Neurotoxicity Research

, 4:83 | Cite as

Neurotoxicological and neuroprotective elements in Parkinson’s disease



SNpc neurons are uniquely at risk from damage by a variety of ROS, including catechol-quinones formed from autoxidation of DA; as well as Tyr O., TyrOOH, H2O2, O2−., NO., HONOO, and HO.. The high content of Fe2+ in SNPc neurons further promotes HO. formation. Self-preservation ensures that SNpc cells are endowed with a battery of cellular antioxidants, which deactivate these cytotoxic species. Most notable are catalase, superoxide dismutase; and DT-diaphorase, which catalyzes a 2-electron reduction of catechol-quinones. Intra mitochondrial MAO can serve to protect or to damage SNpc neurons, depending on the cellular environ at any time.

Newer treatment approaches towards PD include the addition of nutrients such as vitamin E and addition of antioxidant drugs that may already be in use as antiparkinsonians: deprenyl, amantadine, DA D2 agonists, apomorphine, NMDA- and adenosine A2A-antagonists. Finally, the potential of neural transplants is explored in the proposal that Sertoli cells, or specific neural cells, or placental blood stem cells will find “routine” use instead of fetal neural cells in the treatment of last-resort for PD.


  1. Abin-Carriquiry, J.A., McGregor-Armas, R., Costa, G., Urbanavicius, J. and Dajas, F. (2002). “Presynaptic involvement in the nicotine prevention of dopamine loss provoked by 6-OHDA administration in the substantia nigra”, Neurotoxicity Res., 4, 133–139.CrossRefGoogle Scholar
  2. Barzilai, A., Zilkha-Falb, R., Daily, D., Stern, N., Offen, D., Ziv, I., Melamed, E. and Shirvan, A. (2000). “The molecular mechanism of dopamine-induced apoptosis: identification and characterization of genes that mediate dopamine toxicity”, J. Neural Trans. Suppl., 60, 59–76.Google Scholar
  3. Beal, M.F. (1997) “Oxidative damage in neurodegenerative diseases”, Neuroscientist, 3, 21–27.Google Scholar
  4. Beal, M.F., Palomo, T., Kostrzewa, R.M. and Archer, T. (2000) “Neuroprotective and neurorestorative strategies for neuronal injury”, Neurotoxicity Res. 2, 71–84.Google Scholar
  5. Borlongan, C.V., Cameron, D.F., Saporta, S. and Sanberg, P.R. (1997) “Intracerebral transplantation of testis-derived sertoli cells promotes functional recovery in female rats with 6-hydroxydopamine-induced hemiparkinsonism”, Exp. Neurol. 148, 388–392.PubMedCrossRefGoogle Scholar
  6. Carlsson, A., Waters, N. and Hansson, L.O. (1994) “Neurotransmitter aberrations in schizophrenia: new findings”, In: Fog, R., Gerlach, J. and Hemmingsen, R., eds, Schizophrenia An Integrated View (Munksgard, Copenhagen).Google Scholar
  7. Castagnoli, K., Steyn, S.J., Magnin, G., Van der Schyf, C.J., Fourie, I., Khalil, A. and Castagnoli, Jr, N. (2002) “Studies on the interactions of tobacco leaf and tobacco smoke constituents and monoamine oxidase”, Neurotoxicity Res., 4, 151–160.CrossRefGoogle Scholar
  8. Costa, C., Bertazzo, A., Allegri, G., Toffano, G., Curcuruto, O. and Traldi, P. (1992) “Melanin biosynthesis from dopamine: II. A mass spectrometric and collisional spectroscopic investigation”, Pigm. Cell Res. 5, 122–131.CrossRefGoogle Scholar
  9. Danysz, W. and Parsons, C. (2002) “Neuroprotective potential of ionotropic glutamate receptor antagonists”, Neurotoxicity Res., 4, 119–126.CrossRefGoogle Scholar
  10. Fornstedt, B., Brun, A., Rosengren, E. and Carlsson, A. (1989) “The apparent autoxidation rate of catechols in dopamine-rich regions of human brains increases with the degree of depigmentation of substantia nigra”, J. Neural. Trans. 1, 279–295.CrossRefGoogle Scholar
  11. Freed, C.R., Greene, P.E., Breeze, R.E., Tsai, W.Y., DuMouchel, W., Kao, R., Dillon, S., Winfield, H., Culver, S., Trojanowski, J.Q., Eidelberg, D. and Fahn, S. (2001) “Transplantation of embryonic dopamine neurons for severe Parkinson’s disease”, N. Engl. J. Med. 344, 710–719.PubMedCrossRefGoogle Scholar
  12. Gatto, E.M., Riobó, N., Carreras, M.C. and Poderoso, J.J. (2000) “Nitric oxide overproduction and oxidative stress in human idiopathic Parkinson’s disease” In: Poli, G., Cadenas, E. and Packer, L., eds, Free Radicals in Brain Pathophysiology (Marcel Dekker, New York), pp. 291–312.Google Scholar
  13. Gatto, E.M., Riobó, N., Carreras, M.C., Poderoso, J.J. and Micheli, F.E. (2002) “Neuroprotection in Parkinson's disease; a commentary”, Neurotoxicity Res. 4, 141–145.CrossRefGoogle Scholar
  14. Harada, S., Tachikawa, H. and Kawanishi, Y. (2001) “Glutathione-S-transferase M1 gene deletion may be associated with susceptibility to certain forms of schizophrenia”, Biochem. Biophys. Res. Commun. 281, 267–271.PubMedCrossRefGoogle Scholar
  15. Herrera-Marschitz, M. and Ungerstedt, U. (1984a) “Evidence that apomorphine and pergolide induce rotation in rats by different actions on D1 and D2 receptor sites”, Eur. J. Pharmacol. 98, 165–176.PubMedCrossRefGoogle Scholar
  16. Herrera-Marschitz, M. and Ungerstedt, U. (1984b) “Evidence that striatal efferents relate to different dopamine receptors”, Brain Res. 323, 269–278.PubMedCrossRefGoogle Scholar
  17. Hurtado-Guzman, C., Martinez-Alvarado, P., Paris, I., Dagnino-Subiabre, A., Caviedes, P., Caviedes, R., Cassels, B.K. and Segura-Aguilar, J. (2002) “Neurotoxicity of some MAO inhibitors in adult rat hypothalamic cell cultures”, Neurotoxicity Res. 4, 161–163.CrossRefGoogle Scholar
  18. Kochman, A., Koka, C. and Metodiewa, D. (2002) “Submolecular adventures of brain tyrosine: What are we searching for now?”, Amino Acids 22, in press.Google Scholar
  19. Kostrzewa, R.M. (2001) “Review on apoptosis vs. necrosis of substantia nigra pars compacta in Parkinson’s disease”, Neurotoxicity Res. 2, 239–250.CrossRefGoogle Scholar
  20. Pehar, M., Martinez-Palma, L., Peluffo, H., Kamaid, A., Cassina, P. and Barbeito, L. (2002) “Peroxynitrite-induced cytotoxicity in cultured astrocytes is associated with morphological changes and increased nitrotyrosine immunoreactivity”, Neurotoxicity Res., 4, 87–93.CrossRefGoogle Scholar
  21. Rodriguez, A.I., Willing, A.E., Cameron, D.F., Saporta, S. and Sanberg, P.R. (2002) “Neurobehavioral assessment of transplanted porcine sertoli cells into the intact rat striatum”, Neurotoxicity Res. 4, 103–109.CrossRefGoogle Scholar
  22. Sanberg, P.R., Borlongan, C.V., Othberg, A.I., Saporta, S., Freeman, T.B. and Cameron, D.F. (1997) “Testis-derived sertoli cells have a trophic effect on dopamine neurons and alleviate hemiparkinsonism in rats”, Nature Med., 3, 1129–1132.PubMedCrossRefGoogle Scholar
  23. Sanberg, P.R., Willing, A.E. and Cahill, D.W. (2002) “Novel cellular approaches to repair of neurodegenerative disease”, Neurotoxicity Res., 4, 95–101.CrossRefGoogle Scholar
  24. Segura-Aguilar, J. (2000) “One and two-electron reduction of catecholamitie ortho-quinones”, In: Creveling, C.R., ed., Role of Catechol-Quinone Species in Cellular Toxicity (F.P. Graham Publishing, Johnson City TN), pp. 11–29.Google Scholar
  25. Segura-Aguilar, J., Baez, S., Widersten, M., Welch, C.J. and Mannervik, B. (1997) “Human class mu glutathione transferases, in particular isoenzyme M2-2, catalyze detoxication of the dopamine metabolite aminochrome”, J. Biol. Chem., 272, 5727–5731.PubMedCrossRefGoogle Scholar
  26. Segura-Aguilar, J., Diaz-Veliz, G., Mora S. and Herrera-Marschitz, M. (2002) “Inhibition of DT-diaphorase is a requirement for Mn3+ to produce a 6-OH-dopamine like rotational behaviour”, Neurotoxicity Res. 4, 127–131.CrossRefGoogle Scholar
  27. Smythies, J. (2002) “The adrenochrome hypothesis of schizophrenia revisited” Neurotoxicity Res., 4.Google Scholar
  28. Tatton, W.G. and Chalmers-Redman, R.M. (1996) “Modulation of gene expression rather than monoamine oxidase inhibition: (−)-deprenyl-related compounds in controlling neurodegeneration”, Neurology, 47, S171-S183.PubMedGoogle Scholar
  29. Willing, A.E., Saporta, S., Lixian, J., Milliken, M., Poulos, S., Bowersox, S.S. and Sanberg, P.R. (2002) “Behavioral effects of LBS-neuron implantation on seizure susceptibility following middle cerebral artery occlusion in the rat”, Neurotoxicity Res., 4, 111–118.CrossRefGoogle Scholar

Copyright information

© Springer 2002

Authors and Affiliations

  1. 1.Department of PharmacologyEast Tennessee State UniversityJohnson CityUSA
  2. 2.Programme of Molecular and Clinical Pharmacology, ICBM, Faculty of MedicineUniversity of ChileSantiago 7Chile

Personalised recommendations