Neurotoxicity Research

, Volume 4, Issue 1, pp 77–81 | Cite as

The biochemical basis of Parkinson's disease: The role of catecholamineo-quinones: A review-discussion

  • John Smythies
  • Angela De Iuliis
  • Lucia Zanatta
  • Lauro Galzigna
Article

Abstract

This paper reviews the possible role of catecholamineo-quinones (OQs) in the genesis of Parkinson's disease (PD). This disease is characterized by damage caused to the pigmented catecholaminergic cells in various areas of the brain. The pigment involved is neuromelanin that is the end product of catecholamine oxidation by theo-quinone route. Evidence is presented regarding the overproduction in PD of these catecholamine OQs that damage the electron chain in the mitochondria leading to cell death. The roles of glutathione S-transferase and reactive oxygen species in this are also surveyed. A review of all known biochemical properties of theseo-quinones is included. The hypothesis is put forward that an important factor in the genesis of PD may be the overload by environmental toxins of enzymes such as glutathioneS-transferase that also detoxify catecholamine OQs.

Keywords

Catecholamineo-quinones Parkinson's disease Neuromelanin Glutathione Reactive oxygen species 

Abbreviations

ACh

Acetylcholine

AChe

Acetylcholine esterase

ATP

Adenosine triphosphate

CAT

Catalase

DA

Dopamine

DAQs

Dopamineo-quinones

GSH

Glutathione

GSHpx

Glutathione peroxidase

GSSG

Oxidized glutathione

HO-1

Hemeoxygenase-1

LC

Locus coeruleus

MTP

Mitochondrial transition pore

OQs

o-quinones

PD

Parkinson's disease

PGH

Prostaglandin H

NADH

Nicotine adenine dinucleotide

ROS

Reactive oxygen species

SOD

Superoxide dismutase

SNpc

Substantia nigra pars compacta

TNF

Tumor necrosis factor

VTA

Ventral tegmental area

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baez, S., Segura-Aguilar, J., Widersten, M., Johansson, A.S. and Mannervik, B. (1997) “Glutathione transferases catalyze the detoxification of oxidized metabolites (OQs) of catecholamines and may serve as an antioxidant system preventing degenerative cellular processes”Biochem. J. 324, 25–28.PubMedGoogle Scholar
  2. Barzilai, A., Zilkha-Falb, R., Daily, D., Stern, N., Offen, D., Ziv, I., Melamed, E. and Shirvan, A. (2000) “The molecular mechanism of dopamine-induced apoptosis: identification and characterization of genes that mediate dopamine toxicity.”,J. Neural. Trans. Supp.,60, 59–76.Google Scholar
  3. Basma, A.N., Morris, E.J., Nicklas, W.J. and Geller, H.M. (1995) “l-DOPA cytotoxicity to PC12 cells in culture is via its autooxidation”,J. Neurochem. 64, 825–832.PubMedGoogle Scholar
  4. Ben-Schachar, D., Zuk, R. and Glinka, Y. (1995) “Dopamine neurotoxicity: inhibition of mitochondrial respiraton”,J. Neurochem. 64, 718–723.Google Scholar
  5. Berman, S.D. and Hastings, T.G. (1997) “Inhibition of glutamate transport in synaptosomes by dopamine oxidation and reactive oxygen species”,J. Neurochem. 69, 1185–1195.PubMedGoogle Scholar
  6. Berman, S.D. and Hastings, T.G. (1999) “Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson's disease”,J. Neurochem. 73, 1127–1137.PubMedCrossRefGoogle Scholar
  7. Cassarino, D.S., Parks, J.K., Parker, W.D.J. and Bennett, Jr, J.P. (1999) “The parkinsonian neurotoxin MPP+ opens the mitochondrial pore and releases cytochrome c in isolated mitochondria via an oxidative mechanism”,Biochem. Biophys. Acta 1453, 49–62.PubMedGoogle Scholar
  8. De Iuliis, A., Burlina, A.P., Zanatta, L., Boschetto, R., Zambenedetti, P. and Galzigna, L. (2002) “Increased dopamine peroxidation in post-mortem Parkinsonian brains,” Submitted for publication.Google Scholar
  9. Drukarch, B., Langeveld, C.H. and Stoof, J.C. (1999) “Glutathione homeostasis linked to the vesicular storage of dopamine in rat PC12 pheochromocytoma cells”,Exp. Neurol. 145, S39.Google Scholar
  10. Fornstedt, B., Brun, A., Rosengren, E. and Carlsson, A. (1989) “The apparent autooxidation rate of catechols in dopamine-rich regions of human brains increases with the degree of depigmentation of substantia nigra”,J. Neural. Transm. 1, 279–295.CrossRefGoogle Scholar
  11. Gai, W.P., Geffen, L.B., Denoroy, L. and Blessing, W.W. (1993) Loss of C1 and C3 epinephrine-synthesizing neurons in the medulla oblongata in Parkinson's disease,Ann. Neurol. 33, 357–367.PubMedCrossRefGoogle Scholar
  12. Galzigna, L., Schiappelli, M.P., Rigo, A. and Scarpa, M. (1999) “A rat brain fraction and different purified peroxidases catalyzing the formation of dopaminochrome from dopamine”,Biochem. Biophys. Acta 1427, 329–336.PubMedGoogle Scholar
  13. Galzigna, L., De Iuliis, A. and Zanatta, L. (2000) “Enzymatic dopamine peroxidation in substantia nigra of human brain”,Clin. Chim. Acta 300, 131–138.PubMedCrossRefGoogle Scholar
  14. Hastings, T.G. (1995) “Enzymatic oxidation of dopamine: the role of prostaglandin H synthase”,J. Neurochem. 64, 919–924.PubMedGoogle Scholar
  15. Jenner, P. and Olanow, C.W. (1998) “Understanding cell death in Parkinson's disease”,Ann. Neurol. 44(S1), S77-S84.Google Scholar
  16. Jenner, P., Dexter, D.T., Sian, J., Schapira, A.H.V. and Marsden, C. (1992) “Oxidative stress as a cause of nigral cell death in Parkinson's disease and incidental Lewy body disease”,Ann. Neurol. 32, S82-S88.PubMedCrossRefGoogle Scholar
  17. Jimenez del Rio, M., Pardo, C.V., Pinxteren, J., de Potter, W., Ebinger, G. and Vauquelin, G. (1994) “Interaction of serotonin-and dopamine-related neurotoxins with “serotonin binding proteins” in bovine frontal cortex”,Biochem. Pharmacol. 48, 253–258.PubMedGoogle Scholar
  18. Kawamata, H., McLean, P.J., Sharma, N. and Hyman, B.T. (2001) “Interaction of alpha-synuclein and synphilin-1: effect of Parkinson's disease-associated mutations”,J. Neurochem. 77, 929–934.PubMedCrossRefGoogle Scholar
  19. Klegeris, A., Korkina, L.G. and Greenfield, S.A. (1995) “A possible interaction between acetylcholinesterase and dopamine molecules during oxidation of the amine”.Free Rad. Biol. Med. 18, 223–230.PubMedCrossRefGoogle Scholar
  20. Kuhn, D.M. and Arthur, Jr, R. (1988) “Dopamine inactivates tryptophan hydroxylase and forms a redox-cycling quinoprotein: possible endogenous toxin to serotonin neurons”,J. Neurosci. 18, 7111–7117.Google Scholar
  21. Lancelot, E., Callebert, J., Plotkine, M. and Boulu, R.G. (1995) “Striatal dopamine participates in glutamate-induced hydroxyl radical generation”,NeuroReport 6, 1033–1036.PubMedCrossRefGoogle Scholar
  22. Lereugle, B., Faucheux, B.A., Bouras, C., Nillesse, N., Spik, G., Hirsch, E.C., Agid, Y. and Hof, P.R. (1996) “Cellular distribution of iron-binding protein lactotransferrin in the mesencephlon of Parkinson's disease cases”,Arch. Neuropathol. 91, 566–572.CrossRefGoogle Scholar
  23. Luo, T., Hattori, A., Munoz, J., Qin, Z.-H. and Roth, G.S. (1995) “Intrastriatal dopamine injection induces apoptosis through oxidation-involved activation of transcription factors AP-1 and NF-κB in rats”,Mol. Pharmacol. 56, 254–264.Google Scholar
  24. Marstein, S., Jellum, E., Nesbakken, R. and Perry, T.L. (1981) “Biochemical investigations of biopsied brain tissue and autopsied organs from patients with pyroglutamic acidemia (5-oxoprolinemia)”,Clin. Chim. Acta 111, 219–222.PubMedCrossRefGoogle Scholar
  25. Mattammal, M.B., Strong, R., Lakshuri, V.M., Chung, H.D. and Stephenson, A.H. (1995) “Prostaglandin H synthetase-mediated metabolism of dopamine; implication for Parkinson's disease”,J. Neurochem. 64, 1645–1654.PubMedCrossRefGoogle Scholar
  26. McGuire, S.O., Ling, Z.D., Lipton, J.W., Sortwell, C.E., Collier, T.J. and Carvey, P.M. (2001) “Tumor necrosis factor alpha is toxic to embryonic mesencephalic neurons”,Exp. Neurol. 169, 219–230.PubMedCrossRefGoogle Scholar
  27. McLaughlin, B.A., Nelson, D., Erecinska, M. and Chesselet, M.-F. (1998) “Toxicity of dopamine to striatal neuronsin vitro and potentiation of cell death by a mitochondrial inhibition”,J. Neurochem. 70, 2406–2411.PubMedCrossRefGoogle Scholar
  28. Merad-Boudia, M., Nicole, A., Santiard-Baron, D., Saillé, C. and Ceballos-Picot, I. (1998) “Mitochondrial impairment as an early event in the process of apoptosis induced by glutathione depletion in neuronal cells: relevance to Parkinson's disease”,Biochem. Pharmacol. 56, 645–655.PubMedCrossRefGoogle Scholar
  29. Mirza, B., Hadberg, H., Thomsen, P. and Moos, T. (2000) The absence of reactive astiocytosis is indicative of a unique inflammatory process in Parkinson's disease.Neuroscience 95, 425–439.PubMedCrossRefGoogle Scholar
  30. Nakamura, K., Wang, W. and Kang, W.J. (1997) “The role of glutathione in dopaminergic neuronal survival”,J. Neurochem. 69, 1850–1858.PubMedCrossRefGoogle Scholar
  31. Rowe, D.B., Le, U., Smith, R.G. and Appel, S.H. (1998) “Antibodies from patients with Parkinson's disease react with protein modified by dopamine oxidation”,J. Neurosci. Res. 53, 551–558.PubMedCrossRefGoogle Scholar
  32. Schapira, A.H.V., Mann, V.M., Cooper, J.M., Krige, D., Jenner, P.J. and Marsden, C.D. (1992) “Mitochondrial function in Parkinson's disease”,Ann. Neurol. 32, S116-S124.PubMedCrossRefGoogle Scholar
  33. Schmidt, J., Mertz, K. and Morgan, J.I. (1999) “Regulation of heme oxygenase-1 expression by dopamine in cultures C6 glioma and primary astrocytes”,Mol. Brain Res. 73, 50–59.PubMedCrossRefGoogle Scholar
  34. Segura-Aguilar, J. (1996) “Peroxidase activity of liver microsomal vitamin D 25-hydroxylase and cytochrome P450 1A2 catalyzes 25-hydroxylation of vitamin D3 and oxidation of dopamine to aminochrome”,Biochem. Mol. Med. 58, 122–129.PubMedCrossRefGoogle Scholar
  35. Shen, X.-M. and Dryhurst, G. (1996) “Oxidation chemistry of (−)-norepinephrine in the presence ofl-cysteine”,J. Med. Chem. 39, 2018–2029.PubMedCrossRefGoogle Scholar
  36. Shen, X.-M., Xia, B., Wrona, M.Z. and Dryhurst, G. (1996) “Synthesis, redox properties,in vivo formation, and neurobehavioral effects ofN-acetylcysteinyl conjugates of dopamine: possible metabolites of relevance to Parkinson's disease”,Chem. Res. Toxicol. 9, 1117–1126.PubMedCrossRefGoogle Scholar
  37. Skellerud, K., Marstein, S., Schrader, H., Brundelet, P.J. and Jellum, E. (1980) “The cerebral lesions in a patient with generalized glutathione deficiency and pyroglutamic aciduria (5-oxoprolinemia)”,Acta Neuropath. 52, 219–225.Google Scholar
  38. Smythies, J. The Dynamic Neuron. Cambridge, MA. MIT Press (2002).Google Scholar
  39. Spencer, J.P.E., Jenner, P., Daniel, S.E., Lees, A.J., Marsden, D.C. and Halliwell, B. (1998) “Conjugates of catecholamines with cysteine and GSH in Parkinson's disease; possible mechanisms of formation involving reactive oxygen species”,J. Neurochem. 71, 2112–2122.PubMedGoogle Scholar
  40. Terland, O., Flatmark, T., Tangeras, A. and Grønberg, M. (1997) “Dopamine oxidation generates an oxidative stress mediated by dopamine semiquinone and unrelated to reactive oxygen species”,J. Mol. Cell. Cardiol. 29, 1731–1738.PubMedCrossRefGoogle Scholar
  41. Tief, K., Hahne, M., Schmidt, A. and Beerman, F. (1996) “Tyrosinase, the key enzyme in melanin synthesis, is expressed in murine brain”,Eur. J. Biochem. 241, 12–16.PubMedCrossRefGoogle Scholar
  42. Watts, P.M., Riedl, A.G., Douek, D.C., Edwards, R.J., Boobis, A.R., Jenner, P. and Marsden, C.D. (1998) “Co-localization of P450 enzymes in the rat substantia nigra with tyrosine hydroxylase”,Neuroscience 86, 511–519.PubMedCrossRefGoogle Scholar
  43. Xu, Y., Stokes, A.H., Roskoski, Jr, R. and Vrana, K.E. (1998) “Dopamine, in the presence of tyrosinase, covalently modifies and inactivates tyrosine hydroxylase”,J. Neurosci. Res. 54, 691–697.PubMedCrossRefGoogle Scholar
  44. Zhang, F. and Dryhurst, G. (1994) “Effects ofl-cysteine on the oxidation chemistry of dopamine: new reaction pathways of potentiarelevance to idopathic Parkinson's disease”,J. Med. Chem. 37, 1084–1098.PubMedCrossRefGoogle Scholar
  45. Zhang, J., Price, J.O., Graham, D.G. and Montini, T.J. (1998) “Secondary excitotoxicity contributes to dopamine-induced apoptosis of dopaminergic neuronal cultures”,Biochem. Biophys. Res. Comm. 248, 812–816.PubMedCrossRefGoogle Scholar

Copyright information

© Taylor & Francis Ltd 2002

Authors and Affiliations

  • John Smythies
    • 1
    • 3
  • Angela De Iuliis
    • 2
  • Lucia Zanatta
    • 2
  • Lauro Galzigna
    • 2
  1. 1.Center for Brain and Cognition, Department of PsychologyUniversity of CaliforniaLa JollaUSA
  2. 2.Department of Diagnostics, Medical SchoolUniversity of PadovaPadovaItaly
  3. 3.Department of NeuropsychiatryInstitute of NeurologyLondonUK

Personalised recommendations