Journal of NeuroVirology

, Volume 9, Issue 2, pp 183–193 | Cite as

Prion diseases

  • Edward McKintosh
  • Sarah J. Tabrizi
  • John Collinge


Prion diseases are incurable neurodegenerative conditions affecting both animals and humans. They may be sporadic, infectious, or inherited in origin. Human prion diseases include Creutzfeldt—Jakob desease (CJD), Gerstmann—Straussler—Scheinker disease, kuru, and fatal familial insomnia. The appearance of variant CJD, and the demonstration that is caused by strains indistinguishable from bovine spongiform encephalopathy (BSE) in cattle, has led to the threat of a major epidemic of human prion disease in the UK and other countries where widespread dietary exposure to bovine prions has occurred. This article reviews the history and epidemiology of these diseases, and then focuses on important areas of current research in human prion disorders.


bovine spongiform encephalopathy Creutzfeldt—Jakob disease fatal familial insomnia Gerstmann—Straussler—Scheinker syndrome kuru prion scrapie spongiform encephalopathy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alper T (1993). The scrapie enigma: insights from radiation experiments. Radiat Res 135: 283–292.PubMedCrossRefGoogle Scholar
  2. Alper T, Cramp WA, Haig DA, Clarke MC (1967). Does the agent of scrapie replicate without nucleic acid? Nature 214: 764–766.PubMedCrossRefGoogle Scholar
  3. Alper T, Haig DA, Clarke MC (1966). The exceptionally small size of the scrapie agent. Biochem Biophys Res Commun 22: 278–284.PubMedCrossRefGoogle Scholar
  4. Asante EA, Linehan JM, Desbruslais M, Joiner S, Gowland I, Wood A, Welch J, Hill AF, Lloyd SE, Wadsworth JDF, Collinge J (2002). BSE prions propagae as either variant CJD-like or sporadic CJD-like prion strains in transgenic mice expressing human prion protein. EMBO J, 21: 6358–6366.PubMedCrossRefGoogle Scholar
  5. Bessen RA, Kocisko DA, Raymond GJ, Nandan S, Lansbury PT, Coughey B (1995). Non-genetic propagation of strain-specific properties of scrapie prion protein. Nature 375: 698–700.PubMedCrossRefGoogle Scholar
  6. Bessen RA, Marsh RF (1992). Biochemical and physical properties of the prion protein from two strains of the transmissible mink encephalopathy agent. J Virol 66: 2096–2101.PubMedGoogle Scholar
  7. Bessen RA, Marsh RF (1994). Distinct PrP properties suggest the molecular basis of strain variation in transmissible mink encephalopathy. J Virol 68: 7859–7868.PubMedGoogle Scholar
  8. Bolton DC, McKinley MP, Prusiner SB (1982). Identification of a protein that purifies with the scrapie prion. Science 218: 1309–1311.PubMedCrossRefGoogle Scholar
  9. Brown DR, Qin K, Herms JW, Madlung A, Manson J, Strome R, et al (1997). The cellular prion protein binds copper in vivo. Nature 390: 684–687.PubMedCrossRefGoogle Scholar
  10. Brown DR, Wong BS, Hafiz F, Clive C, Haswell SJ, Jones IM (1999). Normal prion protein has an activity like that of superoxide dismutase. Biochemical J 344: 1–5.CrossRefGoogle Scholar
  11. Brown P, Cervenakova L, Goldfarb MD, McCombie WR, Rubenstein R, Will RG, et al (1994). Iatrogenic Creutzfeldt-Jakob disease: an example of the interplay between ancient genes and modern medicine. Neurology 44: 291–293.PubMedGoogle Scholar
  12. Bruce M, Chree A, McConnell I, Foster J, Pearson G, Fraser H (1994). Transmission of bovine spongiform encephalopathy and scrapie to mice: strain variation and the species barrier. Philos Trans R Soc Lond [Biol] 343: 405–411.CrossRefGoogle Scholar
  13. Bueler H, Aguzzi A, Sailer A, Greiner RA, Autenried P, Aguet M, et al (1993). Mice devoid of PrP are resistant to scrapie. Cell 73: 1339–1347.PubMedCrossRefGoogle Scholar
  14. Bueler H, Fischer M, Lang Y, Bluethmann H, Lipp H-P, DeArmond SJ, et al (1992). Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature, 356: 577–582.PubMedCrossRefGoogle Scholar
  15. Clavel M, Clavel P (1996). Creutzfeldt-Jakob disease transmitted by dura mater graft. Eur Neurol 36: 239–240.PubMedCrossRefGoogle Scholar
  16. Collinge J (1999). Variant Creutzfeldt-Jakob disease. Lancet 354: 317–323.PubMedCrossRefGoogle Scholar
  17. Collinge J, Brown J, Hardy J, Mullan M, Rossor MN, Baker H, et al (1992). Inherited prion disease with 144 base pair gene insertion: II: Clinical and pathological features. Brain 115: 687–710.PubMedCrossRefGoogle Scholar
  18. Collins SJ, Lewis V, Brazier M, Hill AF, Fletcher A, Masters CL (2002). Quinacrine does not prolong survival in a murine Creutzfeldt-Jakob disease model. Ann Neurol 52: 503–506.PubMedCrossRefGoogle Scholar
  19. Collinge J, Palmer MS, Dryden AJ (1991). Genetic predisposition to Iatrogenic Creutzfeldt-Jakob disease. Lancet 337: 1441–1442.PubMedCrossRefGoogle Scholar
  20. Collinge J, Palmer MS, Sidle KCL, Gowland I, Medori R, Ironside J, et al (1995). Transmission of fatal familial insomnia to laboratory animals. Lancet 346: 569–570.PubMedCrossRefGoogle Scholar
  21. Collinge J, Sidle KCL, Meads J, Ironside J, Hill AF (1996). Molecular analysis of prion strain variation and the aetiology of ‘new variant’ CJD. Nature 383: 685–690.PubMedCrossRefGoogle Scholar
  22. Creutzfeldt HG (1920). Uber eine eigenartige herdfoermige Erkrankung des Zentralnervensystems. Z Gesamte Neurol Psychiatry 57: 1–18.CrossRefGoogle Scholar
  23. Dodelet VC, Cashman NR (1998). Prion protein expression in human leukocyte differentiation. Blood 91: 1556–1561.PubMedGoogle Scholar
  24. Ehlers B, Diringer H (1984). Dextran sulphate 500 delays and prevents mouse scrapie by impairment of agent replication in spleen. J Gen Virol 65: 1325–1330.PubMedCrossRefGoogle Scholar
  25. Farquhar CF, Dickinson AG (1986). Prolongation of scrapie incubation period by an injection of dextran sulphate 500 within the month before or after infection. J Gen Virol 67: 463–473.PubMedCrossRefGoogle Scholar
  26. Fischer M, Rulicke T, Raber A, Sailer A, Oesch B, Brandner S, et al (1996). Prion protein (PrP) with amino terminal deletions restoring susceptibility of PrP knockout mice to scrapie. EMBO J 15: 1255–1264.PubMedGoogle Scholar
  27. Gajdusek DC, Gibbs CJ Jr, Alpers MP (1966). Experimental transmission of a kuru-like syndrome to chimpanzees. Nature 209: 794–796.PubMedCrossRefGoogle Scholar
  28. Gambetti P, Petersen R, Monari L, Tabaton M, Autilio-Gambetti L, Cortelli P, et al (1993). Fatal familial insomnia and the widening spectrum of prion diseases. Br Med Bull 49: 980–994.PubMedGoogle Scholar
  29. Ghani AC (2002). The epidemiology of variant Creutzfeldt-Jakob disease in Europe. Microb Infect 4: 385–393.CrossRefGoogle Scholar
  30. Ghani AC, Ferguson NM, Donnelly CA, Hagenaars TJ, Anderson RM (1999). Epidemiological determinants of the pattern and magnitude of the vCJD epidemic in Great Britain. Proc R Soc Lond B 265: 2443–2452.CrossRefGoogle Scholar
  31. Gibbs CJ Jr, Asher DM, Kobrine A, Amyx HL, Sulima MP, Gajdusek DC (1994). Transmission of Creutzfeldt-Jakob disease to a chimpanzee by electrodes contaminated during neurosurgery. J Neurol Neurosurg Psychiatry 57: 757–758.PubMedCrossRefGoogle Scholar
  32. Gottesdiener KM (1989). Transplanted infections: donor-to-host transmission with the allograft. Ann Intern Med 110: 1001–1016.PubMedGoogle Scholar
  33. Griffith JS (1967). Self Replication and scrapie. Nature 215: 1043–1044.PubMedCrossRefGoogle Scholar
  34. Hill AF, Butterworth RJ, Joiner S, Jackson G, Rossor MN, Thomas DJ, et al (1999). Investigation of variant Creutzfeldt-Jakob disease and other human prion diseases with tonsil biopsy samples. Lancet 353: 183–189.PubMedCrossRefGoogle Scholar
  35. Hill AF, Desbruslais M, Joiner S, Sidle KCL, Gowland I, Collinge J (1997a). The same prion strain causes vCJD and BSE. Nature 389: 448–450.PubMedCrossRefGoogle Scholar
  36. Hill AF, Joiner S, Linehan J, Desbruslais M, Lantos PL, Collinge J (2000). Species barrier independent prion replication in apparently resistant species. Proc Natl Acad Sci USA 97: 10248–10253.PubMedCrossRefGoogle Scholar
  37. Hill AF, Zeidler M, Ironside J, Collinge J (1997b). Diagnosis of new variant Creutzfeldt-Jakob disease by tonsil biopsy. Lancet 349: 99–100.PubMedCrossRefGoogle Scholar
  38. Hilton DA, Ghani AC, Conyers L, Edwards P, McCardle L, Penney M, et al (2002). Accumulation of prion protein in tonsil and appendix: review of tissue samples. BMJ 325: 633–634.PubMedCrossRefGoogle Scholar
  39. Hornshaw MP, McDermott Jr, Candy JM, Lakey JH (1995). Copper binding to the N-terminal tandem repeat region of mammalian and avian prion protein: structural studies using synthetic peptides. Biochem Biophys Res Commun 214: 993–999.PubMedCrossRefGoogle Scholar
  40. Hsiao K, Baker HF, Crow TJ, Poulter M, Owen F, Terwilliger JD, et al (1989). Linkage of a prion protein missense variant to Gerstmann-Straussler syndrome. Nature 338: 342–345.PubMedCrossRefGoogle Scholar
  41. Ingrosso L, Ladogana A, Pocchiari M (1995). Congo red prolongs the incubation period in scrapie-infected hamsters. J Virol 69: 506–508.PubMedGoogle Scholar
  42. Ironside JW, Head MW, Bell JE, McCardle L, Will RG (2000). Laboratory diagnosis of variant Creutzfeldt-Jakob disease. Histopathology 37: 1–9.PubMedCrossRefGoogle Scholar
  43. Jackson GS, Murray I, Hosszu LL, Gibbs N, Waltho JP, Clarke AR, et al (2001). Location and properties of metalbinding sites on the human prion protein. Proc Natl Acad Sci USA 98: 8531–8535.PubMedCrossRefGoogle Scholar
  44. Jakob A (1921). Uber eigenartige Erkrankungen des Zentralnervensystems mit bemerkenswertem anatomischem Befund. Z Gesamte Neurol Psychiatry 64: 147–228.CrossRefGoogle Scholar
  45. Kellings K, Prusiner SB, Riesner D (1994). Nucleic acids in prion preparations: unspecific background or essential component. Philos Trans R Soc Lond [Biol] 343: 425–430.CrossRefGoogle Scholar
  46. Kennedy RH, Hogan N, Brown P, Holland E, Johnson RT, Stark W, et al (2001). Eye banking and screening for Creutzfeldt-Jakob disease. Arch Ophthalmol 119: 721–726.PubMedGoogle Scholar
  47. Kimberlin RH, Walker CA (1979). Pathogenesis of scrapie: agent multiplication in brain at the first and second passage of hamster scrapie in mice. J Gen Virol 42: 107–117.PubMedCrossRefGoogle Scholar
  48. Kimberlin RH, Walker CA (1986). Suppression of scrapie infection in mice by heteropolyanion 23, dextran sulfate, and some other polyanions. Antimicrob Agents Chemother 30: 409–413.PubMedGoogle Scholar
  49. Kretzschmar HA, Neumann M, Stavrou D (1995). Codon 178 mutation of the human prion protein gene in a German family (Backer family): sequencing data from 72-year-old celloidin-embedded brain tissue. Acta Neuropathol (Berl) 89: 96–98.CrossRefGoogle Scholar
  50. Laplanche J-L, Delasnerie-Lauprêtre N, Brandel JP, Chatelain J, Beaudry P, Alpérovitch A, et al (1994). Molecular genetics of prion diseases in France. French Research Group on Epidemiology of Human Spongiform Encephalopathies. Neurology 44: 2347–2351.PubMedGoogle Scholar
  51. Lugaresi E, Medori R, Baruzzi PM, Cortelli P, Lugaresi A, Tinupar P, et al (1986). Fatal familial insomnia and dysautonomia, with selective degeneration of thalamic nuclei. N Engl J Med 315: 997–1003.PubMedCrossRefGoogle Scholar
  52. Mallucci GR, Ratté S, Asante EA, Linehan J, Gowland I, Jefferys JGR, et al (2002). Post-natal knockout of prion protein alters hippocampal CA1 properties, but does not result in neurodegeneration. EMBO J 21: 202–210.PubMedCrossRefGoogle Scholar
  53. Manson JC, Clarke AR, Hooper ML, Aitchison L, McConnell I, Hope J (1994). 129/Ola mice carrying a null mutation in PrP that abolishes mRNA production are developmentally normal. Mol Neurobiol 8: 121–127.PubMedCrossRefGoogle Scholar
  54. Manson J, West JD, Thomson V, McBride P, Kaufman MH, Hope J (1992). The prion protein gene: a role in mouse embryogenesis? Development 115: 117–122.PubMedGoogle Scholar
  55. Mastrianni JA, Iannicola C, Myers RM, DeArmond S, Prusiner SB (1996). Mutation of the prion protein gene at codon 208 in familial Creutzfeldt-Jakob disease. Neurology 47: 1305–1312.PubMedGoogle Scholar
  56. McGowan JP (1922). Scrapie in sheep. Scott J Agric 5: 365–375.Google Scholar
  57. Medori R, Tritschler HJ, LeBlanc A, Villare F, Manetto V, Chen HY, et al (1992a). Fatal familial insomnia, a prion disease with a mutation at codon 178 of the prion protein gene [see comments]. N Engl J Med 326: 444–449.PubMedCrossRefGoogle Scholar
  58. Medori R, Montagna P, Tritschler HJ, LeBlanc A, Cortelli P, Tinupar P, et al (1992b). Fatal familial insomnia: a second kindred with mutation of prion protein gene at codon 178. Neurology 42: 669–670.PubMedGoogle Scholar
  59. Palmer MS, Dryden AJ, Hughes JT, Collinge J (1991). Homozygous prion protein genotype predisposes to sporadic Creutzfeldt-Jakob disease. Nature 352: 340–342.PubMedCrossRefGoogle Scholar
  60. Pattison IH (1965). Experiments with scrapie with special reference to the nature of the agent and the pathology of the disease. In: Slow latent and temperate virus infections, NINDB Monograph 2. Gajdusek CJ, Gibbs CJ, Alpers MP (eds). Washington DC: US Government Printing, p. 249–257.Google Scholar
  61. Prusiner SB, Bolton DC, Groth DF, Bowman K, Cochran SP, McKinley MP (1982). Further purification and characterization of scrapie prions. Biochemistry 21: 6942–6950.PubMedCrossRefGoogle Scholar
  62. Prusiner SB (1982). Novel proteinaceous infectious particles cause scrapie. Science 216: 136–144.PubMedCrossRefGoogle Scholar
  63. Prusiner SB et al; Rubin E et al; Stanton BR et al (1990). D 216. Transgenic mice expressing hamster prion protein produce species-specific scrapie infectivity and amyloid plaques. D 217. Production of human hemoglobin S antilles in transgenic mice. D 218. Analysis of murine Nmyc function by in situ hydridization and homologous recombination. J Cellular Biochem UCLA Symposium Suppl 14A: 363.Google Scholar
  64. Rappaport EB, Graham DJ (1987). Pituitary growth hormone from human cadavers: neurologic disease in ten recipients. Neurology 37: 1211–1213.PubMedGoogle Scholar
  65. Salvatore M, Genuardi M, Petraroli R, Masullo C, D’Alessandro M, Pocchiari M (1994). Polymorphisms of the prion protein gene in Italian patients with Creutzfeldt-Jakob disease. Hum Genet 94: 375–379.PubMedCrossRefGoogle Scholar
  66. Scott M, Foster D, Mirenda C, Serban D, Coufal F, Wälchli M, et al (1989). Transgenic mice expressing hamster prion protein produce species-specific scrapie infectivity and amyloid plaques. Cell 59: 847–857.PubMedCrossRefGoogle Scholar
  67. Shyng S-L, Heuser JE, Harris DA (1994). A glycolipid-anchored prion protein is endocytosed via clathrin-coated pits. J Cell Biol 125: 1239–1250.PubMedCrossRefGoogle Scholar
  68. Soto C, Kascsack RJ, Saborío GP, Aucouturier P, Wisniewski T, Prelli F, et al (2000). Reversion of prion protein conformational changes by synthetic beta-sheet breaker peptides. Lancet 355: 192–197.PubMedCrossRefGoogle Scholar
  69. Stockel J, Safar J, Wallace AC, Cohen FE, Prusiner SB (1998). Prion protein selectively binds copper(II) ions. Biochemistry 37, 7185–7193.PubMedCrossRefGoogle Scholar
  70. Tagliavini F, McArthur RA, Canciani B, Giaccone G, Porro M, Bugiani M, et al (1997). Effectiveness of anthracy-cline against experimental prion disease in syrian hamsters. Science 276: 1119–1122.PubMedCrossRefGoogle Scholar
  71. Tateishi J, Brown P, Kitamoto T, Hoque ZM, Roos R, Wollman R, et al (1995). First experimental transmission of fatal familial insomnia. Nature 376: 434–435.PubMedCrossRefGoogle Scholar
  72. Wadsworth JDF, Hill AF, Joiner S, Jackson GS, Clarke AR, Collinge J (1999). Strain-specific prion-protein conformation determined by metal ions. Nat Cell Biol 1: 55–59.PubMedCrossRefGoogle Scholar
  73. Wadsworth JDF, Joiner S, Hill AF, Campbell TA, Desbruslais M, Luthert PJ, et al (2001). Tissue distribution of protease resistant prion protein in variant CJD using a highly sensitive immuno-blotting assay. Lancet 358: 171–180.PubMedCrossRefGoogle Scholar
  74. Weissmann C (1991). A ‘unified theory’ of prion propagation. Nature 352: 679–683.PubMedCrossRefGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2003

Authors and Affiliations

  • Edward McKintosh
    • 1
  • Sarah J. Tabrizi
    • 1
  • John Collinge
    • 1
    • 2
  1. 1.Department of Neurodegenerative Disease/MRC Prion Unit, Institute of NeurologyUniversity College LondonLondonUK
  2. 2.MRC Prion UnitImperial College of Medicine at St. Mary’sLondonUSA

Personalised recommendations