Advertisement

Neurotoxicity Research

, Volume 4, Issue 3, pp 211–218 | Cite as

Changes in prodynorphin and POMC gene expression in several brain regions of rat fetuses prenatally exposed to Δ-tetrahydrocannabinol

  • Alberto Pérez-Rosado
  • María Gómez
  • Jorge Manzanares
  • José A. Ramos
  • Javier Fernándezruiz
Article

Abstract

Recently, we demonstrated that prenatal Δ-tetrahydrocannabinol (Δ9-THC) exposure alters proenkephalin mRNA levels in several brain regions of rat fetuses. In the present study, we analyzed mRNA levels of the two other opioid peptide precursors, prodynorphin and proopiomelanocortin (POMC), in several brain nuclei of rat fetuses which were exposed daily to Δ9-THC from day 5 of gestation. Prenatal Δ9-THC exposure altered POMC and prodynorphin mRNA levels in most of the brain areas studied at different fetal ages, but the effects were sex-dependent. Thus, POMC mRNA levels increased in Δ9-THC-exposed females, but decreased in Δ9-THC-exposed at GD21 in the arcuate nucleus, cerebral cortex and habenular nuclei. POMC mRNA levels also increased in the arcuate nucleus and cerebral cortex of Δ9-THC-exposed fetuses at GD18. Prodynorphin mRNA levels were not altered by the prenatal Δ9-THC exposure in the striatum, cerebral cortex, hippocampus and hypothalamic structures of fetuses at GD16 and GD18, but a sexually dimorphic response was observed at GD21. Thus, prodynorphin mRNA levels increased in the cerebral cortex, hippocampus and paraventricular hypothalamic nucleus of Δ9-THC-exposed females, whereas no changes were observed in Δ9-THC-exposed males. In summary, Δ9-THC exposure altered the prenatal development of POMC and prodynorphin mRNA levels in several brain structures. Changes in POMC were similar to those reported previously for proenkephalin, increases in females but decreases in males, whereas changes in prodynorphin were only observed in females.

Keywords

Cannabinoids Δ9-tetrahydrocannabinol Prenatal exposure Prodynorphin or POMC gene expression Opioid peptides 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altman, J. and Bayer, SA (1993) Atlas of Prenatal Rat Brain Development (CRC Press, Boca Raton, FL).Google Scholar
  2. Bonnin, A., de Miguel, R., Rodríguez-Manzaneque, J.C., Fernández-Ruiz, J.J., Santos, A. and Ramos, J.A. (1994) “Changes in tyrosine hydroxylase gene expression in mesencephalic catecholaminergic neurons of immature and adult male rats perinatally exposed to cannabinoids”, Dev. Brain Res. 81, 147–150.CrossRefGoogle Scholar
  3. Bonnin, A., de Miguel, R., Castro, J.G., Ramos, J.A. and Fernández-Ruiz, J.J. (1996) “Effects of perinatal exposure to Δ9-tetrahydrocannabinol on the fetal and early postnatal development of tyrosine hydroxylase-containing neurons in rat brain”, J. Mol. Neurosci. 7, 291–308.PubMedCrossRefGoogle Scholar
  4. Chowen, J.A., Argente, J., Vician, L., Clifton, D.K. and Steiner, R.A. (1990) “Pro-opiomelanocortin messenger RNA in hypothalamic neurons is increased by testosterone through aromatization to estradiol”, Neuroendocrinology 52, 581–588.PubMedCrossRefGoogle Scholar
  5. Civelli, O., Birnberg, N. and Herbert, E. (1982) “Detection and quantification of pro-opiomelanocortin mRNA in pituitary and brain tissues from different species”, J. Biol. Chem. 257, 6783–6787.PubMedGoogle Scholar
  6. Corchero, J., Avila, M.A., Fuentes, J.A. and Manzanares, J. (1997a) “Δ9-Tetrahydrocannabinol increases prodynorphin and proenkephalin gene expression in the spinal cord of the rat”, Life Sci. 61, PL39-PL43.CrossRefGoogle Scholar
  7. Corchero, J., Fuentes, J.A. and Manzanares, J. (1997b) “Δ9-Tetrahydrocannabinol increases proopiomelanocortin gene expression in the arcuate nucleus of the rat hypothalamus”, Eur. J. Pharmacol. 323, 193–195.PubMedCrossRefGoogle Scholar
  8. Corchero, J., García-Gil, L., Manzanares, J., Fernández-Ruiz, J.J., Fuentes, J.A. and Ramos, J.A. (1998) “Perinatal Δ9-tetrahydrocannabinol exposure reduces proenkephalin gene expression in the caudate-putamen of adult female rats”, Life Sci. 63, 843–850.PubMedCrossRefGoogle Scholar
  9. Dalterio, S.L. (1986) “Cannabinoid exposure: effects on development”, Neurobehav. Toxicol. Teratol. 8, 345–352.PubMedGoogle Scholar
  10. Dalterio, S. and Bartke, A. (1979) “Perinatal exposure to cannabinoids alter make reproductive function in mice”, Science 205, 1420–1422.PubMedCrossRefGoogle Scholar
  11. Fernández-Ruiz, J.J., Rodríguez de Fonseca, F., Navarro, M. and Ramos, J.A. (1992) “Maternal cannabinoid exposure and brain development: changes in the ontogeny of dopaminergic neurons”, In: Bartke, A. and Murphy, L.L., eds, Neurobiology and Neurophysiology of Cannabinoids, Biochemistry and Physiology of Substance Abuse (CRC Press, Boca Raton, FL) Vol. 4, pp 119–164.Google Scholar
  12. Fernández-Ruiz, J.J., Berrendero, F., Hernández, M.L., Romero, J. and Ramos, J.A. (1999) “Role of endocannabinoids in brain development”, Life Sci. 65, 725–736.PubMedCrossRefGoogle Scholar
  13. Fernández-Ruiz, J.J., Berrendero, F., Hernández, M.L. and Ramos, J.A. (2000) “The endogenous cannabinoid system and brain development”, Trends Neurosci. 23, 14–20.PubMedCrossRefGoogle Scholar
  14. García-Gil, L., de Miguel, R., Ramos, J.A. and Fernández-Ruiz, J.J. (1996) “Perinatal Δ9-tetrahydrocannabinol exposure in rats modifies the responsiveness of midbrain dopaminergic neurons in adulthood to a variety of challenges with dopaminergic drugs”, Drug. Alcohol Depend. 42, 155–166.CrossRefGoogle Scholar
  15. García-Gil, L., de Miguel, R., Romero, J., Pérez, A., Ramos, J.A. and Fernández-Ruiz, J.J. (1999) “Perinatal Δ9-tetrahydrocannabinol exposure augmented the magnitude of motor inhibition caused by GABAb, but not GABAa, receptor agonists in adult rats”, Neurotoxicol. Teratol. 21, 277–283.PubMedCrossRefGoogle Scholar
  16. Kumar, A.M., Haney, M., Becker, T., Thompson, M.L., Kream, R.M. and Miczek, K. (1990) “Effect of early exposure to Δ9-tetrahydrocannabinol on the levels of opioid peptides, gonadotropin-releasing hormone and substance P in the adult male rat brain”, Brain Res. 525, 78–83.PubMedCrossRefGoogle Scholar
  17. Manzanares, J., Corchero, J., Romero, J., Fernández-Ruiz, J.J., Ramos, J.A. and Fuentes, J.A. (1998) “Chronic administration of cannabinoids regulates proenkephalin mRNA levels in selected regions of the rat brain”, Mol. Brain Res. 55, 126–132.PubMedCrossRefGoogle Scholar
  18. Manzanares, J., Corchero, J., Romero, J., Fernández-Ruiz, J.J., Ramos, J.A. and Fuentes, J.A. (1999) “Pharmacological and biochemical interactions between opioids and cannabinoids”, Trends Pharmacol. Sci. 20, 287–294.PubMedCrossRefGoogle Scholar
  19. Mokler, D.A., Robinson, S.E., Johnson, J.H., Hong, J.S. and Rosecrans, J.A. (1987) “Neonatal administration of Δ9-tetrahydrocannabinol alters the neurochemical response to stress in the adult Fischer-334 rat”, Neurotoxicol. Teratol. 9, 321–326.PubMedCrossRefGoogle Scholar
  20. Molina-Holgado, F., Amaro, A., González, M.I., Alvarez, F.J. and Leret, M.L. (1996) “Effect of maternal Δ9-tetrahydrocannabinol on developing serotonergic system” Eur. J. Pharmacol. 316, 39–42.PubMedCrossRefGoogle Scholar
  21. Morris, B.J., Haarmann, I., Kempter, B., Hollt, V. and Herz, A. (1986) “Localization of prodynorphin messenger RNA in rat brain by in situ hybridization using a synthetic oligonucleotide probe”, Neurosci. Lett. 69, 104–108.PubMedCrossRefGoogle Scholar
  22. Murphy, L.L., Steger, R.W. and Bartke, A. (1990) “Psychoactive and non-psychoactive cannabinoids and their effects on reproductive neuroendocrine parameters”, In: Watson, R.R., eds, Biochemistry and Physiology of Substance Abuse (CRC Press, Boca Raton, FL) Vol. 2, pp 73–94.Google Scholar
  23. Navarro, M., Rodríguez de Fonseca, F., Hernández, M.L., Ramos, J.A. and Fernández-Ruiz, J.J. (1994) “Motor behavior and nigrostriatal dopaminergic activity in adult rats perinatally exposed to cannabinoids”, Pharmacol. Biochem Behav. 47, 47–58.PubMedCrossRefGoogle Scholar
  24. Navarro, M., de Miguel, R., Rodríguez de Fonseca, F., Ramos, J.A. and Fernández-Ruiz, J.J. (1996) “Perinatal cannabinoid exposure modifies the sociosexual approach behavior and the mesolimbic dopaminergic activity of adult male rats”, Behav. Brain. Res. 75, 91–98.PubMedCrossRefGoogle Scholar
  25. Pérez-Rosado, A., Manzanares, J., Fernández-Ruiz, J.J. and Ramos, J.A. (2000) “Prenatal Δ9-tetrahydrocannabinol exposure modifies proenkephalin gene expression in the fetal rat brain: sex-dependent differences”, Dev. Brain Res. 120, 77–81.CrossRefGoogle Scholar
  26. Pugh, G., Smith, P.B., Dombrowski, D.S. and Welch, S.P. (1996) “The role of endogenous opioids in enhancing the antinociception produced by the combination of Δ9-tetrahydrocannabinol and morphine in the spinal cord”, J. Pharmacol. Exp. Ther. 279, 608–616.PubMedGoogle Scholar
  27. Rodríguez de Fonseca, F., Cebeira, M., Fernández-Ruiz, J.J., Navarro, M. and Ramos, J.A. (1991) “Effects of pre- and perinatal exposure to hashish extracts on the ontogeny of brain dopaminergic neurons”, Neuroscience 43, 713–723.PubMedCrossRefGoogle Scholar
  28. Thorat, S.N. and Bhargava, H.A. (1994) “Evidence for a bidirectional cross-tolerance between morphine and Δ9-tetrahydrocannabinol in mice”, Eur. J. Pharmacol. 260, 5–13.PubMedCrossRefGoogle Scholar
  29. Vela, G., Fuentes, J.A., Bonnin, A., Fernández-Ruiz, J.J. and Ruiz-Gayo, M. (1995) “Perinatal exposure to Δ9-tetrahydrocannabinol (Δ9-THC) leads to changes in opioid-related behavioral patterns in rats”, Brain Res. 680, 142–147.PubMedCrossRefGoogle Scholar
  30. Vela, G., Martin, S., García-Gil, L., Crespo, J.A., Ruiz-Gayo, M., Fernández-Ruiz, J.J., García-Lecumberri, C., Pélaprat, D., Fuentes, J.A., Ramos, J.A. and Ambrosio, E. (1998) “Maternal exposure to Δ9-tetrahydrocannabinol facilitates morphine self-administration and changes μ opioid receptor binding in brain regions related to drug reinforcement in adult offspring female rats”, Brain Res. 807, 101–109.PubMedCrossRefGoogle Scholar
  31. Walters, D.E. and Carr, L.A. (1986) “Changes in brain catecholamine mechanisms following perinatal exposure to marihuana”, Pharmacol. Biochem. Behav. 25, 763–778.PubMedCrossRefGoogle Scholar
  32. Walters, D.E. and Carr, L.A. (1988) “Perinatal exposure to cannabinoids alters neurochemical development in the rat brain”, Pharmacol. Biochem. Behav. 29, 213–216.PubMedCrossRefGoogle Scholar
  33. Young, W.S., Bonner, T.I. and Brann, M.R. (1986) “Mesencephalic dopamine neurons regulate the expression of neuropeptide mRNAs in the rat forebrain” PNAS (USA) 83, 9827–9831.CrossRefGoogle Scholar

Copyright information

© Springer 2002

Authors and Affiliations

  • Alberto Pérez-Rosado
    • 1
  • María Gómez
    • 1
  • Jorge Manzanares
    • 1
  • José A. Ramos
    • 1
  • Javier Fernándezruiz
    • 1
  1. 1.Instituto Universitario de Drogodependencias, Departamento de Bioquímica y Biología Molecular III, Facultad de MedicinaUniversidad Complutense de MadridMadridSpain

Personalised recommendations