1 infection. J Virol 73: 10489–104502.PubMedGoogle Scholar
  216. Shapshak P, Segal DM, Crandall KA, Fujimura RK, Zhang BT, Xin KQ, Okuda K, Petito CK, Eisdorfer C, Goodkin K (1999). Independent evolution of HIV type 1 in different brain regions. AIDS Res Hum Retroviruses 15: 811–820.PubMedCrossRefGoogle Scholar
  217. Sharkey ME, Teo I, Greenough T, Sharova N, Luzuriaga K, Sullivan JL, Bucy RP, Kostrikis LG, Haase A, Veryard C, Davaro RE, Cheeseman SH, Daly JS, Bova C, Ellison RT, 3rd, Mady B, Lai KK, Moyle G, Nelson M, Gazzard B, Shaunak S, Stevenson M (2000). Persistence of episomal HIV-1 infection intermediates in patients on highly active antiretroviral therapy. Nat Med 6: 76–81.PubMedCrossRefGoogle Scholar
  218. Sheehy N, Desselberger U, Whitwell H, Ball JK (1996). Concurrent evolution of regions of the envelope and polymerase genes of human immunodeficiency virus type 1 during zidovudine (AZT) therapy. J Gen Virol 77: 1071–1081.PubMedCrossRefGoogle Scholar
  219. Shi B, De Girolami U, He J, Wang S, Lorenzo A, Busciglio J, Gabuzda D (1996). Apoptosis induced by HIV-1 infection of the central nervous system. J Clin Invest 98: 1979–1990.PubMedCrossRefGoogle Scholar
  220. Shieh JT, Martin J, Baltuch G, Malim MH, Gonzalez-Scarano F (2000). Determinants of syncytium formation in microglia by human immunodeficiency virus type 1: role of the V1/V2 domains. J Virol 74: 693–701.PubMedCrossRefGoogle Scholar
  221. Shrikant P, Benos DJ, Tang LP, Benveniste EN (1996). HIV glycoprotein 120 enhances intercellular adhesion molecule-1 gene expression in glial cells. Involvement of Janus kinase/signal transducer and activator of transcription and protein kinase C signaling pathways. J Immunol 156: 1307–1314.PubMedGoogle Scholar
  222. Silva C, Zhang K, Tsutsui S, Holden JK, Gill MJ, Power C (2003). Growth Hormone prevents human immunodeficiency virus-induced neurodegeneration: inhibition of neuronal p53. Ann Neurol 54: 605–614.PubMedCrossRefGoogle Scholar
  223. Smit TK, Wang B, Ng T, Osborne R, Brew B, Saksena NK (2001). Varied tropism of HIV-1 isolates derived from different regions of adult brain cortex discriminate between patients with and without AIDS dementia complex (ADC): evidence for neurotropic HIV variants. Virology 279: 509–526.PubMedCrossRefGoogle Scholar
  224. Smith KM, Crandall KA, Kneissl ML, Navia BA (2000). PCR detection of host and HIV-1 sequences from archival brain tissue. J NeuroVirol 6: 164–171.PubMedCrossRefGoogle Scholar
  225. Song B, Cayabyab M, Phan N, Wang L, Axthelm MK, Letvin NL, Sodroski JG (2004). Neutralization sensitivity of a simian-human immunodeficiency virus (SHIV-HXBc2P 3.2N) isolated from an infected rhesus macaque with neurological disease. Virology 322: 168–181.PubMedCrossRefGoogle Scholar
  226. Soto C (2003). Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci 4: 49–60.PubMedCrossRefGoogle Scholar
  227. Speck RF, Wehrly K, Platt EJ, Atchison RE, Charo IF, Kabat D, Chesebro B, Goldsmith MA (1997). Selective employment of chemokine receptors as human immunodeficiency virus type 1 coreceptors determined by individual amino acids within the envelope V3 loop. J Virol 71: 7136–7139.PubMedGoogle Scholar
  228. Speth C, Schabetsberger T, Mohsenipour I, Stockl G, Wurzner R, Stoiber H, Lass-Florl C, Dierich MP (2002). Mechanism of human immunodeficiency virus-induced complement expression in astrocytes and neurons. J Virol 76: 3179–3188.PubMedCrossRefGoogle Scholar
  229. Strelow LI, Janigro D, Nelson JA (2001). The blood-brain barrier and AIDS. Adv Virus Res 56: 355–388.PubMedCrossRefGoogle Scholar
  230. Teo I, Veryard C, Barnes H, An SF, Jones M, Lantos PL, Luthert P, Shaunak S (1997). Circular forms of unintegrated human immunodeficiency virus type 1 DNA and high levels of viral protein expression: association with dementia and multinucleated giant cells in the brains of patients with AIDS. J Virol 71: 2928–2933.PubMedGoogle Scholar
  231. Tornatore C, Chandra R, Berger JR, Major EO (1994). HIV-1 infection of subcortical astrocytes in the pediatric central nervous system. Neurology 44: 481–487.PubMedGoogle Scholar
  232. Tornatore C, Nath A, Amemiya K, Major EO (1991). Persistent human immunodeficiency virus type 1 infection in human fetal glial cells reactivated by T-cell factor(s) or by the cytokines tumor necrosis factor α and interleukin-1β. J Virol 65: 6094–6100.PubMedGoogle Scholar
  233. Torres-Munoz J, Stockton P, Tacoronte N, Roberts B, Maronpot RR, Petito CK (2001). Detection of HIV-1 gene sequences in hippocampal neurons isolated from postmortem AIDS brains by laser capture microdissection. J Neuropathol Exp Neurol 60: 885–892.PubMedGoogle Scholar
  234. Trillo-Pazos G, Bentsman G, Chao W, Sharer L, Morgello S, Volsky DJ (2002). HIV-1 infects human neuronal cultures. In: 4th International Conference on Neurovirology/10th Conference on Neuroscience of HIV Infection. J NeuroVirol 8 (Suppl 1): 23.Google Scholar
  235. Trkola A, Ketas T, Kewalramani VN, Endorf F, Binley JM, Katinger H, Robinson J, Littman DR, Moore JP (1998). Neutralization sensitivity of human immunodeficiency virus type 1 primary isolates to antibodies and CD4-based reagents is independent of coreceptor usage. J Virol 72: 1876–1885.PubMedGoogle Scholar
  236. van Marle G, Ethier J, Silva C, MacVicar BA, Power C (2003). Human immunodeficiency virus type 1 envelopemediated neuropathogenesis: targeted gene delivery by a Sindbis virus expression vector. Virology 309: 61–74.PubMedCrossRefGoogle Scholar
  237. van Marle G, Henry S, Todoruk T, Sullivan A, Silva C, Rourke SB, Holden J, McArthur J, Gill MJ, Power C (2004). Human immunodeficiency virus type 1 Nef protein mediates neural cell death: a neurotoxic role for IP-10. Virology 329: 302–318.PubMedGoogle Scholar
  238. van Marle G, Rourke SB, Zhang K, Silva C, Ethier J, Gill MJ, Power C (2002). HIV dementia patients exhibit reduced viral neutralization and increased envelope sequence diversity in blood and brain. AIDS 16: 1905–1914.PubMedCrossRefGoogle Scholar
  239. van Rij RP, Portegies P, Hallaby T, Lange JM, Visser J, Husman AM, van’t Wout AB, Schuitemaker H (1999). Reduced prevalence of the CCR5 A32 heterozygous genotype in human immunodeficiency virus-infected individuals with AIDS dementia complex. J Infect Dis 180: 854–857.PubMedCrossRefGoogle Scholar
  240. van’t Wout AB, Ran LJ, Kuiken CL, Kootstra NA, Pals ST, Schuitemaker H (1998). Analysis of the temporal relationship between human immunodeficiency virus type 1 quasispecies in sequential blood samples and various organs obtained at autopsy. J Virol 72: 488–496.Google Scholar
  241. Venturi G, Catucci M, Romano L, Corsi P, Leoncini F, Valensin PE, Zazzi M (2000). Antiretroviral resistance mutations in human immunodeficiency virus type 1 reverse transcriptase and protease from paired cerebrospinal fluid and plasma samples. J Infect Dis 181: 740–745.PubMedCrossRefGoogle Scholar
  242. Viscidi RP, Mayur K, Lederman HM, Frankel AD (1989). Inhibition of antigen-induced lymphocyte proliferation by Tat protein from HIV-1. Science 246: 1606–1608.PubMedCrossRefGoogle Scholar
  243. von Herrath M, Oldstone MB, Fox HS (1995). Simian immunodeficiency virus (SIV)-specific CTL in cerebrospinal fluid and brains of SIV-infected rhesus macaques. J Immunol 154: 5582–5589.Google Scholar
  244. Voulgaropoulou F, Tan B, Soares M, Hahn B, Ratner L (1999). Distinct human immunodeficiency virus strains in the bone marrow are associated with the development of thrombocytopenia. J Virol 73: 3497–3504.PubMedGoogle Scholar
  245. Walker BD, Goulder PJ (2000). AIDS. Escape from the immune system. Nature 407: 313–314.PubMedCrossRefGoogle Scholar
  246. Wang TH, Donaldson YK, Brettle RP, Bell JE, Simmonds P (2001). Identification of shared populations of human immunodeficiency virus type 1 infecting microglia and tissue macrophages outside the central nervous system. J Virol 75: 11686–11699.PubMedCrossRefGoogle Scholar
  247. Wang WK, Dudek T, Essex M, Lee TH (1999). Hypervariable region 3 residues of HIV type 1 gp120 involved in CCR5 coreceptor utilization: Therapeutic and prophylactic implications. Proc Natl Acad Sci US A 96: 4558–4562.CrossRefGoogle Scholar
  248. Wesselingh SL, Thompson KA (2001). Immunopathogenesis of HIV-associated dementia. Curr Opin Neurol 14: 375–379.PubMedCrossRefGoogle Scholar
  249. Westendorp MO, Shatrov VA, Schulze-Osthoff K, Frank R, Kraft M, Los M, Krammer PH, Droge W, Lehmann V (1995). HIV-1 Tat potentiates TNF-induced NF-kappa B activation and cytotoxicity by altering the cellular redox state. EMBOJ 14: 546–554.Google Scholar
  250. Wiley CA (1995). Quantitative neuropathologic assessment of HIV-1 encephalitis. Curr Top Microbiol Immunol 202: 55–61.PubMedGoogle Scholar
  251. Wiley CA, Soontornniyomkij V, Radhakrishnan L, Masliah E, Mellors J, Hermann SA, Dailey P, Achim CL (1998). Distribution of brain HIV load in AIDS. Brain Pathol 8: 277–284.PubMedCrossRefGoogle Scholar
  252. Wodarz D, Nowak MA (1999). Dynamics of HIV pathogenesis and treatment. In: Origin and evolution of viruses. Domingo E, Holland JJ (eds). New York: Academic Press, pp 197–223.CrossRefGoogle Scholar
  253. Wong JK, Ignacio CC, Torriani F, Havlir D, Fitch NJ, Richman DD (1997). In vivo compartmentalization of human immunodeficiency virus: evidence from the examination of pol sequences from autopsy tissues. J Virol 71: 2059–2071.PubMedGoogle Scholar
  254. Xiao H, Neuveut C, Tiffany HL, Benkirane M, Rich EA, Murphy PM, Jeang KT (2000). Selective CXCR4 antagonism by Tat: implications for in vivo expansion of coreceptoruse by HIV-1. Proc Natl Acad Sci U S A 97: 11466–11471.PubMedCrossRefGoogle Scholar
  255. Yi Y, Chen W, Frank I, Cutilli J, Singh A, Starr-Spires L, Sulcove J, Kolson DL, Collman RG (2003). An unusual syncytia-inducing human immunodeficiency virus type 1 primary isolate from the central nervous system that is restricted to CXCR4, replicates efficiently in macrophages, and induces neuronal apoptosis. J NeuroVirol 9: 432–441.PubMedGoogle Scholar
  256. Yong VW, Krekoski CA, Forsyth PA, Bell R, Edwards DR (1998). Matrix metalloproteinases and diseases of the CNS. Trends Neurosci 21: 75–80.PubMedCrossRefGoogle Scholar
  257. Zagury D, Lachgar A, Chams V, Fall LS, Bernard J, Zagury JF, Bizzini B, Gringeri A, Santagostino E, Rappaport J, Feldman M, Burny A, Gallo RC (1998). Interferon α and Tat involvement in the immunosuppression of uninfected T cells and C-C chemokine decline in AIDS. Proc Natl Acad Sci U S A 95: 3851–3856.PubMedCrossRefGoogle Scholar
  258. Zhang K, Hawken M, Rana F, Welte FJ, Gartner S, Goldsmith MA, Power C (2001). Human immunodeficiency virus type 1 clade A and D neurotropism: molecular evolution, recombination, and coreceptor use. Virology 283: 19–30.PubMedCrossRefGoogle Scholar
  259. Zhang K, McQuibban GA, Silva C, Butler GS, Johnston JB, Holden J, Clark-Lewis I, Overall CM, Power C (2003a). HIV-induced metalloproteinase processing of the chemokine stromal cell derived factor-1 causes neurodegeneration. Nat Neurosci 6: 1064–1071.PubMedCrossRefGoogle Scholar
  260. Zhang K, Rana F, Silva C, Ethier J, Wehrly K, Chesebro B, Power C (2003b). Human immunodeficiency virus type 1 envelope-mediated neuronal death: uncoupling of viral replication and neurotoxicity. J Virol 77: 6899–6912.PubMedCrossRefGoogle Scholar
  261. Zheng J, Thylin MR, Ghorpade A, Xiong H, Persidsky Y, Cotter R, Niemann D, Che M, Zeng YC, Gelbard HA, Shepard RB, Swartz JM, Gendelman HE (1999). Intracellular CXCR4 signaling, neuronal apoptosis and neuropathogenic mechanisms of HIV-1-associated dementia. J Neuroimmunol 98: 185–200.PubMedCrossRefGoogle Scholar
  262. Zink MC, Suryanarayana K, Mankowski JL, Shen A, Piatak M Jr, Spelman JP, Carter DL, Adams RJ, Lifson JD, Clements JE (1999). High viral load in the cerebrospinal fluid and brain correlates with severity of simian immunodeficiency virus encephalitis. J Virol 73: 10480–10488.PubMedGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2005

Authors and Affiliations

  1. 1.Departments of Clinical Neurosciences and Microbiology and Infectious DiseasesUniversity of CalgaryCalgaryCanada
  2. 2.Neurovirology Laboratory, Department of Clinical NeurosciencesUniversity of CalgaryCalgaryCanada

Personalised recommendations