Advertisement

Journal of NeuroVirology

, Volume 10, Issue 2, pp 86–97 | Cite as

Expression of chemokines by human fetal microglia after treatment with the human immunodeficiency virus type 1 protein Tat

  • Teresa G. D’Aversa
  • Karl O. A. Yu
  • Joan W. BermanEmail author
Article

Abstract

Chemokines are important mediators of inflammation. It has been demonstrated that there is an increase in chemokine expression in both the sera and brain of individuals infected with human immunodeficiency virus type 1 (HIV-1). The HIV-1 viral protein, Tat, a transcriptional regulator, has been detected in the central nervous system (CNS) of infected individuals, and has been demonstrated to induce chemokines from various cells within the brain. The authors now show that the interaction of human microglia, the resident phagocytes of the brain, with Tat leads to dramatic increases in the secretion of the chemokines CCL2, CXCL8, CXCL10, CCL3, CCL4, and CCL5. Treatment of microglia with Tat plus specific inhibitors of signal transduction pathways demonstrated that the induction of each chemokine is regulated differently. Tat-induced expression of CCL2 and CCL4 was mediated by the activation of the extracellular regulated kinase (ERK)1/2 mitogen-activated protein kinase (MAPK) pathway and the phosphatidylinositol 3-kinase (PI3K) pathway, whereas the induction of CXCL8 and CCL3 was mediated only by the p38 MAPK pathway. Tat-induced CXCL10 expression was mediated, to some extent, by activation of the ERK1/2 MAPK pathway, phosphatidylinositol 3-kinase pathway, and the p38 MAPK pathway, whereas CCL5 expression was not mediated by any pathway tested. Western blot analysis demonstrated phosphorylation of ERK 1/2 and Akt upon stimulation of microglia with Tat. These data suggest that a soluble HIV-1 viral protein can alter the chemokine balance in the brain, which can then lead to an influx of inflammatory cells and contribute to the neuropathogenesis of HIV-1 infection.

Keywords

CCL2 CCL3 CCL4 CXCL8 HIV encephalitis MAP kinases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albini A, Soldi R, Giunciuglio D, Giraudo E, Benelli R, Primo L, Noonan D, Salio M, Camussi G, Rockl W, Bussolino F (1996). The angiogenesis induced by HIV-1 tat protein is mediated by the Flk-1/KDR receptor on vascular endothelial cells. Nat Med 2: 1371–1375.PubMedGoogle Scholar
  2. Alessi DR, Caudwell FB, Andjelkovic M, Hemmings BA, Cohen P (1996). Molecular basis for the substrate specificity of protein kinase B; comparison with MAPKAP kinase-1 and p70 S6 kinase. FEBS Lett 399: 333–338.PubMedGoogle Scholar
  3. Amara A, Gall SL, Schwartz O, Salamero J, Montes M, Loetscher P, Baggiolini M, Virelizier JL, Arenzana-Seisdedos F (1997). HIV coreceptor downregulation as antiviral principle: SDF-1alpha-dependent internalization of the chemokine receptor CXCR4 contributes to inhibition of HIV replication. J Exp Med 186: 139–146.PubMedGoogle Scholar
  4. Arenzana-Seisdedos F, Virelizier JL, Rousset D, Clark-Lewis I, Loetscher P, Moser B, Baggiolini M (1996). HIV blocked by chemokine antagonist. Nature 383: 400.PubMedGoogle Scholar
  5. Barillari G, Gendelman R, Gallo RC, Ensoli B (1993). The Tat protein of human immunodeficiency virus type 1, a growth factor for AIDS Kaposi sarcoma and cytokine-activated vascular cells, induces adhesion of the same cell types by using integrin receptors recognizing the RGD amino acid sequence. Proc Natl Acad Sci U S A 90: 7941–7945.PubMedGoogle Scholar
  6. Benelli R, Mortarini R, Anichini A, Giunciuglio D, Noonan DM, Montalti S, Tacchetti C, Albini A (1998). Monocyte-derived dendritic cells and monocytes migrate to HIV-Tat RGD and basic peptides. AIDS 12: 261–268.PubMedGoogle Scholar
  7. Berger JR, Moskowitz L, Fischl M, Kelley RE (1987). Neurologic disease as the presenting manifestation of acquired immunodeficiency syndrome. South Med J 80: 683–686.PubMedGoogle Scholar
  8. Bonwetsch R, Croul S, Richardson MW, Lorenzana C, Valle LD, Sverstiuk AE, Amini S, Morgello S, Khalili K, Rappaport J (1999). Role of HIV-1 Tat and CC chemokine MIP-1alpha in the pathogenesis of HIV associated central nervous system disorders. J Neuro Virol 5: 685–694.Google Scholar
  9. Borgatti P, Zauli G, Colamussi ML, Gibellini D, Previati M, Cantley LL, Capitani S (1997). Extracellular HIV-1 Tat protein activates phosphatidylinositol 3- and Akt/PKB kinases in CD4+ T lymphoblastoid Jurkat cells. Eur J Immunol 27: 2805–2811.PubMedGoogle Scholar
  10. Bornemann MA, Verhoef J, Peterson PK (1997). Macrophages, cytokines, and HIV. J Lab Clin Med 129: 10–16.PubMedGoogle Scholar
  11. Bruce-Keller AJ, Barger SW, Moss NI, Pham JT, Keller JN, Nath A (2001). Pro-inflammatory and pro-oxidant properties of the HIV protein Tat in a microglial cell line: attenuation by 17 beta-estradiol. J Neurochem 78: 1315–1324.PubMedGoogle Scholar
  12. Budka H, Wiley CA, Kleihues P, Artigas J, Asbury AK, Cho ES, Cornblath DR, Dal Canto MC, DeGirolami U, Dickson D, et al (1991). HIV-associated disease of the nervous system: review of nomenclature and proposal for neuropathology-based terminology. Brain Pathol 1: 143–152.PubMedGoogle Scholar
  13. Cheeran MC, Hu S, Yager SL, Gekker G, Peterson PK, Lokensgard JR (2001). Cytomegalovirus induces cytokine and chemokine production differentially in microglia and astrocytes: antiviral implications. J NeuroVirol 7: 135–147.PubMedGoogle Scholar
  14. Chen P, Mayne M, Power C, Nath A (1997). The Tat protein of HIV-1 induces tumor necrosis factor-alpha production. Implications for HIV-1-associated neurological diseases. J Biol Chem 272: 22385–22388.PubMedGoogle Scholar
  15. Chirmule N, Than S, Khan SA, Pahwa S (1995). Human immunodeficiency virus Tat induces functional unresponsiveness in T cells. J Virol 69: 492–498.PubMedGoogle Scholar
  16. Cinque P, Vago L, Mengozzi M, Torri V, Ceresa D, Vicenzi E, Transidico P, Vagani A, Sozzani S, Mantovani A, Lazzarin A, Poli G (1998). Elevated cerebrospinal fluid levels of monocyte chemotactic protein-1 correlate with HIV-1 encephalitis and local viral replication. AIDS 12: 1327–1332.PubMedGoogle Scholar
  17. Cocchi F, DeVico AL, Garzino-Demo A, Arya SK, Gallo RC, Lusso P (1995). Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science 270: 1811–1815.PubMedGoogle Scholar
  18. Conant K, Garzino-Demo A, Nath A, McArthur JC, Halliday W, Power C, Gallo RC, Major EO (1998). Induction of monocyte chemoattractant protein-1 in HIV-1 Tat-stimulated astrocytes and elevation in AIDS dementia. Proc Natl Acad Sci U S A 95: 3117–3121.PubMedGoogle Scholar
  19. D’Aversa TG, Weidenheim KM, Berman JW (2002). CD40-CD40L interactions induce chemokine expression by human microglia: implications for human immunodeficiency virus encephalitis and multiple sclerosis. Am J Pathol 160: 559–567.PubMedGoogle Scholar
  20. Deregibus MC, Cantaluppi V, Doublier S, Brizzi MF, Deambrosis I, Albini A, Camussi G (2002). HIV-1-Tat protein activates phosphatidylinositol 3-kinase/AKT-dependent survival pathways in Kaposi’s sarcoma cells. J Biol Chem 277: 25195–25202.PubMedGoogle Scholar
  21. Dewhurst S, Sakai K, Bresser J, Stevenson M, Evinger-Hodges MJ, Volsky DJ (1987). Persistent productive infection of human glial cells by human immunodeficiency virus (HIV) and by infectious molecular clones of HIV. J Virol 61: 3774–3782.PubMedGoogle Scholar
  22. Dickson DW, Mattiace LA, Kure K, Hutchins K, Lyman WD, Brosnan CF (1991). Microglia in human disease, with an emphasis on acquired immune deficiency syndrome. Lab Invest 64: 135–156.PubMedGoogle Scholar
  23. Ehrlich LC, Hu S, Sheng WS, Sutton RL, Rockswold GL, Peterson PK, Chao CC (1998). Cytokine regulation of human microglial cell IL-8 production. J Immunol 160: 1944–1948.PubMedGoogle Scholar
  24. Ensoli B, Buonaguro L, Barillari G, Fiorelli V, Gendelman R, Morgan RA, Wingfield P, Gallo RC (1993). Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation. J Virol 67: 277–287.PubMedGoogle Scholar
  25. Epstein LG, Sharer LR, Oleske JM, Connor EM, Goudsmit J, Bagdon L, Robert-Guroff M, Koenigsberger MR (1986). Neurologic manifestations of human immunodeficiency virus infection in children. Pediatrics 78: 678–687.PubMedGoogle Scholar
  26. Esser R, Glienke W, von Briesen H, Rubsamen-Waigmann H, Andreesen R (1996). Differential regulation of proinflammatory and hematopoietic cytokines in human macrophages after infection with human immunodeficiency virus. Blood 88: 3474–3481.PubMedGoogle Scholar
  27. Eugenin EA, D’Aversa TG, Lopez L, Calderon TM, Berman JW (2003). MCP-1 (CCL2) protects human neurons and astrocytes from NMDA or HIV-tat-induced apoptosis. J Neurochem 85: 1299–1311.PubMedGoogle Scholar
  28. Ganju RK, Munshi N, Nair BC, Liu ZY, Gill P, Groopman JE (1998). Human immunodeficiency virus tat modulates the Flk-1/KDR receptor, mitogen-activated protein kinases, and components of focal adhesion in Kaposi’s sarcoma cells. J Virol 72: 6131–6137.PubMedGoogle Scholar
  29. Gerszten RE, Garcia-Zepeda EA, Lim YC, Yoshida M, Ding HA, Gimbrone MA Jr, Luster AD, Luscinskas FW, Rosenzweig A (1999). MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature 398: 718–723.PubMedGoogle Scholar
  30. Glass JD, Fedor H, Wesselingh SL, McArthur JC (1995). Immunocytochemical quantitation of human immunodeficiency virus in the brain: correlations with dementia. Ann Neurol 38: 755–762.PubMedGoogle Scholar
  31. Glass JD, Wesselingh SL, Selnes OA, McArthur JC (1993). Clinical-neuropathologic correlation in HIV-associated dementia. Neurology 43: 2230–2237.PubMedGoogle Scholar
  32. Gordon CJ, Muesing MA, Proudfoot AE, Power CA, Moore JP, Trkola A (1999). Enhancement of human immunodeficiency virus type 1 infection by the CC-chemokine RANTES is independent of the mechanism of virus-cell fusion. J Virol 73: 684–694.PubMedGoogle Scholar
  33. Grant I, Atkinson JH, Hesselink JR, Kennedy CJ, Richman DD, Spector SA, McCutchan JA (1987). Evidence for early central nervous system involvement in the acquired immunodeficiency syndrome (AIDS) and other human immunodeficiency virus (HIV) infections. Studies with neuropsychologic testing and magnetic resonance imaging. Ann Intern Med 107: 828–836.PubMedGoogle Scholar
  34. Gray F, Adle-Biassette H, Brion F, Ereau T, le Maner I, Levy V, Corcket G (2000). Neuronal apoptosis in human immunodeficiency virus infection. J Neuro Virol 6 (Suppl 1): S38-S43.Google Scholar
  35. Haseltine WA, Wong-Staal F (1988). The molecular biology of the AIDS virus. Sci Am 259: 52–62.PubMedGoogle Scholar
  36. Helland DE, Welles JL, Caputo A, Haseltine WA (1991). Transcellular transactivation by the human immunodeficiency virus type 1 tat protein. J Virol 65: 4547–4549.PubMedGoogle Scholar
  37. Hemmings BA (1997). Akt signaling: linking membrane events to life and death decisions. Science 275: 628–630.PubMedGoogle Scholar
  38. Hesselgesser J, Horuk R (1999). Chemokine and chemokine receptor expression in the central nervous system. J NeuroVirol 5: 13–26.PubMedGoogle Scholar
  39. Hofman FM, Dohadwala MM, Wright AD, Hinton DR, Walker SM (1994). Exogenous tat protein activates central nervous system-derived endothelial cells. J Neuroimmunol 54: 19–28.PubMedGoogle Scholar
  40. Kelder W, McArthur JC, Nance-Sproson T, McClernon D, Griffin DE (1998). Beta-chemokines MCP-1 and RANTES are selectively increased in cerebrospinal fluid of patients with human immunodeficiency virus-associated dementia. Ann Neurol 44: 831–835.PubMedGoogle Scholar
  41. Kelly MD, Naif HM, Adams SL, Cunningham AL, Lloyd AR (1998). Dichotomous effects of beta-chemokines on HIV replication in monocytes and monocyte-derived macrophages. J Immunol 160: 3091–3095.PubMedGoogle Scholar
  42. Kim BO, Liu Y, Ruan Y, Xu ZC, Schantz L, He JJ (2003). Neuropathologies in transgenic mice expressing human immunodeficiency virus type 1 Tat protein under the regulation of the astrocyte-specific glial fibrillary acidic protein promoter and doxycycline. Am J Pathol 162: 1693–1707.PubMedGoogle Scholar
  43. Kinter A, Catanzaro A, Monaco J, Ruiz M, Justement J, Moir S, Arthos J, Oliva A, Ehler L, Mizell S, Jackson R, Ostrowski M, Hoxie J, Offord R, Fauci AS (1998). CC-chemokines enhance the replication of T-tropic strains of HIV-1 in CD4(+) T cells: role of signal transduction. Proc Natl Acad Sci U S A 95: 11880–11885.PubMedGoogle Scholar
  44. Kolson DL, Lavi E, Gonzalez-Scarano F (1998). The effects of human immunodeficiency virus in the central nervous system. Adv Virus Res 50: 1–47.PubMedGoogle Scholar
  45. Kruman II, Nath A, Maragos WF, Chan SL, Jones M, Rangnekar VM, Jakel RJ, Mattson MP (1999). Evidence that Par-4 participates in the pathogenesis of HIV encephalitis. Am J Pathol 155: 39–46.PubMedGoogle Scholar
  46. Kruman II, Nath A, Mattson MP (1998). HIV-1 protein Tat induces apoptosis of hippocampal neurons by a mechanism involving caspase activation, calcium overload, and oxidative stress. Exp Neurol 154: 276–288.PubMedGoogle Scholar
  47. Kutsch O, Oh J, Nath A, Benveniste EN (2000). Induction of the chemokines interleukin-8 and IP-10 by human immunodeficiency virus type 1 tat in astrocytes. J Virol 74: 9214–9221.PubMedGoogle Scholar
  48. Lafrenie RM, Wahl LM, Epstein JS, Hewlett IK, Yamada KM, Dhawan S (1996a). HIV-1-Tat modulates the function of monocytes and alters their interactions with microvessel endothelial cells. A mechanism of HIV pathogenesis. J Immunol 156: 1638–1645.PubMedGoogle Scholar
  49. Lafrenie RM, Wahl LM, Epstein JS, Hewlett IK, Yamada KM, Dhawan S (1996b). HIV-1-Tat protein promotes chemotaxis and invasive behavior by monocytes. J Immunol 157: 974–977.PubMedGoogle Scholar
  50. Lane BR, Lore K, Bock PJ, Andersson J, Coffey MJ, Strieter RM, Markovitz DM (2001). Interleukin-8 stimulates human immunodeficiency virus type 1 replication and is a potential new target for antiretroviral therapy. J Virol 75: 8195–8202.PubMedGoogle Scholar
  51. Larsen CG, Anderson AO, Appella E, Oppenheim JJ, Matsushima K (1989). The neutrophil-activating protein (NAP-1) is also chemotactic for T lymphocytes. Science 243: 1464–1466.PubMedGoogle Scholar
  52. Lipton SA, Gendelman HE (1995). Seminars in medicine of the Beth Israel Hospital, Boston. Dementia associated with the acquired immunodeficiency syndrome. N Engl J Med 332: 934–940.PubMedGoogle Scholar
  53. Liu Y, Jones M, Hingtgen CM, Bu G, Laribee N, Tanzi RE, Moir RD, Nath A, He JJ (2000). Uptake of HIV-1 tat protein mediated by low-density lipoprotein receptor-related protein disrupts the neuronal metabolic balance of the receptor ligands. Nat Med 6: 1380–1387.PubMedGoogle Scholar
  54. Luo Y, Fischer FR, Hancock WW, Dorf ME (2000). Macrophage inflammatory protein-2 and KC induce chemokine production by mouse astrocytes. J Immunol 165: 4015–4023.PubMedGoogle Scholar
  55. Ma M, Nath A (1997). Molecular determinants for cellular uptake of Tat protein of human immunodeficiency virus type 1 in brain cells. J Virol 71: 2495–2499.PubMedGoogle Scholar
  56. Marcuzzi A, Weinberger J, Weinberger OK (1992). Transcellular activation of the human immunodeficiency virus type 1 long terminal repeat in cocultured lymphocytes. J Virol 66: 4228–4232.PubMedGoogle Scholar
  57. Marder K, Albert S, Dooneief G, Stern Y, Ramachandran G, Epstein L (1996). Clinical confirmation of the American Academy of Neurology algorithm for HIV-1-associated cognitive/motor disorder. The Dana Consortium on Therapy for HIV Dementia and Related Cognitive Disorders. Neurology 47: 1247–1253.Google Scholar
  58. Marzolo MP, von Bernhardi R, Bu G, Inestrosa NC (2000). Expressionofalpha(2)-macroglobulin receptor/low density lipoprotein receptor-related protein (LRP) in rat microglial cells. J Neurosci Res 60: 401–411.PubMedGoogle Scholar
  59. Maschke M, Kastrup O, Esser S, Ross B, Hengge U, Hufnagel A (2000). Incidence and prevalence of neurological disorders associated with HIV since the introduction of highly active antiretroviral therapy (HAART). J Neurol Neurosurg Psychiatry 69: 376–380.PubMedGoogle Scholar
  60. Masliah E, Ge N, Achim CL, Hansen LA, Wiley CA (1992). Selective neuronal vulnerability in HIV encephalitis. J Neuropathol Exp Neurol 51: 585–593.PubMedGoogle Scholar
  61. Masliah E, Heaton RK, Marcotte TD, Ellis RJ, Wiley CA, Mallory M, Achim CL, McCutchan JA, Nelson JA, Atkinson JH, Grant I (1997). Dendritic injury is a pathological substrate for human immunodeficiency virus-related cognitive disorders. HNRC Group. The HIV Neurobehavioral Research Center. Ann Neurol 42: 963–972.PubMedGoogle Scholar
  62. Matsumoto T, Miike T, Nelson RP, Trudeau WL, Lockey RF, Yodoi J (1993). Elevated serum levels of IL-8 in patients with HIV infection. Clin Exp Immunol 93: 149–151.PubMedGoogle Scholar
  63. Mayne M, Holden CP, Nath A, Geiger JD (2000). Release of calcium from inositol 1,4,5-trisphosphate receptor-regulated stores by HIV-1 Tat regulates TNF-alpha production in human macrophages. J Immunol 164: 6538–6542.PubMedGoogle Scholar
  64. McArthur JC, Hoover DR, Bacellar H, Miller EN, Cohen BA, Becker JT, Graham NM, McArthur JH, Selnes OA, Jacobson LP, et al (1993). Dementia in AIDS patients: incidence and risk factors. Multicenter AIDS Cohort Study. Neurology 43: 2245–2252.PubMedGoogle Scholar
  65. McManus CM, Weidenheim K, Woodman SE, Nunez J, Hesselgesser J, Nath A, Berman JW (2000). Chemokine and chemokine-receptor expression in human glial elements: induction by the HIV protein, Tat, and chemokine autoregulation. Am J Pathol 156: 1441–1453.PubMedGoogle Scholar
  66. Mengozzi M, De Filippi C, Transidico P, Biswas P, Cota M, Ghezzi S, Vicenzi E, Mantovani A, Sozzani S, Poli G (1999). Human immunodeficiency virus replication induces monocyte chemotactic protein-1 in human macrophages and U937 promonocytic cells. Blood 93: 1851–1857.PubMedGoogle Scholar
  67. Mitola S, Sozzani S, Luini W, Primo L, Borsatti A, Weich H, Bussolino F (1997). Tat-human immunodeficiency virus-1 induces human monocyte chemotaxis by activation of vascular endothelial growth factor receptor-1. Blood 90: 1365–1372.PubMedGoogle Scholar
  68. Moestrup SK, Gliemann J, Pallesen G (1992). Distribution of the alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein in human tissues. Cell Tissue Res 269: 375–382.PubMedGoogle Scholar
  69. Morini M, Benelli R, Giunciuglio D, Carlone S, Arena G, Noonan DM, Albini A (2000). Kaposi’s sarcoma cells of different etiologic origins respond to HIV-Tat through the Flk-1/KDR (VEGFR-2): relevance in AIDS-KS pathology. Biochem Biophys Res Commun 273: 267–271.PubMedGoogle Scholar
  70. Nath A, Hartloper V, Furer M, Fowke KR (1995). Infection of human fetal astrocytes with HIV-1: viral tropism and the role of cell to cell contact in viral transmission. J Neuropathol Exp Neurol 54: 320–330.PubMedGoogle Scholar
  71. Nath A, Haughey NJ, Jones M, Anderson C, Bell JE, Geiger JD (2000). Synergistic neurotoxicity by human immunodeficiency virus proteins Tat and gp120: protection by memantine. Ann Neurol 47: 186–194.PubMedGoogle Scholar
  72. Nath A, Psooy K, Martin C, Knudsen B, Magnuson DS, Haughey N, Geiger JD (1996). Identification of a human immunodeficiency virus type 1 Tat epitope that is neuroexcitatory and neurotoxic. J Virol 70: 1475–1480.PubMedGoogle Scholar
  73. New DR, Maggirwar SB, Epstein LG, Dewhurst S, Gelbard HA (1998). HIV-1 Tat induces neuronal death via tumor necrosis factor-alpha and activation of non-N-methyl-D-aspartate receptors by a NFkappaB-independent mechanism. J Biol Chem 273: 17852–17858.PubMedGoogle Scholar
  74. Nicolini A, Ajmone-Cat MA, Bernardo A, Levi G, Minghetti L (2001). Human immunodeficiency virus type-1 Tat protein induces nuclear factor (NF)-kappaB activation and oxidative stress in microglial cultures by independent mechanisms. J Neurochem 79: 713–716.PubMedGoogle Scholar
  75. Polazzi E, Levi G, Minghetti L (1999). Human immunodeficiency virus type 1 Tat protein stimulates inducible nitric oxide synthase expression and nitric oxide production in microglial cultures. J Neuropathol Exp Neurol 58: 825–831.PubMedGoogle Scholar
  76. Prendergast MA, Rogers DT, Mulholland PJ, Littleton JM, Wilkins LH Jr, Self RL, Nath A (2002). Neurotoxic effects of the human immunodeficiency virus type-1 transcription factor Tat require function of a polyamine sensitivesite on the N-methyl-D-aspartate receptor. Brain Res 954: 300–307.PubMedGoogle Scholar
  77. Price RW, Brew B, Sidtis J, Rosenblum M, Scheck AC, Cleary P (1988). The brain in AIDS: central nervous system HIV-1 infection and AIDS dementia complex. Science 239: 586–592.PubMedGoogle Scholar
  78. Rezaie P, Trillo-Pazos G, Greenwood J, Everall IP, Male DK (2002). Motility and ramification of human fetal microglia in culture: an investigation using time-lapse video microscopy and image analysis. Exp Cell Res 274: 68–82.PubMedGoogle Scholar
  79. Rollins BJ (1997). Chemokines. Blood 90: 909–928.PubMedGoogle Scholar
  80. Sacktor N, McDermott MP, Marder K, Schifitto G, Selnes OA, McArthur JC, Stern Y, Albert S, Palumbo D, Kieburtz K, De Marcaida JA, Cohen B, Epstein L (2002). HIV-associated cognitive impairment before and after the advent of combination therapy. J NeuroVirol 8: 136–142.PubMedGoogle Scholar
  81. Sanders VJ, Pittman CA, White MG, Wang G, Wiley CA, Achim CL (1998). Chemokines and receptors in HIV encephalitis. AIDS 12: 1021–1026.PubMedGoogle Scholar
  82. Sasseville VG, Smith MM, Mackay CR, Pauley DR, Mansfield KG, Ringler DJ, Lackner AA (1996). Chemokine expression in simian immunodeficiency virus-induced AIDS encephalitis. Am J Pathol 149: 1459–1467.PubMedGoogle Scholar
  83. Schmidtmayerova H, Nottet HS, Nuovo G, Raabe T, Flanagan CR, Dubrovsky L, Gendelman HE, Cerami A, Bukrinsky M, Sherry B (1996). Human immunodeficiency virus type 1 infection alters chemokine beta peptide expression in human monocytes: implications for recruitment of leukocytes into brain and lymph nodes. Proc Natl Acad Sci U S A 93: 700–704.PubMedGoogle Scholar
  84. Schroder JM, Mrowietz U, Morita E, Christophers E (1987). Purification and partial biochemical characterization of a human monocyte-derived, neutrophil-activating peptide that lacks interleukin 1 activity. J Immunol 139: 3474–3483.PubMedGoogle Scholar
  85. Sheng WS, Hu S, Hegg CC, Thayer SA, Peterson PK (2000). Activation of human microglial cells by HIV-1 gp41 and Tat proteins. Clin Immunol 96: 243–251.PubMedGoogle Scholar
  86. Sopper S, Demuth M, Stahl-Hennig C, Hunsmann G, Plesker R, Coulibaly C, Czub S, Ceska M, Koutsilieri E, Riederer P, Brinkmann R, Katz M, ter Meulen V (1996). The effect of simian immunodeficiency virus infection in vitro and in vivo on the cytokine production of isolated microglia and peripheral macrophages from rhesus monkey. Virology 220: 320–329.PubMedGoogle Scholar
  87. Spencer DC, Price RW (1992). Human immunodeficiency virus and the central nervous system. Annu Rev Microbiol 46: 655–693.PubMedGoogle Scholar
  88. Stoll G, Jander S (1999). The role of microglia and macrophages in the pathophysiology of the CNS. Prog Neurobiol 58: 233–247.PubMedGoogle Scholar
  89. Tarzami ST, Cheng R, Miao W, Kitsis RN, Berman JW (2002). Chemokine expression in myocardial ischemia: MIP-2 dependent MCP-1 expression protects cardiomyocytes from cell death. J Mol Cell Cardiol 34: 209–221.PubMedGoogle Scholar
  90. Taub DD, Lloyd AR, Conlon K, Wang JM, Ortaldo JR, Harada A, Matsushima K, Kelvin DJ, Oppenheim JJ (1993). Recombinant human interferon-inducible protein 10 is a chemoattractant for human monocytes and T lymphocytes and promotes T cell adhesion to endothelial cells. J Exp Med 177: 1809–1814.PubMedGoogle Scholar
  91. Thomas CA, Dobkin J, Weinberger OK (1994). TAT-mediated transcellular activation of HIV-1 long terminal repeat directed gene expression by HIV-1-infected peripheral blood mononuclear cells. J Immunol 153: 3831–3839.PubMedGoogle Scholar
  92. Tong L, Pav S, White DM, Rogers S, Crane KM, Cywin CL, Brown ML, Pargellis CA (1997). A highly specific inhibitor of human p38 MAP kinase binds in the ATP pocket. Nat Struct Biol 4: 311–316.PubMedGoogle Scholar
  93. Trkola A, Dragic T, Arthos J, Binley JM, Olson WC, Allaway GP, Cheng-Mayer C, Robinson J, Maddon PJ, Moore JP (1996). CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR-5. Nature 384: 184–187.PubMedGoogle Scholar
  94. Trkola A, Gordon C, Matthews J, Maxwell E, Ketas T, Czaplewski L, Proudfoot AE, Moore JP (1999). The CC-chemokine RANTES increases the attachment of human immunodeficiency virus type 1 to target cells via glycosaminoglycans and also activates a signal transduction pathway that enhances viral infectivity. J Virol 73: 6370–6379.PubMedGoogle Scholar
  95. Tyor WR, Power C, Gendelman HE, Markham RB (1993). A model of human immunodeficiency virus encephalitis in scid mice. Proc Natl Acad Sci U S A 90: 8658–8662.PubMedGoogle Scholar
  96. Walz A, Peveri P, Aschauer H, Baggiolini M (1987). Purification and amino acid sequencing of NAF, a novel neutrophil-activating factor produced by monocytes. Biochem Biophys Res Commun 149: 755–761.PubMedGoogle Scholar
  97. Weeks BS, Lieberman DM, Johnson B, Roque E, Green M, Loewenstein P, Oldfield EH, Kleinman HK (1995). Neurotoxicity of the human immunodeficiency virus type 1 tat transactivator to PC12 cells requires the Tat amino acid 49–58 basic domain. J Neurosci Res 42: 34–40.PubMedGoogle Scholar
  98. Weiss JM, Downie SA, Lyman WD, Berman JW (1998). Astrocyte-derived monocyte-chemoattractant protein-1 directs the transmigration of leukocytes across a model of the human blood-brain barrier. J Immunol 161: 6896–6903.PubMedGoogle Scholar
  99. Weiss JM, Nath A, Major EO, Berman JW (1999). HIV-1 Tat induces monocyte chemoattractant protein-1-mediated monocyte transmigration across a model of the human blood-brain barrier and up-regulates CCR5 expression on human monocytes. J Immunol 163: 2953–2959.PubMedGoogle Scholar
  100. Westendorp MO, Frank R, Ochsenbauer C, Stricker K, Dhein J, Walczak H, Debatin KM, Krammer PH (1995). Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120. Nature 375: 497–500.PubMedGoogle Scholar
  101. Westmoreland SV, Rottman JB, Williams KC, Lackner AA, Sasseville VG (1998). Chemokine receptor expression on resident and inflammatory cells in the brain of macaques with simian immunodeficiency virus encephalitis. Am J Pathol 152: 659–665.PubMedGoogle Scholar
  102. Wiley CA, Baldwin M, Achim CL (1996). Expression of HIV regulatory and structural mRNA in the central nervous system. AIDS 10: 843–847.PubMedGoogle Scholar
  103. Wiley CA, Masliah E, Morey M, Lemere C, DeTeresa R, Grafe M, Hansen L, Terry R (1991). Neocortical damage during HIV infection. Ann Neurol 29: 651–657.PubMedGoogle Scholar
  104. Wiley CA, Schrier RD, Nelson JA, Lampert PW, Oldstone MB (1986). Cellular localization of human immunodeficiency virus infection within the brains of acquired immune deficiency syndrome patients. Proc Natl Acad Sci U S A 83: 7089–7093.PubMedGoogle Scholar
  105. Wolf BB, Lopes MB, VandenBerg SR, Gonias SL (1992). Characterization and immunohistochemical localization of alpha 2-macroglobulin receptor (low-density lipoprotein receptor-related protein) in human brain. Am J Pathol 141: 37–42.PubMedGoogle Scholar
  106. Xiong H, Boyle J, Winkelbauer M, Gorantla S, Zheng J, Ghorpade A, Persidsky Y, Carlson KA, Gendelman HE (2003). Inhibition of long-term potentiation by interleukin-8: implications for human immunodeficiency virus-1-associated dementia. J Neurosci Res 71: 600–607.PubMedGoogle Scholar
  107. Yoshimura T, Robinson EA, Appella E, Matsushima K, Showalter SD, Skeel A, Leonard EJ (1989). Three forms of monocyte-derived neutrophil chemotactic factor (MDNCF) distinguished by different lengths of the amino-terminal sequence. Mol Immunol 26: 87–93.PubMedGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2004

Authors and Affiliations

  • Teresa G. D’Aversa
    • 1
  • Karl O. A. Yu
    • 2
  • Joan W. Berman
    • 1
    • 2
    Email author
  1. 1.Department of PathologyAlbert Einstein College of Medicine, Forchheimer 727BronxUSA
  2. 2.Department of Microbiology and ImmunologyAlbert Einstein College of MedicineBronxUSA

Personalised recommendations