Journal of NeuroVirology

, Volume 7, Issue 6, pp 542–547

Increased blood-brain barrier permeability in neuro-asymptomatic HIV-1-infected individuals—correlation with cerebrospinal fluid HIV-1 RNA and neopterin levels

  • L. M. Andersson
  • L. Hagberg
  • D. Fuchs
  • B. Svennerholm
  • M. Gisslén


The objective of this study was to assess the frequency of blood-brain barrier (BBB) impairment, as measured by the albumin ratio, in neuro-asymptomatic HIV-1-infected individuals without antiretroviral treatment and the correlation between BBB disruption and intrathecal immune activation and HIV-1 RNA levels. Serum and cerebrospinal fluid (CSF) albumin, neopterin, and HIV-1 RNA levels were analysed in 110 neuro-asymptomatic HIV-1-infected individuals at different stages of disease; 63 classified as CDC A, 25 as CDC B, and 22 as CDC C. Increased BBB permeability was found in 17 of 110 (15%) of HIV-1-infected individuals. This proportion was sustained throughout the CDC stages. The albumin ratio was correlated with the CSF neopterin levels (rs = 0.36, P < 0.001), the serum neopterin levels (rs = 0.37, P < 0.001), and the CSF HIV-1 RNA levels (rs = 0.26, P < 0.01), but not with the plasma HIV-1 RNA levels. The correlations between the albumin ratio and the CSF and serum neopterin concentrations and the CSF HIV-1 RNA levels indicate that immune activation and, possibly, intrathecal HIV-1 virus replication are important factors associated with increased BBB permeability in HIV-1 infection.


HIV-1 cerebrospinal fluid neopterin HIV-1 RNA blood-brain barrier albumin ratio 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. An SF, Groves M, Giometto B, Beckett AA, Scaravilli F (1999). Detection and localisation of HIV-1 DNA and RNA in fixed adult AIDS brain by polymerase chain reaction/in situ hybridisation technique. Acta Neuropathol (Berl) 98: 481–487.CrossRefGoogle Scholar
  2. Andersson L, Blennow K, Fuchs D, Svennerholm B, Gisslen M (1999). Increased cerebrospinal fluid protein tau concentration in neuro-AIDS. J Neurol Sci 171: 92–96.CrossRefPubMedGoogle Scholar
  3. Andersson LM, Fredman P, Lekman A, Rosengren L, Gisslen M (1998). Increased cerebrospinal fluid ganglioside GD3 concentrations as a marker of microglial activation in HIV type 1 infection. AIDS Res Hum Retroviruses 14: 1065–1069.CrossRefPubMedGoogle Scholar
  4. Blennow K, Fredman P, Wallin A, Gottfries CG, Karlsson I, Langstrom G, Skoog I, Svennerholm L, Wikkelso C (1993). Protein analysis in cerebrospinal fluid. II. Reference values derived from healthy individuals 18–88 years of age. Eur Neurol 33: 129–133.CrossRefPubMedGoogle Scholar
  5. Boven LA, Middel J, Verhoef J, De Groot CJ, Nottet HS (2000). Monocyte infiltration is highly associated with loss of the tight junction protein zonula occludens in HIV-1-associated dementia. Neuropathol Appl Neurobiol 26: 356–360.CrossRefPubMedGoogle Scholar
  6. Brew BJ, Dunbar N, Pemberton L, Kaldor J (1996). Predictive markers of AIDS dementia complex: CD4 cell count and cerebrospinal fluid concentrations of beta 2-microglobulin and neopterin. J Infect Dis 174: 294–298.PubMedGoogle Scholar
  7. Brew BJ, Bhalla RB, Paul M, Gallardo H, McArthur JC, Schwartz MK, Price RW (1990). Cerebrospinal fluid neopterin in human immunodeficiency virus type 1 infection. Ann Neurol 28: 556–560.CrossRefPubMedGoogle Scholar
  8. Budka H (1991). Neuropathology of human immunodeficiency virus infection. Brain Pathol 1: 163–175.CrossRefPubMedGoogle Scholar
  9. Chiodi F, Sonnerborg A, Albert J, Gaines H, Norkrans G, Hagberg L, Asjo B, Strannegard O, Fenyo EM (1988). Human immunodeficiency virus infection of the brain. I. Virus isolation and detection of HIV specific antibodies in the cerebrospinal fluid of patients with varying clinical conditions. J Neurol Sci 85: 245–257.CrossRefPubMedGoogle Scholar
  10. Coombs RW, Henrard DR, Mehaffey WF, Gibson J, Eggert E, Quinn TC, Phillips J (1993). Cell-free plasma human immunodeficiency virus type 1 titer assessed by culture and immunocapture-reverse transcription-polymerase chain reaction. J Clin Microbiol 31: 1980–1986.PubMedGoogle Scholar
  11. Dallasta LM, Pisarov LA, Esplen JE, Werley JV, Moses AV, Nelson JA, Achim CL (1999). Blood-brain barrier tight junction disruption in human immunodeficiency virus-1 encephalitis. Am J Pathol 155: 1915–1927.PubMedGoogle Scholar
  12. Davis LE, Hjelle BL, Miller VE, Palmer DL, Llewellyn AL, Merlin TL, Young SA, Mills RG, Wachsman W, Wiley CA (1992). Early viral brain invasion in iatrogenic human immunodeficiency virus infection. Neurology 42: 1736–1739.PubMedGoogle Scholar
  13. Foudraine NA, Hoetelmans RM, Lange JM, de Wolf F, van Benthem BH, Maas JJ, Keet IP, Portegies P (1998). Cerebrospinal-fluid HIV-1 RNA and drug concentrations after treatment with lamivudine plus zidovudine or stavudine. Lancet 351: 1547–1551.CrossRefPubMedGoogle Scholar
  14. Fuchs D, Chiodi F, Albert J, Asjo B, Hagberg L, Hausen A, Norkrans G, Reibnegger G, Werner ER, Wachter H (1989). Neopterin concentrations in cerebrospinal fluid and serum of individuals infected with HIV-1. AIDS 3: 285–288.CrossRefPubMedGoogle Scholar
  15. Furukawa Y, Nishi K, Kondo T, Tanabe K, Mizuno Y (1992). Significance of CSF total neopterin and biopterin in inflammatory neurological diseases. J Neurol Sci 111: 65–72.CrossRefPubMedGoogle Scholar
  16. Gisslen M, Fuchs D, Svennerholm B, Hagberg L (1999). Cerebrospinal fluid viral load, intrathecal immunoactivation, and cerebrospinal fluid monocytic cell count in HIV-1 infection. J Acquir Immune Defic Syndr 21: 271–276.PubMedGoogle Scholar
  17. Hagberg L, Dotevall L, Norkrans G, Larsson M, Wachter H, Fuchs D (1993). Cerebrospinal fluid neopterin concentrations in central nervous system infection. J Infect Dis 168: 1285–1288.PubMedGoogle Scholar
  18. Katzenstein TL, Pedersen C, Nielsen C, Lundgren JD, Jakobsen PH, Gerstoft J (1996). Longitudinal serum HIV RNA quantification: correlation to viral phenotype at seroconversion and clinical outcome. AIDS 10: 167–173.CrossRefPubMedGoogle Scholar
  19. Kure K, Llena JF, Lyman WD, Soeiro R, Weidenheim KM, Hirano A, Dickson DW (1991). Human immunodeficiency virus-1 infection of the nervous system: an autopsy study of 268 adult, pediatric, and fetal brains. Hum Pathol 22: 700–710.CrossRefPubMedGoogle Scholar
  20. Marshall DW, Brey RL, Butzin CA, Lucey DR, Abbadessa SM, Boswell RN (1991). CSF changes in a longitudinal study of 124 neurologically normal HIV-1-infected U.S. Air Force personnel. J Acquir Immune Defic Syndr 4: 777–781.PubMedGoogle Scholar
  21. Marshall DW, Brey RL, Cahill WT, Houk RW, Zajac RA, Boswell RN (1988). Spectrum of cerebrospinal fluid findings in various stages of human immunodeficiency virus infection. Arch Neurol 45: 954–958.PubMedGoogle Scholar
  22. Martin C, Albert J, Hansson P, Pehrsson P, Link H, Sonnerborg A (1998). Cerebrospinal fluid mononuclear cell counts influence CSF HIV-1 RNA levels. J Acquir Immune Defic Syndr Hum Retrovirol 17: 214–219.PubMedGoogle Scholar
  23. McArthur JC, McClernon DR, Cronin MF, Nance-Sproson TE, Saah AJ, St Clair M, Lanier ER (1997). Relationship between human immunodeficiency virus-associated dementia and viral load in cerebrospinal fluid and brain. Ann Neurol 42: 689–698.CrossRefPubMedGoogle Scholar
  24. McArthur JC, Nance-Sproson TE, Griffin DE, Hoover D, Scines OA, Miller EN, Margolick JB, Cohen BA, Farzadegan H, Saah A (1992). The diagnostic utility of elevation in cerebrospinal fluid beta 2-microglobulin in HIV-1 dementia. Multicenter AIDS Cohort Study. Neurology 42: 1707–1712.PubMedGoogle Scholar
  25. MMWR (1992). 1993 revised classification system for HIV infection and expanded surveillance case definition for AIDS among adolescents and adults. MMWR Morb Mortal Wkly Rep 41: 1–19.Google Scholar
  26. Navia BA, Cho ES, Petito CK, Price RW (1986). The AIDS dementia complex: II. Neuropathology. Ann Neurol 19: 525–535.CrossRefPubMedGoogle Scholar
  27. Persidsky Y, Zheng J, Miller D, Gendelman HE (2000). Mononuclear phagocytes mediate blood-brain barrier compromise and neuronal injury during HIV-1-associated dementia. J Leukoc Biol 68: 413–422.PubMedGoogle Scholar
  28. Petito CK, Cash KS (1992). Blood-brain barrier abnormalities in the acquired immunodeficiency syndrome: immunohistochemical localization of serum proteins in postmortem brain. Ann Neurol 32: 658–666.CrossRefPubMedGoogle Scholar
  29. Power C, Kong PA, Crawford TO, Wesselingh S, Glass JD, McArthur JC, Trapp BD (1993). Cerebral white matter changes in acquired immunodeficiency syndrome dementia: alterations of the blood-brain barrier. Ann Neurol 34: 339–350.CrossRefPubMedGoogle Scholar
  30. Schacker T, Collier AC, Hughes J, Shea T, Corey L (1996). Clinical and epidemiologic features of primary HIV infection. Ann Intern Med 125: 257–264.PubMedGoogle Scholar
  31. Sebire K, McGavin K, Land S, Middleton T, Birch C (1998). Stability of human immunodeficiency virus RNA in blood specimens as measured by a commercial PCR-based assay. J Clin Microbiol 36: 493–498.PubMedGoogle Scholar
  32. Sonnerborg AB, von Stedingk LV, Hansson LO, Strannegard OO (1989). Elevated neopterin and beta 2-microglobulin levels in blood and cerebrospinal fluid occur early in HIV-1 infection. AIDS 3: 277–283.CrossRefPubMedGoogle Scholar
  33. Takahashi K, Wesselingh SL, Griffin DE, McArthur JC, Johnson RT, Glass JD (1996). Localization of HIV-1 in human brain using polymerase chain reaction/in situ hybridization and immunocytochemistry. Ann Neurol 39: 705–711.CrossRefPubMedGoogle Scholar
  34. Tibbling G, Link H, Ohman S (1977). Principles of albumin and IgG analyses in neurological disorders. I. Establishment of reference values. Scand J Clin Lab Invest 37: 385–390.PubMedGoogle Scholar
  35. Trujillo JR, Garcia-Ramos G, Novak IS, Rivera VM, Huerta E, Essex M (1995). Neurologic manifestations of AIDS: a comparative study of two populations from Mexico and the United States. J Acquir Immune Defic Syndr Hum Retrovirol 8: 23–29.PubMedGoogle Scholar
  36. Wiley CA, Achim C (1994). Human immunodeficiency virus encephalitis is the pathological correlate of dementia in acquired immunodeficiency syndrome. Ann Neurol 36: 673–676.CrossRefPubMedGoogle Scholar
  37. Wiley CA, Masliah E, Morey M, Lemere C, DeTeresa R, Grafe M, Hansen L, Terry R (1991). Neocortical damage during HIV infection. Ann Neurol 29: 651–657.CrossRefPubMedGoogle Scholar
  38. Wiley CA, Schrier RD, Nelson JA, Lampert PW, Oldstone MB (1986). Cellular localization of human immunodeficiency virus infection within the brains of acquired immune deficiency syndrome patients. Proc Natl Acad Sci USA 83: 7089–7093.CrossRefPubMedGoogle Scholar

Copyright information

© Taylor & Francis 2001

Authors and Affiliations

  • L. M. Andersson
    • 1
  • L. Hagberg
    • 1
  • D. Fuchs
    • 3
  • B. Svennerholm
    • 2
  • M. Gisslén
    • 1
  1. 1.Institute of Internal Medicine, Department of Infectious DiseasesSahlgrenska University HospitalGöteborgSweden
  2. 2.Department of Clinical VirologyGöteborg University, Sahlgrenska University HospitalGöteborgSweden
  3. 3.Institute of Medical Chemistry and Biochemistry, and Ludwig-Boltzman-Institute for AIDS ResearchUniversity of InnsbruckInnsbruckAustria

Personalised recommendations