Journal of NeuroVirology

, Volume 9, Issue 2, pp 222–227 | Cite as

Pathogenesis of human immunodeficiency virus-induced neurological disease

  • Andrew V. Albright
  • Samantha S. Soldan
  • Francisco González-Scarano
Article

Abstract

Infection of the central nervous system by the type 1 human immunodeficiency virus (HIV-1) commonly results in a number of neurological impairments known, in their most severe form, as HIV-associated dementia (HAD). The persistence of HIV encephalitis (HIVE), the pathological correlate of HAD, in spite of highly active antiretroviral therapy (HAART) underscores the importance of continued research focused on the neurobiology of HIV. To elucidate direct and indirect mechanisms of HIV neuropathogenesis, current investigation is focused on neuroinvasion, HIV-1-mediated mechanisms of neuronal damage and apoptosis, and compartmentalized evolution of virus in the brain. The aim of this review is to provide a selective overview of the most recent research on the neurobiology of HIV, adding only a brief introduction regarding established principles.

Keywords

HIV neuropathogenesis entry 

References

  1. Adamson DC, Kopnisky KL, Dawson TM, Dawson VL (1999). Mechanisms and structural determinants of HIV-1 coat protein. Gp41 induced neurotoxicity. J Neurosci 19: 64–71.PubMedGoogle Scholar
  2. Ahlquist P (2002). RNA-dependent RNA polymerases, viruses and RNA silencing. Science 296: 1270–1273.PubMedCrossRefGoogle Scholar
  3. Bagasra O, Lavi E, Bobroski L, Khalili K, Pestaner JP, Tawadros R, Pomerantz RJ (1996). Cellular reservoirs of HIV-1 in the central nervous system of infected individuals: identification by the combination of in situ polymerase chain reaction and immunohistochemistry. AIDS 10: 573–585.PubMedCrossRefGoogle Scholar
  4. Bezzi P, Domercq M, Brambilla L, Galli R, Schols D, De Clercq E, Vescovi A, Bagetta G, Kollias G, Meldolesi J, Volterra A (2001). CXCR4-activated astrocyte glutamate release via TNF alpha: amplification by microglia triggers neurotoxicity. Nat Neurosci 4: 676–678.CrossRefGoogle Scholar
  5. Bragg DC, Childers TA, Tompkins MB, Tompkins W, Meeker RB (2002). Infection of the choroids plexus by feline immunodeficiency virus. J NeuroVirol 8: 211–224.PubMedCrossRefGoogle Scholar
  6. Chen W, Sulcove J, Frank I, Jaffer S, Ozdener H, Kolson DL (2002). Development of a human neuronal cell model for human immunodeficiency virus (HIV)-infected macrophage-induced neurotoxicity: apoptosis induced by HIV type 1 primary isolates and evidence for involvement of the Bcl-2/Bcl-xL-sensitive intrinsic apoptosis pathway. J Virol 76: 9407–9419.PubMedCrossRefGoogle Scholar
  7. Edinger AL, Blanpain C, Kunstman KJ, Wolinsky SM, Parmentier M, Doms RW (1999). Functional dissection of CCR5 coreceptor function through the use of CD4-independent simian immunodeficiency virus strains. J Virol 73: 62–73.Google Scholar
  8. Gendelman HE, Lipton SA, Tardiru M, Bukrinsky MI, Nottet HSLM (1994). The neuropathogenesis of HIV-1 infection. J Leukoc Biol 56: 389–398.PubMedGoogle Scholar
  9. Georgsson G (1994). Neuropathologic aspects of lentiviral infections. Ann N Y Acad Sci 724: 50–67.PubMedCrossRefGoogle Scholar
  10. Gorry PR, Taylor J, Holm GH, Mehle A, Morgan T, Cayabyab M, Farzan M, Wang H, Bell JE, Kunstmann K, Moore JP, Wolinsky SM, Gabuzda D (2002). Increased CCR5 affinity and reduced CCR5/CD4 dependence of a neurovirulent primary human immunodeficiency virus type 1 isolate. J Virol 76: 6277–6292.PubMedCrossRefGoogle Scholar
  11. Gray F, Lescs M, Keihane C, Paraire F, Marc B, Durigon M, Gherardi R (1992). Early brain changes in HIV infecton: neuropathological study of 11 HIV seropositive non-AIDS cases. J Neuropathol Exp Neurol 51: 177–185.PubMedCrossRefGoogle Scholar
  12. Harouse JM, Wroblewska Z, Laughlin MA, Hickey WF, Schonwetter BS, González-Scarano F (1989). Human choroid plexus cells can be latently infected with human immunodeficiency virus. Ann Neurol 25: 406–411.PubMedCrossRefGoogle Scholar
  13. Johnston JB, Zhang K, Silva C, Shalinsky DR, Conant K, Ni W, Corbett D, Young VW, Power C (2001). HIV-1 Tat neurotoxicity is prevented by matrix metalloproteinase inhibitors. Ann Neurol 49: 230–241.PubMedCrossRefGoogle Scholar
  14. Kanmogne GD, Kennedy RC, Gramas P (2002). HIV-1 gp120 proteins and gp160 peptides are toxic to brain endothelial cells and neurons: possible pathway for HIV entry into the brain and HIV-associated dementia. J Neuropathol Exp Neurol 61: 992–1000.PubMedGoogle Scholar
  15. Kaul M, Lipton SA (1999). Chemokines and activated macrophages in HIV gp120-induced neuronal apoptosis. Proc Natl Acad Sci U S A 96: 8212–8216.PubMedCrossRefGoogle Scholar
  16. Kelder W, McArthur JC, Nance-Sproson T, McClernon D, Griffin DE (1998). β-Chemokines MCP-1 and RANTES are selectively increased in cerebrospinal fluid of patients with human immunodeficiency virus-associated dementia. Ann Neurol 44: 831–835.PubMedCrossRefGoogle Scholar
  17. Kennedy DW, Abkowitz JL (1997). Kinetics of central nervous system microglial and macrophage engraftment: analysis using a transgenic bone marrow transplantation model. Blood 90: 986–993.PubMedGoogle Scholar
  18. Koenig S, Gendelman HE, Orenstein JM, Dal Canto MC, Pezeshkpour GH, Yungbluth M, Janotta F, Aksamit A, Martin MA, Fauci AS (1986). Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy. Science 233: 1089–1093.PubMedCrossRefGoogle Scholar
  19. Kolchinsky P, Kiprilov E, Bartley P, Rubinstein R, Sodroski J (2001). Loss of a single N-linked glycan allows CD4-independent human immunodeficiency virus type 1 infection by altering the position of the gp120 V1/V2 variable loops. J Virol 75: 3435–3443.PubMedCrossRefGoogle Scholar
  20. Kwong PD, Doyle ML, Casper DJ, Cicala C, Leavitt SA, Majeed S, Steenbeke TD, Venturi M, Chaiken I, Fung M, Katinger H, Parren PWIH, Robinson J, Van Ryk D, Wang L, Burton DR, Freire E, Wyatt R, Sodroski J, Hendrickson WA, Arthos J (2002). HIV-1 evades antibody-mediated neutralization through conformational masking of receptor-binding sites. Nature 420: 678–682.PubMedCrossRefGoogle Scholar
  21. Liu NQ, Lossinsky AS, Popik W, Li X, Gujuluva C, Kriederman B, Roberts J, Pushkarsky T, Bukrinsky M, Witte M, Weinand M, Fiala M (2002). Human immunodeficiency virus type 1 enters brain microvascular endothelia by macropinocytosis dependent on lipid rafts and the mitogen-activated protein kinase signaling pathway. J Virol 76: 6689–6700.PubMedCrossRefGoogle Scholar
  22. Liu Y, Tang XP, McArthur JC, Scott J, Gartner S (2000). Analysis of human immunodeficiency virus type 1 gp160 sequences from a patient with HIV dementia: evidence for monocyte trafficking into brain. J NeuroVirol 6: S70-S81.PubMedGoogle Scholar
  23. Martín J, LaBranche CC, González-Scarano F (2001). Differential CD4/CCR5 utilization, gp120 conformation and neutralization sensitivity between envelopes from a microglia-adapted human immunodeficiency virus type 1 and its parental isolate. J Virol 75: 3568–3580.PubMedCrossRefGoogle Scholar
  24. Maschke M, Kastrup O, Esser S, Ross B, Hengge U, Hufnagel A (2000). Incidence and prevalence of neurological disorders associated with HIV since the introduction of highly active anti-retroviral therapy (HAART). J Neurol Neurosurg Psychiatry 69: 257–260.CrossRefGoogle Scholar
  25. Masliah E, DeTeresa RM, Mallory ME, Hansen LA (2000). Changes in pathological findings at autopsy in AIDS cases for the last 5 years. AIDS 14: 69–74.PubMedCrossRefGoogle Scholar
  26. Massari FE, Poli G, Schnitman SM, Psallidopoulous MC, Darvey V, Fauci AS (1990). In vivo T lymphocyte origin of macrophage-tropic strains of HIV. Role of monocytes during in vitro isolation and in vivo infection. J Immunol 144: 4628–4632.PubMedGoogle Scholar
  27. Mayhan WG (2002). Cellular mechanisms by which tumor necrosis factor-alpha produces disruption of the blood-brain barrier. Brain Res 927: 144–152.PubMedCrossRefGoogle Scholar
  28. Mayne M, Holden CP, Nath A, Geiger JD (2000). Release of calcium from inositol 1,4,5-triphosphate receptor-regulated stores by HIV-1 Tat regulates TNF-alpha production in human macrophages. J Immunol 164: 6538–6542.PubMedGoogle Scholar
  29. McArthur JC, Hoover DR, Bacellar H, et al (1993). Dementia in AIDS patients: incidence and risk factors. Neurology 43: 2245–2251.PubMedGoogle Scholar
  30. McManus CM, Weidenheim K, Woodman SE, Nunez J, Hesselgesser J, Nath A, Berman JW (2000). Chemokine and chemokine-receptor expression in human glial elements: induction by the HIV protein Tat, and chemokine autoregulation. Am J Pathol 156: 1441–1453.PubMedCrossRefGoogle Scholar
  31. Miller G (2002). Breaking down barriers. Science 297: 1116–1118.PubMedCrossRefGoogle Scholar
  32. Mukhtar M, Harley S, Chen P, BouHamdan M, Patel C, Acheampong E, Pomerantz R (2002). Primary isolated human brain microvascular endothelial cells express diverse HIV/SIV-associated chemokine coreceptors and DC-SIGN and L-SIGN. Virology 297: 78–88.PubMedCrossRefGoogle Scholar
  33. Nath A (1999). Pathobiology of human immunodeficiency virus dementia. Semin Neurol 19: 113–127.PubMedCrossRefGoogle Scholar
  34. Patel CA, Mukhtar M, Harley S, Kulkosky J, Pomerantz RJ (2002). Lentiviral expression of HIV-1 Vpr induces apoptosis in human neurons. J NeuroVirol 8: 86–99.PubMedCrossRefGoogle Scholar
  35. Petito CK, Chen H, Mastri AR, Torres-Munoz J, Roberts B, Wood C (1999). HIV infection of choroid plexus in AIDS and asymptomatic HIV-infected patients suggests that the choroid plexus may be a reservoir of productive infection. J NeuroVirol 5: 670–677.PubMedCrossRefGoogle Scholar
  36. Powderly WG (2000). Current approaches to treatment for HIV-1 infection. J NeuroVirol 6(suppl 1): S8-S13.PubMedGoogle Scholar
  37. Prendergast MA, Rogers DT, Mulholland PJ, Littleton JM, Wilkins LJ Jr, Self RL, Nath A (2002). Neurotoxic effects of the human immunodeficiency virust type-1 transcription factor Tat require function of a polyamine sensitivesite on the N-methyl-D-aspartate receptor. Brain Res 954: 300–307.PubMedCrossRefGoogle Scholar
  38. Puffer BA, Pohlmann S, Edinger AL, Carlin D, Sanchez MD, Reitter J, Watry DD, Fox HS, Desrosiers RC, Doms RW (2002). CD4 independence of simian immunodeficiency virus Envs is associated with macrophage tropism, neutralization sensitivity, and attenuated pathogenicity. J Virol 76: 2595–2605.PubMedCrossRefGoogle Scholar
  39. Romero IAM, Prevost MC, Perret E, Adamson P, Greenwood J, Couraud PO, Ozden S (2000). Interactions between brain endothelial cells and human T-cell leukemia virus type 1-infected lymphocytes: mechanisms of viral entry into the central nervous system. J Virol 74: 6021–6030.PubMedCrossRefGoogle Scholar
  40. Ryzhova EV, Crino P, Shawver L, Westmoreland SV, Lackner AA, González-Scarano F (2002). Simian immunodeficiency virus encephalitis: analysis of envelope sequences from individual brain multinucleated giant cells and tissue samples. Virology 297: 57–67.PubMedCrossRefGoogle Scholar
  41. Sacktor N, McDermott MP, Marder K, Schifitto G, Selnes OA, McArthur JC, Stern Y, Albert S, Palumbo D, Kieburtz K, De Marcaida JA, Cohen B, Epstein L (2002). HIV-associated cognitive impairment before and after the advent of combination therapy. J NeuroVirol 8: 136–142.PubMedCrossRefGoogle Scholar
  42. Sinclair E, Gray F, Ciardi A, Scaravilli F (1994). Immunohistochemical changes and PCR detection of HIV provirus DNA in brains of asymptomatic HIV positive patients. J Neuropath Exp Neurol 53: 43–50.PubMedCrossRefGoogle Scholar
  43. Smith DG, Guillemin GJ, Pemberton L, Kerr S, Nath A, Smythe GA, Brew BJ (2001). Quinolinic acid is produced by macrophages stimulated by platelet activating factor, Nef, and Tat. J NeuroVirol 7: 56–60.PubMedCrossRefGoogle Scholar
  44. Strizki JM, Albright AV, Sheng H, O’Connor M, Perrin L, González-Scarano F (1996). Infection of primary human microglia and monocyte-derived macrophages with human immunodeficiency virus type 1 isolates: evidence of differential tropism. J Virol 70: 7654–7662.PubMedGoogle Scholar
  45. Thomas SA, Bye A, Segal MB (2001). Transport characteristics of the anti-human immunodeficiency virus nucleo-side analog, abacavir, into brain and cerebrospinal fluid. J Pharm Exp Therapeu 298: 947–953.Google Scholar
  46. Wiley CA, Schrier RD, Nelson JA, Lamper PW, Oldstone MBA (1986). Cellular localization of human immunod-eficiency virus infection within the brains of acquired immune deficiency syndrome patients. Proc Natl Acad Sci U S A 83: 7089–7093.PubMedCrossRefGoogle Scholar
  47. Williams KC, Corey S, Westmoreland SV, Pauley D, Knight H, deBakker C, Alvarez X, Lackner AA (2001). Perivascular macrophages are the primary cell type productively infected by simian immunodeficiency virus in the brains of macaques: implications for the neuropathogenesis of AIDS. J Exp Med 193: 905–915.PubMedCrossRefGoogle Scholar
  48. Williams KC, Hickey WF (2002). Central nervous system damage, monocytes and macrophages, and neurological disorders in AIDS. Annu Rev Neurosci 25: 537–562.PubMedCrossRefGoogle Scholar
  49. Wong JK, Ignacio CC, Torriani F, Havlir D, Fitch NJ, Richman DD (1997). In vivo compartmentalization of human immunodeficiency virus: evidence from the examination of pol sequences from autopsy tissues. J Virol 71: 2059–2071.PubMedGoogle Scholar
  50. Zhang PF, Bouma P, Park EJ, Margolick JB, Robinson JE, Zolla-Pazner S, Flora MN, Quinnan GV Jr (2002). A variable region 3 (V3) mutation determines a global neutralization phenotype and CD4-independent infectivity of a human immunodeficiency virus type 1 envelope associated with a broadly cross-reactive, primary virusneutralizing antibody response. Virol 76: 644–655.CrossRefGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2003

Authors and Affiliations

  • Andrew V. Albright
    • 1
  • Samantha S. Soldan
    • 1
  • Francisco González-Scarano
    • 1
  1. 1.Department of NeurologyHospital of the University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations