Journal of NeuroVirology

, Volume 7, Issue 6, pp 528–541 | Cite as

CNS invasion by CD14+/CD16+ peripheral blood-derived monocytes in HIV dementia: perivascular accumulation and reservoir of HIV infection

  • Tracy Fischer-Smith
  • Sidney Croul
  • Andrij E. Sverstiuk
  • Christelle Capini
  • Darryl L’Heureux
  • Emmanuel G. Régulier
  • Max W. Richardson
  • Shohreh Amini
  • Susan Morgello
  • Kamel Khalili
  • Jay Rappaport


Increases in circulating CD14+/CD16+ monocytes have been associated with HIV dementia; trafficking of these cells into the CNS has been proposed to play an important role in the pathogenesis of HIV-induced neurological disorders. This model suggests that events outside the CNS leading to monocyte activation initiate the process leading to HIV dementia. To investigate the role of this activated monocyte subset in the pathogenesis of HIV dementia, we examined brain specimens from patients with HIV encephalopathy (HIVE), HIV without encephalopathy, and seronegative controls. An accumulation of perivascular macrophages was observed in HIVE. The majority of these cells identified in microglial nodules and in the perivascular infiltrate were CD14+/CD16+. P24 antigen colocalized with both CD14 and CD16 suggesting that the CD14+/CD16+ macrophage is a major reservoir of HFV-1 infection in CNS. Using CD45/LCA staining, the perivascular macrophage was distinguished from resident microglia. In addition to perivascular and nodular localizations, CD16 also stained ramified cells throughout the white matter. These cells were more ramified and abundant than cells positive for CD14 in white matter. Double staining for p24 and CD16 suggests that these cells were often infected with HIV-1. The prominent distribution of CD14+ cells in HIVE prompted our analysis of soluble CD14 levels in cerebrospinal fluid. Higher levels of soluble CD14 (sCD14) were observed in patients with moderate-to-severe HIV dementia, suggesting the utility of sCD14 as a surrogate marker. CD14+/CD16+ monocytes may play a role in other neurological disorders and sCDl4 may be useful for evaluating these conditions.


HIV CNS dementia microglial modules monocytes 



central nervous system


human immunodeficiency virus associated encephalopathy


mononuclear phagocyte


simian immunodeficiency virus


leukocyte common antigen


cerebrospinal fluid


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aylward EH, Brettschneider PD, McArthur JC, Harris GJ, Schlaepfer TE, Henderer JD, Barta PE, Tien AY, Pearlson GD (1995). Magnetic resonance imaging measurement of gray matter volume reductions in HIV dementia. Am J Psychiatry 152: 987–994.PubMedGoogle Scholar
  2. Aylward EH, Henderer JD, McArthur JC, Brettschneider PD, Harris GJ, Barta PE, Pearlson GD (1993). Reduced basal ganglia volume in HIV-1-associated dementia: results from quantitative neuroimaging. Neurology 43: 2099–2104.PubMedGoogle Scholar
  3. Becher B, Antel JP (1996). Comparison of phenotypic and functional properties of immediately ex vivo and cultured human adult microglia. Glia 18: 1–10.CrossRefPubMedGoogle Scholar
  4. Bell JE, Busuttil A, Ironside JW, Rebus S, Donaldson YK, Simmonds P, Peutherer JF (1993). Human immunodeficiency virus and the brain: investigation of virus load and neuropathologic changes in pre-AIDS subjects. J Infect Dis 168: 818–824.PubMedGoogle Scholar
  5. Bonwetsch R, Croul S, Richardson MW, Lorenzana C, Valle LD, Sverstiuk AE, Amini S, Morgello S, Khalili K, Rappaport J (1999). Role of HIV-1 Tat and CC chemokine MIP-1 alpha in the pathogenesis of HIV associated central nervous system disorders. J NeuroVirol 5: 685–694.CrossRefPubMedGoogle Scholar
  6. Brodt HR, Kamps BS, Gute P, Knupp B, Staszewski S, Helm EB (1997). Changing incidence of AIDS-defining illnesses in the era of antiretroviral combination therapy. AIDS 11: 1731–1738.CrossRefPubMedGoogle Scholar
  7. Budka H, Costanzi G, Cristina S, Lechi A, Parravicini C, Trabattoni R, Vago L (1987). Brain pathology induced by infection with the human immunodeficiency virus (HIV). A histological, immunocytochemical, and electron microscopical study of 100 autopsy cases. Acta Neuropathol (Berl) 75: 185–198.CrossRefGoogle Scholar
  8. Davis LE, Hjelle BL, Miller VE, Palmer DL, Llewellyn AL, Merlin TL, Young SA, Mills RG, Wachsman W, Wiley CA (1992). Early viral brain invasion in iatrogenic human immunodeficiency virus infection. Neurology 42: 1736–1739.PubMedGoogle Scholar
  9. Dentener MA, Bazil V, Von Asmuth EJ, Ceska M, Buurman WA (1993). Involvement of CD14 in lipopolysaccharide-induced tumor necrosis factor-alpha, IL-6 and IL-8 release by human monocytes and alveolar macrophages. J Immunol 150: 2885–2891.PubMedGoogle Scholar
  10. Donaldson YK, Bell JE, Ironside JW, Brettle RP, Robertson JR, Busuttil A, Simmonds P (1994). Redistribution of HIV outside the lymphoid system with onset of AIDS. Lancet 343: 383–385.CrossRefPubMedGoogle Scholar
  11. Dore GJ, Correll PK, Li Y, Kaldor JM, Cooper DA, Brew BJ (1999). Changes to AIDS dementia complex in the era of highly active antiretroviral therapy. AIDS 13: 1249–1253.CrossRefPubMedGoogle Scholar
  12. Dunne J, Feighery C, Whelan A (1996). Beta-2-microglobulin, neopterin and monocyte Fc gamma receptors in opportunistic infections of HIV-positive patients. Br J Biomed Sci 53: 263–269.PubMedGoogle Scholar
  13. Gabuzda DH, Hirsch MS (1987). Neurologic manifestations of infection with human immunodeficiency virus. Clinical features and pathogenesis. Ann Intern Med 107: 383–391.PubMedGoogle Scholar
  14. Gartner S (2000). HIV infection and dementia. Science 287: 602–604.CrossRefPubMedGoogle Scholar
  15. Gessani S, Testa U, Varano B, Di Marzio P, Borghi P, Conti L, Barberi T, Tritarelli E, Martucci R, Seripa D et al (1993). Enhanced production of LPS-induced cytokines during differentiation of human monocytes to macrophages. Role of LPS receptors. J Immunol 151: 3758–3766.PubMedGoogle Scholar
  16. Glass JD, Fedor H, Wesselingh SL, McArthur JC (1995). Immunocytochemical quantitation of human immunodeficiency virus in the brain: correlations with dementia. Ann Neurol 38: 755–762.CrossRefPubMedGoogle Scholar
  17. Hickey WF, Kimura H (1988). Perivascular microglial cells of the CNS are bone marrow derived and present antigen in vivo. Science 239: 290–292.CrossRefPubMedGoogle Scholar
  18. Kozlowski PB, Brudkowska J, Kraszpulski M, Sersen EA, Wrzolek MA, Anzil AP, Rao C, Wisniewski HM (1997). Microencephaly in children congenitally infected with human immunodeficiency virus—a gross-anatomical morphometric study. Acta Neuropathol (Berl). 93: 136–145.CrossRefGoogle Scholar
  19. Lacroix C, Vazeux R, Brousse N, Blanche S, Tardieu M (1993). A neuropathological study of 10 HIV-infected children. Rev Neurol (Paris). 49: 37–45.Google Scholar
  20. Lane JH, Sasseville VG, Smith MO, Vogel P, Pauley DR, Heyes MP, Lackner AA (1996). Neuroinvasion by simian immunodeficiency virus coincides with increased numbers of perivascular macrophages/microglia and intrathecal immune activation. J Neuro Virol 2: 423–432.Google Scholar
  21. Lassmann H, Schmied M, Vass K, Hickey WF (1993). Bone marrow derived elements and resident microglia in brain inflammation. Glia 7: 19–24.CrossRefPubMedGoogle Scholar
  22. Lien E, Aukrust P, Sundan A, Muller F, Froland SS, Espevik T (1998). Elevated levels of serum-soluble CD14 in human immunodeficiency virus type 1 (HIV-1) infection: correlation to disease progression and clinical events. Blood 92: 2084–2092.PubMedGoogle Scholar
  23. Liu Y, Tang XP, McArthur JC, Scott J, Gartner S (2000). Analysis of human immunodeficiency virus type 1 gp160 sequences from a patient with HIV dementia: evidence for monocyte trafficking into brain. J NeuroVirol 6 Suppl 1: S70-S81.PubMedGoogle Scholar
  24. McArthur JC, Hoover DR, Bacellar H, Miller EN, Cohen BA, Becker JT, Graham NM, McArthur JH, Selnes OA, Jacobson LP et al (1993). Dementia in AIDS patients: incidence and risk factors. Multicenter AIDS Cohort Study. Neurology 43: 2245–2252.PubMedGoogle Scholar
  25. Meltzer MS, Skillman DR, Gomatos PJ, Kalter DC, Gendelman HE (1990). Role of mononuclear phagocytes in the pathogenesis of human immunodeficiency virus infection. Annu Bev Immunol 8: 169–194.CrossRefGoogle Scholar
  26. Nath A, Conant K, Chen P, Scott C, Major EO (1999). Transient exposure to HIV-1 Tat protein results in cytokine production in macrophages and astrocytes. A hit and run phenomenon. J Biol Chem 274(24): 17098–17102.CrossRefPubMedGoogle Scholar
  27. Navia BA, Jordan BD, Price RW (1986). The AIDS dementia complex I. Clinical features. Ann Neurol 19: 525–535.CrossRefPubMedGoogle Scholar
  28. Nielsen SL, Petito CK, Urmacher CD, Posner JB (1994). Sub-acute encephalitis in acquired immunodeficiency syndrome: A post-mortem study. Am J Clin Pathol 82: 678–682.Google Scholar
  29. Nockher WA, Bergmann L, Scherberich JE (1994). Increased soluble CD14 serum levels and altered CD14 expression of peripheral blood monocytes in HIV-infected patients. Clin Exp Immunol 98: 369–374.CrossRefPubMedGoogle Scholar
  30. Power C, Kong PA, Crawford TO, Wesselingh S, Glass JD, McArthur JC, Trapp BD (1993). Cerebral white matter changes in acquired immunodeficiency syndrome dementia: alterations of the blood-brain barrier. Ann Neurol 34: 339–350.CrossRefPubMedGoogle Scholar
  31. Price RW, Brew B, Sidtis J, Rosenblum M, Scheck AC, Cleary P (1988). The brain in AIDS: central nervous system HIV-1 infection and AIDS dementia complex. Science 239: 586–592.CrossRefPubMedGoogle Scholar
  32. Pugin J, Ulevitch RJ, Tobias PS (1993a). A critical role for monocytes and CD14 in endotoxin-induced endothelial cell activation. J Exp Med 178: 2193–2200.CrossRefPubMedGoogle Scholar
  33. Pugin J, Schurer-Maly CC, Leturcq D, Moriarty A, Ulevitch RJ, Tobias PS (1993b). Lipopolysaccharide activation of human endothelial and epithelial cells is mediated by lipopolysaccharide-binding protein and soluble CD14. Proc Natl Acad Sci USA 90: 2744–2748.CrossRefPubMedGoogle Scholar
  34. Pulliam L, Gascon R, Stubblebine M, McGuire D, McGrath MS (1997). Unique monocyte subset in patients with AIDS dementia. Lancet 349: 692–695.CrossRefPubMedGoogle Scholar
  35. Pumarola-Sune T, Navia BA, Cordon-Cardo C, Cho ES, Price RW (1987). HIV antigen in the brains of patients with the AIDS dementia complex. Ann Neurol 21: 490–496.CrossRefPubMedGoogle Scholar
  36. Rostad SW, Sumi SM, Shaw CM, Olson K, McDougall JK (1987). Human immunodeficiency virus (HIV) infection in brains with AIDS-related leukoencephalopathy. AIDS Bes Hum Betroviruses 3: 363–373.CrossRefGoogle Scholar
  37. Schmidtmayerova H, Nottet HS, Nuovo G, Raabe T, Flanagan CR, Dubrovsky L, Gendelman HE, Cerami A, Bukrinsky M, Sherry B (1996). Human immunodeficiency virus type 1 infection alters chemokine beta peptide expression in human monocytes: implications for recruitment of leukocytes into brain and lymph nodes. Proc Natl Acad Sci USA 93: 700–704.CrossRefPubMedGoogle Scholar
  38. Sharer LR (1992). Pathology of HIV-1 infection of the central nervous system. A review. J Neuropathol Exp Neurol 51: 3–11.CrossRefPubMedGoogle Scholar
  39. Sharer LR, Kapila R (1985). Neuropathologic observations in acquired immunodeficiency syndrome (AIDS). Acta Neuropathol (Berl). 66: 188–198.CrossRefGoogle Scholar
  40. Stout JC, Ellis RJ, Jernigan TL, Archibald SL, Abramson I, Wolfson T, McCutchan JA, Wallace MR, Atkinson JH, Grant I (1998). Progressive cerebral volume loss in human immunodeficiency virus infection: a longitudinal volumetric magnetic resonance imaging study. HIV Neurobehavioral Research Center Group. Arch Neurol 55: 161–168.CrossRefPubMedGoogle Scholar
  41. Teo I, Veryard C, Barnes H, An SF, Jones M, Lantos PL, Luthert P, Shaunak S (1997). Circular forms of unintegrated human immunodeficiency virus type 1 DNA and high levels of viral protein expression: association with dementia and multinucleated giant cells in the brains of patients with AIDS. J Virol 71: 2928–2933.PubMedGoogle Scholar
  42. Ulvestad E, Williams K, Vedeler C, Antel J, Nyland H, Mork S, Matre R (1994a). Reactive microglia in multiple sclerosis lesions have an increased expression of receptors for the Fc part of IgG. J Neurol Sci 121: 125–131.CrossRefPubMedGoogle Scholar
  43. Ulvestad E, Williams K, Mork S, Antel J, Nyland H (1994b). Phenotypic differences between human monocytes/macrophages and microglial cells studied in situ and in vitro. J Neuropathol Exp Neurol 53: 492–501.CrossRefPubMedGoogle Scholar
  44. Vazeux R (1991). AIDS encephalopathy and tropism of HIV for brain monocytes/macrophages and microglial cells. Pathobiology 59: 214–218.CrossRefPubMedGoogle Scholar
  45. Vazeux R, Lacroix-Ciaudo C, Blanche S, Cumont MC, Henin D, Gray F, Boccon-Gibod L, Tardieu M (1992). Low levels of human immunodeficiency virus replication in the brain tissue of children with severe acquired immunodeficiency syndrome encephalopathy. Am J Pathol 140: 137–144.PubMedGoogle Scholar
  46. Weidemann B, Brade H, Rietschel ET, Dziarski R, Bazil V, Kusumoto S, Flad HD, Ulmer AJ (1994). Soluble peptidoglycan-induced monokine production can be blocked by anti-CDl4 monoclonal antibodies and by lipid A partial structures. Infect Immun 62: 4709–4715.PubMedGoogle Scholar
  47. Williams KC, Corey S, Westmoreland SV, Pauley D, Knight H, deBakker C, Alvarez X, Lackner AA (2001). Perivascular macrophages are the primary cell type productively infected by simian immunodeficiency virus in the Brains of macaques: implications for the neuropathogenesis of AIDS. J Exp Med 193: 905–916.CrossRefPubMedGoogle Scholar
  48. Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC (1990). CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249: 1431–1433.CrossRefPubMedGoogle Scholar
  49. Wu DT, Woodman SE, Weiss JM, McManus CM, D’Aversa TG, Hesselgesser J, Major EO, Nath A, Berman JW (2000). Mechanisms of leukocyte trafficking into the CNS. J Neuro Virol 6 (Suppl 1): S82-S85.Google Scholar
  50. Yang RB, Mark MR, Gray A, Huang A, Xie MH, Zhang M, Goddard A, Wood WI, Gurney AL, Godowski PJ (1998). Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling. Nature 395: 284–288.CrossRefPubMedGoogle Scholar

Copyright information

© Taylor & Francis 2001

Authors and Affiliations

  • Tracy Fischer-Smith
    • 1
  • Sidney Croul
    • 1
  • Andrij E. Sverstiuk
    • 1
  • Christelle Capini
    • 1
  • Darryl L’Heureux
    • 1
  • Emmanuel G. Régulier
    • 1
  • Max W. Richardson
    • 1
  • Shohreh Amini
    • 1
  • Susan Morgello
    • 2
  • Kamel Khalili
    • 1
  • Jay Rappaport
    • 1
  1. 1.Center for Neurovirology and Cancer BiologyTemple UniversityPhiladelphiaUSA
  2. 2.Mount Sinai School of MedicineNew YorkUSA

Personalised recommendations