Journal of NeuroVirology

, Volume 9, Issue 4, pp 508–518 | Cite as

Simian immunodeficiency virus encephalitis in the white matter and degeneration of the cerebral cortex occur independently in simian immunodeficiency virus-infected monkey

  • Hui Qin Xing
  • Takashi Moritoyo
  • Kazuyasu Mori
  • Kei Tadakuma
  • Chie Sugimoto
  • Fumiko Ono
  • Hitoshi Hayakawa
  • Shuji Izumo
Article

Abstract

Highly active antiretroviral therapy (HAART) has been successful to reduce progression of acquired immunodeficiency syndrome (AIDS). Nevertheless, recent autopsy analysis of the brain from patients with human immunodeficiency virus (HIV)-1 infection reported same or even increasing numbers of AIDS encephalopathy. This insufficient effect of HAART for central nervous system (CNS) complication might be explained by independent pathogenetic processes in lymph node and CNS. We inoculated macaques with three Simian immunodeficiency virus (SIV) strains and investigated relationship between degree of the lymph node pathology and that of AIDS-related brain pathology. Animals infected with T-cell-tropic viruses SIVmac239 and SHIV-RT developed typical AIDS pathology in the lymph node 46 to 156 weeks after infection. The cerebral cortex of these animals showed focal or diffuse gliosis, and electron microscopic analysis demonstrated degenerative changes, such as accumulation of dense lamellar bodies in the dendrites and swelling of astrocytic processes. However, there was no evidence of microglial nodules or multinucleated giant cells in the white mater. The animals infected with macrophage-tropic SIV239env/MERT did not develop lymph node pathology of AIDS in the same or longer period of infection. The white mater of the animal, however, showed microglial nodules with multinucleated giant cells, a pathological hallmark of AIDS encephalopathy. SIV immunoreactivity was demonstrated in these giant cells as well as macrophage/microglia cells. On the other hand, there was no abnormality in the cerebral cortex. These findings suggest that there are two independent pathogenetic processes in AIDS encephalopathy: immune response against virus infected macrophage/microglial cells in the white mater without immunodeficiency and cortical degeneration caused in the late stage of AIDS.

Keywords

AIDS dementia complex animal model cerebral cortex leukoencephalopathy lymph node neuropathology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. An SF, Giometto B, Groves M, Miller RF, Beckett AA, Gray F, Tavolato B, Scaravilli F (1997). Axonal damage revealed by accumulation of beta-APP in HIV-positive individuals without AIDS. J Neuropathol Exp Neurol 56: 1262–1268.PubMedCrossRefGoogle Scholar
  2. Aylward EH, Henderer JD, McArthur JC, Brettschneider PD, Harris GJ, Barta PE, Pearlson GD (1993). Reduced basal ganglia volume in HIV-1-associated dementia: results from quantitive neuroimaging. Neurology 43: 2099–2104.PubMedGoogle Scholar
  3. Bissel SJ, Wang G, Ghosh M, Reinhart TA, Capuano S, Stefano Cole K, Murphey-Corb M, Piatak M Jr, Lifson JD, Wiley CA (2002). Macrophages relate presynaptic and postsynaptic damage in simian immunodeficiency virus encephalitis. Am J Pathol 160: 927–941.PubMedCrossRefGoogle Scholar
  4. Budka H (1991). Neuropathology of human immunodeficiency virus infection. Brain Pathol 1: 163–175.PubMedCrossRefGoogle Scholar
  5. Budka H, Costanzi G, Cristina S, Lechi A, Parravicini C, Trabattoni R, Vago L (1987). Brain pathology induced by infection with the human immunodeficiency virus (HIV). A histological, immunocytochemical, and electron microscopical study of 100 autopsy cases. Acta Neuropathol 75: 185–198.PubMedCrossRefGoogle Scholar
  6. Budka H, Willey CA, Kleihues P, Artigas J, Asbury AK, Cho ES, Cornblath DR, Dal Canto MC, DeGirolami U, Dickson D, Epstein LG, Esiri MM, Giangaspero F, Gosztonyi G, Gray F, Griffin JW, Henin D, Lwasaki Y, Janssen RS, Johnson RT, Lantos PL, Lyman WD, McArthur JC, Nagashima K, Peress N, Petito CK, Price RW, Rhodes RH, Rosenblum M, Said G, Scaravilli F, Sharer LR, Vinters HV (1991). HIV-associated disease of the nervous system: review of nomenclature and proposal for neuropathology-based terminology. Brain pathol 1: 143–152.PubMedCrossRefGoogle Scholar
  7. Cheng-Mayer C, Weiss C, Seto D, Levy JA (1989). Isolates of human immunodeficiency virus type 1 from the brain may constitute a special group of the AIDS virus. Proc Natl Acad Sci U S A 86: 8575–8579.PubMedCrossRefGoogle Scholar
  8. Czub S, Koutsilieri E, Sopper S, Czub M, Stahl-Hennig C, Muller JG, Pedersen V, Gsell W, Heeney JL, Gerlach M, Gosztonyi G, Riederer P, ter Meulen V (2001). Enhancement of central nervous system pathology in early simian immunodeficiency virus infection by dopaminergic drugs. Acta Neuropathol 101: 85–91.PubMedGoogle Scholar
  9. Desrosiers RC, Hansen-Moosa A, Mori K, Bouvier DP, King NW, Daniel MD, Ringler DJ (1991). Macrophage-tropic variants of SIV are associated with specific AIDS-related lesions but are not essential for the development of AIDS. Am J Pathol 139: 29–35.PubMedGoogle Scholar
  10. Dhar SK, Tadakuma K, Mori K (2000). Distinct variation pattern in the env of macrophage-tropic simian immunodeficiency virus in vivo demonstrated by denaturing gradient gel electrophoresis. J Virol Methods 89: 49–60.PubMedCrossRefGoogle Scholar
  11. Dickson DW, Lee SC, Mattiace LA, Yen SH, Brosnan C (1993). Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer’s disease. Glia 7: 75–83.PubMedCrossRefGoogle Scholar
  12. Dore GJ, Correll PK, Li Y, Kaldor JM, Cooper DA, Brew BJ (1999). Changes to AIDS dementia complex in the era of highly active antiretroviral therapy. AIDS 13: 1249–1253.PubMedCrossRefGoogle Scholar
  13. Everall IP, Luthert PJ, Lantos PL (1991). Neuronal loss in the frontal cortex in HIV infection. Lancet 337: 1119–1121.PubMedCrossRefGoogle Scholar
  14. Giometto B, An SF, Groves M, Scaravilli T, Geddes JF, Miller R, Tavolato B, Beckett AA, Scaravilli F (1997). Accumulation of beta-amyloid precursor protein in HIV encephalitis: relationship with neuropsychological abnormalities. Ann Neurol 42: 34–40.PubMedCrossRefGoogle Scholar
  15. Glass JD, Wesselingh SL, Selnes OA, McArthur JC (1993). Clinical-neuropathologic correlation in HIV-associated dementia. Neurology 43: 2230–2237.PubMedGoogle Scholar
  16. Gonzalez RG, Cheng LL, Westmoreland SV, Sakaie KE, Becerra LR, Lee PL, Masliah E, Lackner AA (2000). Early brain injury in the SIV-macaque model of AIDS. AIDS 14: 2841–2849.PubMedCrossRefGoogle Scholar
  17. Gray F, Scaravilli F, Everall I, Chretien F, An S, Boche D, Adle-Biassette H, Wingertsmann L, Durigon M, Hurtrel B, Chiodi F, Bell J, Lantos P (1996). Neuropathology of early HIV-1 infection. Brain Pathol 6: 1–15.PubMedCrossRefGoogle Scholar
  18. Jellinger KA, Setinek U, Drlicek M, Bohm G, Steurer A, Lintner F (2000). Neuropathology and general autopsy findings in AIDS during the last 15 years. Acta Neuropathol 100: 213–220.PubMedCrossRefGoogle Scholar
  19. Kaul M, Garden GA, Lipton SA (2001). Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 410: 988–994.PubMedCrossRefGoogle Scholar
  20. Kestler H, Kodama T, Ringler D, Marthas M, Pedersen N, Lackner A, Regier D, Sehgal P, Daniel M, King N, Desrosiers RC (1990). Induction of AIDS in rhesus monkeys by molecularly cloned simian immunodeficiency virus. Science 248: 1109–1112.PubMedCrossRefGoogle Scholar
  21. Kodama T, Mori K, Kawahara T, Ringler DJ, Desrosiers RC (1993). Analysis of simian immunodeficiency virus sequence variation in tissues of rhesus macaques with simian AIDS. J Virol 67: 6522–6534.PubMedGoogle Scholar
  22. Mankowski JL, Flaherty MT, Spelman JP, Hauer DA, Didier PJ, Amedee AM, Murphey-Corb M, Kirstein LM, Munoz A, Clements JE, Zink MC (1997). Pathogenesis of simian immunodeficiency virus encephalitis: viral determinants of neurovirulence. J Virol 71: 6055–6060.PubMedGoogle Scholar
  23. Masliah E, DeTeresa RM, Mallory ME, Hansen LA (2000). Changes in pathological findings at autopsy in AIDS cases for the last 15 years. AIDS 14: 69–74.PubMedCrossRefGoogle Scholar
  24. Masliah E, Ge N, Achim CL, Wiley CA (1995). Differential vulnerability of calbindin-immunoreactive neurons in HIV encephalitis. J Neuropathol Exp Neurol 54: 350–357.PubMedCrossRefGoogle Scholar
  25. Masliah E, Ge N, Morey M, DeTeresa R, Terry RD, Wiley CA (1992). Cortical dendritic pathology in human immunodeficiency virus encephalitis. Lab Invest 66: 285–291.PubMedGoogle Scholar
  26. Masliah E, Heaton RK, Marcotte TD, Ellis RJ, Wiley CA, Mallory M, Achim CL, McCutchan JA, Nelson JA, Atkinson JH, Grant I (1997). Dendritic injury is a pathological substrate for human immunodeficiency virus-related cognitive disorders. Ann Neurol 42: 963–972.PubMedCrossRefGoogle Scholar
  27. Mattson MP, Rychlik B, Chu C, Christakos S (1991). Evidence for calcium-reducing and excito-protective roles for the calcium-binding protein Calbindin-D28k in cultured hippocampal neurons. Neuron 6: 41–51.PubMedCrossRefGoogle Scholar
  28. Mori K, Ringler DJ, Kodama T, Desrosiers RC (1992). Complex determinants of macrophage-tropic in env of simian immunodeficiency virus. J Virol 66: 2067–2075.PubMedGoogle Scholar
  29. Mori K, Yasutomi Y, Sawada S, Villinger F, Sugama K, Rosenwith B, Heeney JL, Uberla K, Yamazaki S, Ansari AA, Rubsamen-Waigmann H (2000). Suppression of acute viremia by short-term postexposure prophylaxis of simian/human immunodeficiency virus SHIV-RT-infected monkeys with a novel reverse transcriptase inhibitor (GW420867) allows for development of potent antiviral immune responses resulting in efficient containment of infection. J Virol 74: 5747–5753.PubMedCrossRefGoogle Scholar
  30. Pumarola-Sune T, Navia BA, Cordon-Cardo C, Cho ES, Price RW (1987). HIV antigen in the brains of patients with the AIDS dementia complex. Ann Neurol 21: 490–496.PubMedCrossRefGoogle Scholar
  31. Raja F, Sherriff FE, Morris CS, Bridges LR, Esiri MM (1997). Cerebral white matter damage in HIV infection demonstrated using beta-myeloid precursor protein immunoreactivity. Acta Neuropathol 93: 184–189.PubMedCrossRefGoogle Scholar
  32. Ten Haaft P, Verstrepen B, Uberla K, Rosenwirth B, Heeney J (1998). A pathogenic threshold of virus load defined in simian immunodeficiency virus- or simian-human immunodeficiency virus-infected macaques. J Virol 72: 10281–10285.PubMedGoogle Scholar
  33. Uberla K, Stahl-Hennig C, Bottiger D, Matz-Rensing K, Kaup FJ, Li J, Haseltine WA, Fleckenstein B, Hunsmann G, Oberg B, Sodroski J (1995). Animal model for the therapy of acquired immunodeficiency syndrome with reverse transcriptase inhibitors. Proc Natl Acad Sci U S A 92: 8210–8214.PubMedCrossRefGoogle Scholar
  34. Westmoreland SV, Halpern E, Lackner AA (1998). Simian immunodeficiency virus encephalitis in rhesus macaques is associated with rapid disease progression. J NeuroVirol 4: 260–268.PubMedCrossRefGoogle Scholar
  35. Wiley CA, Achim CL, Christopherson C, Kidane Y, Kwok S, Masliah E, Mellors J, Radhakrishnan L, Wang G, Soontornniyomkij V (1999). HIV mediates a productive infection of the brain. AIDS 13: 2055–2059.PubMedCrossRefGoogle Scholar
  36. Wiley CA, Masliah E, Morey M, Lemere C, DeTeresa R, Grafe M, Hansen L, Terry R (1991). Neocortical damage during HIV infection. Ann Neurol 29: 651–657.PubMedCrossRefGoogle Scholar
  37. Williams KC, Corey S, Westmoreland SV, Pauley D, Knight H, deBakker C, Alvarez X, Lackner AA (2001). Perivascular macrophages are the primary cell type productively infected by simian immunodeficiency virus in the brains of macaques: implications for the neuropathogenesis of AIDS. J Exp Med 193: 905–915.PubMedCrossRefGoogle Scholar
  38. Zhu GW, Liu ZQ, Joag SV, Pinson DM, Adany I, Narayan O, McClure HM, Stephens EB (1995). Pathogenesis of lymphocyte-tropic and macrophage-tropic SIVmac infection in the brain. J NeuroVirol 1: 78–91.PubMedCrossRefGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2003

Authors and Affiliations

  • Hui Qin Xing
    • 1
  • Takashi Moritoyo
    • 2
  • Kazuyasu Mori
    • 3
    • 4
  • Kei Tadakuma
    • 4
  • Chie Sugimoto
    • 4
  • Fumiko Ono
    • 5
  • Hitoshi Hayakawa
    • 2
  • Shuji Izumo
    • 1
  1. 1.Division of Molecular Pathology and Genetic Epidemiology, Center for Chronic Viral Diseases, Faculty of MedicineKagoshima UniversityKagoshimaJapan
  2. 2.Third Department of Internal Medicine, Faculty of MedicineKagoshima UniversityKagoshimaJapan
  3. 3.AIDS Research CenterNational Institute of Infectious DiseasesTokyoJapan
  4. 4.Tsukuba Primate Center for Medical SciencesNational Institute of Infectious DiseasesTokyoJapan
  5. 5.Corporation for Production and Research of Laboratory PrimatesTsukubaJapan

Personalised recommendations