Neurotoxicity Research

, Volume 4, Issue 4, pp 267–279 | Cite as

Neurodevelopmental liabilities of substance abuse

  • Tomas Palomo
  • Trevor Archer
  • Richard J. Beninger
  • Richard M. Kostrzewa


The perinate is particularly risk-prone to chemical species which have the potential of inducing neuronal apoptosis or necrosis and thereby adversely altering development of the brain, to produce life-long functional and behavioral deficits. This paper is an overview for many substances of abuse, but the purview is much more broadened by the realization that even elevated levels of estrogens and corticosteroids in the pregnant mother can act as neuroteratogens, by passing via the placenta and altering neural development or inducing apoptosis in the perinate. Finally, therapeutic risks of anesthetics are highlighted, as these too induce neuronal apoptosis in the neonate by either blocking N-methyl-D-aspartate receptors or by acting as gamma-aminobutyric acid agonists. By understanding the mechanisms involved it may ultimately be possible to interrupt the mechanistic scheme and thereby prevent neuroteratological processes.


Amphetamine Cannabinoid Cocaine Corticosteroids Estrogens Ethanol Nicotine Opiates Tetrahydrocannabinol 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Archer, T. and Fredriksson, A. (1992) “Functional changes implicating dopaminergic systems following perinatal treatments”, Dev. Pharmacol. Ther. 18, 201–222.PubMedGoogle Scholar
  2. Archer, T., Danysz, W., Fredriksson, A., Jonsson, G., Luthman, J., Sundström, E. and Teiling, A. (1988) “Neonatal 6-hydroxydopamine-induced dopamine depletions: motor activity and performance in maze learning”, Pharmacol. Biochem. Behav. 31, 357–364.PubMedCrossRefGoogle Scholar
  3. Archer, T., Beninger, R.J., Järbe, T.U.C. and Seiden, L.S. (1990) “Latent learning in a radial arm maze following neonatal dopamine depletion”, Behav. Pharmacol. 1, 191–199.CrossRefGoogle Scholar
  4. Archer, T., Palomo, T. and Fredriksson, A. (2002) “Neonatal 6-hydroxydopamine-induced hypo/hyperactivity: blockade by dopamine reuptake inhibitors and effect of acute d-amphetamine”, Neurotoxicity Res. 4, 247–266.CrossRefGoogle Scholar
  5. Azcoitia, I., Doncarlos, L.L. and Garcia-Segura, L.M. (2002) “Estrogen and brain vulnerability”, Neurotoxicity Res. 4, 235–245.CrossRefGoogle Scholar
  6. Barbazanges, A., Piazza, P.V., Le Moal, M. and Maccari, S. (1996) “Maternal glucocorticoid secretion mediates long-term effects of prenatal stress”, J. Neurosci. 16, 3943–3949.PubMedGoogle Scholar
  7. Barden, N., Reul, J.M. and Holsboer, F. (1995) “Do antidepressants stabilize mood through actions on the hypothalamic-pituitary-adrenocortical system?”, Trends Neurosci. 18, 6–11.PubMedCrossRefGoogle Scholar
  8. Barr, H.M. and Streissguth, A.P. (2001) “Identifying maternal self-reported alcohol use associated with fetal alcohol spectrum disorders”, Alcohol. Clin. Exp. Res. 25, 283–287.PubMedCrossRefGoogle Scholar
  9. Behl, C. and Holsboer, F. (1999) “The female sex hormone oestrogen as a neuroprotectant”, Trends Pharmacol. Sci. 20, 441–444.PubMedCrossRefGoogle Scholar
  10. Bespalov, A.Y., Balster, R.L. and Beardsley, P.M. (1999) “N-methyl-d-aspartate receptor antagonists and the development of tolerance to the discriminative stimulus effects of morphine in rats”, J. Pharmacol. Exp. Ther. 290, 20–27.PubMedGoogle Scholar
  11. Blue, M.E., Erzurumlu, R.S. and Jhaveri, S. (1991) “A comparison of pattern formation by the thalamocortical and serotonergic afferents in the rat barrel field cortex”, Cereb. Cortex 1, 380–389.PubMedCrossRefGoogle Scholar
  12. Bonnin, A., de Miguel, R., Castro, J.G., Ramos, J.A. and Fernández-Ruiz, J.J. (1996) “Effects of perinatal exposure to Δ9-tetrahydrocannabinol on the fetal and early postnatal development of tyrosine hydroxylase containing neurons in rat brain”, J. Mol. Neurosci. 7, 291–308.PubMedCrossRefGoogle Scholar
  13. Brodie, M.S. and Appel, S.B. (2000) “Dopaminergic neurons in the ventral tegmental area of C57BL/6J and DBA/2J mice differ in sensitivity to ethanol excitation”, Alcohol. Clin. Exp. Res. 24, 1120–1124.PubMedCrossRefGoogle Scholar
  14. Carboni, E., Bortone, L., Giua, C. and DiChiara, G. (2000) “Dissociation of physical abstinence signs from changes in extracellular dopamine in the nucleus accumbens and in the prefrontal cortex of nicotine dependent rats”, Drug Alcohol Depend. 58, 93–102.PubMedCrossRefGoogle Scholar
  15. Cartwright, M.M., Tessmer, L.L. and Smith, S.M. (1998) “Ethanol-induced neural crest apoptosis is coincident with their endogenous death, but is mechanistically distinct”, Alcohol. Clin. Exp. Res. 22, 142–149.PubMedGoogle Scholar
  16. Cesarec, Z. and Nyman, A.K. (1985) “Differential response to amphetamine in schizophrenia”, Acta Psychiatr. Scand. 71, 523–538.PubMedCrossRefGoogle Scholar
  17. Chen, S.Y. and Sulik, K.K. (1996) “Free radicals and ethanol-induced cytotoxicity in neural crest cells”, Alcohol. Clin. Exp. Res. 20, 1071–1076.PubMedCrossRefGoogle Scholar
  18. Chowen, J.A., Torres-Aleman, I. and Garcia-Segura, L.M. (1992) “Trophic effects of estradiol on fetal rat hypothalamic neurons”, Neuroendocrinology 56, 895–901.PubMedCrossRefGoogle Scholar
  19. Coccaro, E.F. and Murphy, D.L. (1990) Serotonin in major psychiatric disorders (American Psych. Press, Washington, DC).Google Scholar
  20. Cooper, R.L., Goldenberg, R.L., Das, A., Elder, N., Swain, M., Norman, G., Ramsey, R., Cotroneo, P., Collins, B.A., Johnson, F., Jones, P. and Meier, A.M. (1996) “The preterm prediction study: maternal stress is associated with spontaneous preterm brith at less than thirty-five weeks' gestation. National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network”, Am. J. Obstet. Gynecol. 175, 1286–1292.CrossRefGoogle Scholar
  21. Corchero, J., García-Gil, L., Manzanares, J., Fernández-Ruiz, J.J., Fuentes, J.A. and Ramos, J.A. (1998) “Perinatal Δ9-tetrahydrocannabinol exposure reduces proenkephalin gene expresion in the caudate-putamen of adult female rats”, Life Sci. 63, 843–850.PubMedCrossRefGoogle Scholar
  22. Dalterio, S.L. (1986) “Cannabinoid exposure: effects on development”, Neurobehav. Toxicol. Teratol. 8, 345–352.PubMedGoogle Scholar
  23. Dalterio, S.L. and Barke, A. (1979) “Perinatal exposure to cannabinoids alter male reproductive functions in mice”, Science 205, 1420–1422.PubMedCrossRefGoogle Scholar
  24. Del Arco, I., Muñoz, R., Rodríguez, F., Escudero, L., Martin, J.L., Navarro, M. and Villanúa, M.A. (2000) “Maternal exposure to the synthetic cannabinoid HU-210: effects on the endocrine and immune systems of the adult male offspring”, Neuroimmunomodulation 7, 16–26.PubMedCrossRefGoogle Scholar
  25. Deminiere, J.M., Piazza, P.V., Guegan, G., Abrous, N., Maccari, S., Le Moal, M. and Simon, H. (1992) “Increased locomotor response to novelty and propensity to intravenous amphetamine self-administration in adult offspring of stressed mothers”, Brain Res. 586, 135–139.PubMedCrossRefGoogle Scholar
  26. Dessens, A.B., Cohen-Kettenis, P.T., Mellenbergh, G.J., Koppe, J.G., van de Poll, N.E. and Boer, K. (2000) “Association of prenatal phenobarbital and phenytoin exposure with small head size and with learning problems”, Acta Paediatr. 89, 533–541.PubMedCrossRefGoogle Scholar
  27. Diaz-Granados, J.L., Spuhler-Phillips, K., Lilliquist, M.W., Amsel, A. and Leslie, S.W. (1997) “Effects of prenatal and early postnatal ethanol exposure on (3H).MK-801 binding in rat cortex and hippocampus”, Alcohol. Clin. Exp. Res. 21, 874–881.PubMedCrossRefGoogle Scholar
  28. Dikranian, K., Ishimaru, M.J., Tenkova, T., Labruyere, J., Qin, Y.Q., Ikonomidou, C. and Olney, J.W. (2001a) “Apoptosis in the in vivo mammalian forebrain”, Neurobiol. Dis. 8, 359–379.PubMedCrossRefGoogle Scholar
  29. Dikranian, K., Tenkova, T., Bittigau, P., Ikonomidou, C. and Olney, J.W. (2001b) “Histological characterization of apoptotic neurodegeneration induced in the developing rat brain by drugs that block sodium channels”, Soc. Neurosci. Abstr. 26, 323.Google Scholar
  30. Diwan, A., Castine, M., Pomerleau, C.S., Meador-Woodruff, J.H. and Dalack, G.W. (1998) “Differential prevalence of cigarette smoking in patients with schizophrenic vs. mood disorders”, Schizophr. Res. 33, 113–118.PubMedCrossRefGoogle Scholar
  31. Dodel, R.C., Du, Y., Bales, K.R., Gao, F. and Paul, S.M. (1999) “Sodium salicylate and 17beta-estradiol attenuate nuclear transcription factor NF-kappaB trnaslocation in cultured rat astroglial cultures following exposure to amyloid A beta(1–40) and lipopolysaccharides”, J. Neurochem. 73, 1453–1460.PubMedCrossRefGoogle Scholar
  32. Druse, M.J., Kuo, A. and Tajuddin, N. (1991) “Effects of in utero ethanol exposure on the developing serotonergic system”, Alcohol. Clin. Exp. Res. 15, 678–684.PubMedCrossRefGoogle Scholar
  33. Dueñas, M., Torres-Aleman, I., Naftolin, F. and Garcia-Segura, L.M. (1996) “Interaction of insulin-like growth factor-1 and estradiol signaling pathways on hypothalamic neuronal differentiation”, Neuroscience 74, 531–539.PubMedCrossRefGoogle Scholar
  34. Duester, G., Deltour, L. and Ang, H.L. (1996) “Evidence that class IV alcohol dehydrogenase may function in embryonic retinoic acid synthesis”, In: Weiner, H., ed, Enzymology and Molecular Biology of Carbonyl Metabolism (Plenum Press, New York, NY), pp 357–364.Google Scholar
  35. Edwards, G. (1990) “Withdrawal symptoms and alcohol dependence: fruitful mysteries”, Br. J. Addict. 85, 447–461.PubMedCrossRefGoogle Scholar
  36. Famy, C., Streissguth, A.P. and Unis, A.S. (1998) “Mental illness in adults with fetal alcohol syndrome or fetal alcohol effects”, Am. J. Psychiatry 155, 552–554.PubMedGoogle Scholar
  37. Fils-Aime, M.L., Eckardt, M.J., George, D.T., Brown, G.L., Mefford, I. and Linnoila, M. (1996) “Early-onset alcoholics have lower cerebrospinal fluid 5-hydroxyindoleacetic acid levels than lateonset alcoholics”, Arch. Gen. Psychiatry 53, 211–216.PubMedGoogle Scholar
  38. Freedman, R., Coon, H., Myles-Worsley, M., Orr-Urtreger, A., Olincy, A., Davis, A., Polymeropoulos, M., Holik, J., Hopkins, J., Hoff, M., Rosenthal, J., Waldo, M.C., Reimherr, F., Wender, P., Yaw, J., Young, D.A., Breese, C.R., Adams, C., Patterson, D., Adler, L.E., Kruglyak, L., Leonard, S. and Byerley, W. (1997) “Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus”, Proc. Natl Acad. Sci. USA 94, 587–592.PubMedCrossRefGoogle Scholar
  39. Fride, E. and Mechoulam, R. (1996a) “Developmental aspects of anandamide: ontogeny of response and prenatal exposure”, Psychoneuroendocrinology 21, 157–172.PubMedCrossRefGoogle Scholar
  40. Fride, E. and Mechoulam, R. (1996b) “Ontogenic development of the response to anandamide and Δ9-tetrahydrocannabinol in mice”, Dev. Brain Res. 95, 131–134.CrossRefGoogle Scholar
  41. García-Gil, L., de Miguel, R., Ramos, J.A. and Fernández-Ruiz, J.J. (1996) “Perinatal Δ9-tetrahydrocannabinol exposure in rats modifies the responsiveness of midbrain dopaminergic neurons in adulthood to a variety of challenges with dopaminergic drugs”, Drug Alcohol Depend. 42, 155–166.CrossRefGoogle Scholar
  42. García-Gil, L., Ramos, J.A., Rubino, T., Parolaro, D. and Fernández-Ruiz, J.J. (1998) “Perinatal Δ9-tetrahydrocannabinol exposure did not alter dopamine transporter and tyrosine hydroxylase mRNA levels in midbrain dopaminergic neurons of adult male and female rats”, Neurotoxicol. Teratol. 20, 549–553.PubMedCrossRefGoogle Scholar
  43. García-Gil, L., de Miguel, R., Romero, J., Pérez, A., Ramos, J.A. and Fernández-Ruiz, J.J. (1999) “Perinatal Δ9-tetrahydrocannabinol exposure augmented the magnitude of motor inhibition caused by GABA-B but not GABA-A, receptor agonists in adult rats”, Neurotoxicol. Teratol. 21, 277–283.PubMedCrossRefGoogle Scholar
  44. Garcia-Segura, L.M., Naftolin, F., Hutchison, J.B., Azcoitia, I. and Chowen, J.A. (1999a) “Role of astroglia in estrogen regulation of synaptic plasticity and brain repair”, J. Neurobiol. 40, 574–584.PubMedCrossRefGoogle Scholar
  45. Garcia-Segura, L.M., Wozniack, A., Azcoitia, I., Rodriguez, J.R., Hutchison, R.E. and Hutchison, J.B. (1999b) “Aromatase expression by astrocytes after brain injury: implications for local estrogen formation in brain repair”, Neuroscience 89, 567–578.PubMedCrossRefGoogle Scholar
  46. Garcia-Segura, L.M., Cardona-Gomez, G.P., Chowen, J.A. and Azcoitia, I. (2000) “Insulin-like growth factor-I receptors and estrogen receptors interact in the promotion of neuronal survival and neuroprotection”, J. Neurocytol. 29, 425–437.PubMedCrossRefGoogle Scholar
  47. Garcia-Segura, L.M., Azcoitia, I. and DonCarlos, L.L. (2001) “Neuroprotection by estradiol”, Prog. Neurobiol. 63, 29–60.PubMedCrossRefGoogle Scholar
  48. Gawin, F.H. and Kleber, H.D. (1986) “Abstinence symptomatology and psychiatric diagnosis in cocaine abusers: clinical observations”, Arch. Gen. Psychiatry 43, 107–113.PubMedGoogle Scholar
  49. George, T.P., Sernyak, M.J., Ziedonis, D.M. and Woods, S.W. (1995) “Effects of clozapine on smoking in chronic schizophrenic outpatients”, J. Clin. Psychiatry 56, 344–346.PubMedGoogle Scholar
  50. Geyer, M.A. and Braff, D.L. (1987) “Startle habituation and sensorimotor gating in schizophrenia and related animal models”, Schizophr. Bull. 13, 643–668.PubMedGoogle Scholar
  51. Glover, V. (1997) “Maternal stress or anxiety in pregnancy and emotional development of the child”, Br. J. Psychiatry 171, 105–106.PubMedCrossRefGoogle Scholar
  52. Gollapudi, L. and Oblinger, M.M. (1999a) “Stable transfection of PC12 cells with estrogen receptor (ERα).: protective effects of estrogen on cell survival after serum deprivation”, J. Neurosci. Res. 56, 99–108.PubMedCrossRefGoogle Scholar
  53. Gollapudi, L. and Oblinger, M.M. (1999b) “Estrogen and NGF synergistically protect terminally differentiated ERα-transfected PC12 cells from apoptosis”, J. Neurosci. Res. 56, 471–481.PubMedCrossRefGoogle Scholar
  54. Gongwer, M.A., Murphy, J.M., McBride, W.J., Lumeng, L. and Li, T.K. (1989) “Regional brain contents of serotonin, dopamine and their metabolites in the selectively bred high- and low-alcohol drinking lines of rats”, Alcohol Alcohol. 6, 317–320.Google Scholar
  55. Gressens, P., Lammens, M., Picard, J.J. and Evrard, P. (1992) “Ethanol-induced disturbances of gliogenesis and neurogenesis in the developing murine brain: an in vitro and in vivo immunohistochemical and ultrastructural study”, Alcohol Alcohol. 27, 219–226.PubMedGoogle Scholar
  56. Guerri, C. (2002) “Mechanisms involved in central nervous system dysfunctions induced by prenatal ethanol exposure”, Neurotoxicity Res. 4, 327–335.CrossRefGoogle Scholar
  57. Guerri, C. and Renau-Piqueras, J. (1997) “Alcohol, astroglia, and brain development”, Mol. Neurobiol. 15, 65–81.PubMedCrossRefGoogle Scholar
  58. Guerri, C., Climent, E. and Pascual, M. (2001) “Ethanol exposure enhances apoptosis during brain development and affects brain-derived neurotrophic factor and its TrkB receptors”, Alcohol Alcohol. 36, 437.Google Scholar
  59. Haertzen, C.A. and Hooks, Jr, N.T. (1969) “Changes in personality as subjective experience associated with the chronic administration and withdrawal of opiates”, J. Nerv. Ment. Dis. 148, 606–614.PubMedGoogle Scholar
  60. Halliday, G., Ellis, J., Heard, R., Caine, D. and Harper, C. (1993) “Brainstem serotonergic neurons in chronic alcoholics with and without the memory impairment of Korsakoff's psychosis”, J. Neuropathol. Exp. Neurol. 52, 567–579.PubMedCrossRefGoogle Scholar
  61. Halliday, G., Baker, K. and Harper, C. (1995) “Serotonin and alcohol-related brain damage”, Metab. Brain Dis. 10, 25–30.PubMedCrossRefGoogle Scholar
  62. Harrison, A.A., Liem, Y.T. and Markou, A. (2001) “Fluoxetine combined with a serotonin-1A receptor antagonist reversed reward deficits observed during nicotine and amphetamine withdrawal in rats”, Neuropsychopharmacology 25, 55–71.PubMedCrossRefGoogle Scholar
  63. Hartman, R.E., Jevtovic-Todorovic, V., Olney, J.W. and Wozniak, D.F. (2001) “Neonatal exposure to common anesthetics leads to spatial learning deficits in juvenile rats”, Soc. Neurosci. Abstr. 27, 772.5.Google Scholar
  64. Henningfield, J.E., Johnson, R.E. and Jasinski, D.R. (1987) “Clinical procedures for the assessment of abuse potential”, In: Bozarth, M.A., ed, Methods of Assessing the Reinforcing Properties of Abused Drugs (Springer-Verlag, New York), pp 573–590.Google Scholar
  65. Henry, C., Guegant, G., Cador, M., Arnauld, E., Arsaut, J., Le Moal, M. and Demotes-Mainard, J. (1995) “Prenatal stress in rats facilitates amphetamine-induced sensitization and induces long-lasting changes in dopamine receptors in the nucleus accumbens”, Brain Res. 685, 179–186.PubMedCrossRefGoogle Scholar
  66. Hurt, R.D., Sachs, D.P.L., Glover, E.D., Offord, K.P., Johnston, J.A., Dale, L.C., Khayrallah, M.A., Schroeder, D.R., Glover, P.N., Sullivan, C.R., Croghan, I.T. and Sullivan, P.M. (1997) “A comparison of sustained-release buproprion and placebo for smoking cessation”, N. Engl. J. Med. 337, 1195–1202.PubMedCrossRefGoogle Scholar
  67. Ikonomidou, C., Bosch, F., Miksa, M., Bittigau, P., Vockler, J., Dikranian, K., Tenkova, T., Stevoska, V., Turski, L. and Olney, J.W. (1999) “Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain”, Science 283, 70–74.PubMedCrossRefGoogle Scholar
  68. Ikonomidou, C., Bittigau, P., Ishimaru, M.J., Wozniak, D.F., Koch, C., Genz, K., Price, M.T., Stefovska, V., Horster, F., Tenkova, T., Dikranian, K. and Olney, J.W. (2000a) “Drug-induced damage in the developing brain”, Science 288, 976–977.CrossRefGoogle Scholar
  69. Ikonomidou, C., Bittigau, P., Ishimaru, M.J., Wozniak, D.F., Koch, C., Genz, K., Price, M.T., Stefovska, V., Horster, F., Tenkova, T., Dikranian, K. and Olney, J.W. (2000b) “Ethanol-induced apoptotic neurodegeneration and fetal alcohol syndrome”, Science 287, 1056–1060.PubMedCrossRefGoogle Scholar
  70. Ikonomidou, C., Genz, K., Engelbrechten, S., Dikranian, K., Olney, J.W. and Bittigau, P. (2000c) “Antiepileptic drugs which block sodium channels cause neuronal apoptosis in the developing rat brain”, Soc. Neurosci. Abstr. 26, 323.Google Scholar
  71. Ikonomidou, C., Bittigau, P., Koch, C., Genz, K., Hoerster, F., Felderhoff-Mueser, U., Tenkova, T., Dikranian, K. and Olney, J.W. (2001) “Neurotransmitters and apoptosis in the developing brain”, Biochem. Pharmacol. 62, 401–405.PubMedCrossRefGoogle Scholar
  72. Insel, T.R. (1995) “The development of brain and behavior”, In: Bloom, F.E. and Kupfer, D.J. eds, Psychopharmacology: The Four Generation of Progress (Raven Press, New York), pp 683–694.Google Scholar
  73. Jaffe, J.H. (1990) “Drug addiction and drug abuse”, In: Rall, T.W., Nies, A.S. and Taylor, P., eds, Goodman & Gilman's Pharmacological Basis of Therapeutics, 8th edition (Pergamon Press, Elmsford, NY), pp 522–573.Google Scholar
  74. Javors, M., Tiouririne, M. and Prihoda, T. (2000) “Platelet serotonin uptake is higher in early-onset than in late-onset alcoholics”, Alcohol Alcohol. 35, 390–393.PubMedGoogle Scholar
  75. Jevtovic-Todorovic, V., Wozniak, D.F., Benshoff, N. and Olney, J.W. (2001) “Commonly used anesthesia protocol causes neuronal suicide in the immature rat brain”, Soc. Neurosci. Abstr. 27, 772.4.Google Scholar
  76. Jeziorski, M., White, F.J. and Wolf, M.E. (1994) “MK-801 prevents the development of behavioral sensitization during repeated morphine administration”, Synapse 16, 137–147.PubMedCrossRefGoogle Scholar
  77. Jones, K.L. and Smith, D.W. (1975) “The fetal alcohol syndrome”, Teratology 12, 1–10.PubMedCrossRefGoogle Scholar
  78. Jones, K.L., Smith, D.W., Ulleland, C.N. and Streissguth, A.P. (1973) “Pattern of malformation in offspring of chronic alcoholic mothers”, Lancet I, 1267–1271.CrossRefGoogle Scholar
  79. Jorenby, D.E., Leischow, S.J., Nides, M.A., Rennard, S.I., Johnston, J.A., Hughes, A.R., Smith, S.S., Muramoto, M.L., Daughton, D.M., Doan, K., Fiore, M.C. and Baker, T.B. (1999) “A controlled trial of sustained-release buproprion, a nicotine patch, or both for smoking cessation”, N. Engl. J. Med. 340, 685–691.PubMedCrossRefGoogle Scholar
  80. Katner, S.N. and Weiss, F. (2001) “Neurochemical characteristics associated with ethanol preference in selected alcohol-preferring and_-nonpreferring rats: a quantitative microdialysis study”, Alcohol. Clin. Exp. Res. 25, 198–205.PubMedCrossRefGoogle Scholar
  81. Khantzian, E.J. (1985) “The self-medication hypothesis of addictive disorders: focus on heroin and cocaine dependence”, Am. J. Psychiatry 142, 1259–1264.PubMedGoogle Scholar
  82. Khantzian, E.J. (1997) “The self-medication hypothesis of substance use disorders: a reconsideration and recent applications”, Harvard Rev. Psychiatry 4, 231–244.CrossRefGoogle Scholar
  83. Koehl, M., Barbazanges, A., Le Moal, M. and Maccari, S. (1997) “Prenatal stress induces a phase advance of circadian corticosterone rhythm in adult rats which is prevented by postnatal stress”, Brain Res. 759, 317–320.PubMedCrossRefGoogle Scholar
  84. Koehl, M., Darnaudery, M., Dulluc, J., Van Reeth, O., Le Moal, M. and Maccari, S. (1999) “Prenatal stress alters circadian activity of hypothalamo-pituitary- adrenal axis and hippocampal corticosteroid receptors in adult rats of both gender”, J. Neurobiol. 40, 302–315.PubMedCrossRefGoogle Scholar
  85. Koehl, M., Bjijou, Y., Le Moal, M. and Cador, M. (2000) “Nicotine-induced locomotor activity is increased by preexposure of rats to prenatal stress”, Brain Res. 882, 196–200.PubMedCrossRefGoogle Scholar
  86. Koehl, M., Lemaire, V., Mayo., W., Abrous, D.N., Maccari, S., Piazza, P.V., Le Moal, M. and Vallee, M. (2002) “Individual vulnerability to substance abuse and affective disorders: role of early environmental influences”, Neurotoxicity Res. 4, 281–296.CrossRefGoogle Scholar
  87. Kotch, L.A. and Sulik, K.K. (1992) “Experimental fetal alcohol syndrome: proposed pathogenic basis for a variety of associated facial and brain anomalies”, Am. J. Med. Genet. 44, 168–176.PubMedCrossRefGoogle Scholar
  88. Krystal, J.H., D'Souza, D.C., Madonick, S. and Petrakis, I.L. (1999) “Toward a rational pharmacotherapy of comorbid substance abuse in schizophrenic patients”, Schizophr. Res. 35, S35-S49.PubMedCrossRefGoogle Scholar
  89. Lauder, J.M. (1990) “Ontogeny of the serotonergic, system in the rat: serotonin as a developmental signal”, Ann. N.Y. Acad. Sci. 600, 297–313.PubMedCrossRefGoogle Scholar
  90. Lieber, C.S. (1988) “Biochemical and molecular basis of alcohol-induced injury to liver and other tissues”, N. Engl. J. Med. 319, 1639–1650.PubMedGoogle Scholar
  91. Luo, J. and Miller, M.W. (1999) “Platelet-derived growth factor-mediated signal transduction underlying astrocyte proliferation: site of ethanol action”, J. Neurosci. 19, 10014–10025.PubMedGoogle Scholar
  92. Luthman, J., Fredriksson, A., Lewander, T., Jonsson., G. and Archer, T. (1989) “Effects of d-amphetamine and methylphenidate on hyperactivity produced by neonatal 6-hydroxydopamine treatment”, Psychopharmacology 99, 550–557.PubMedCrossRefGoogle Scholar
  93. Luthman, J., Fredriksson, A., Plaznik A. and Archer, T. (1991) “Ketanserin or mianserin treatment reverses, hyperactivity in neonatally dopamine lesioned rats”, J. Psychopharmacol. 5, 418–425.CrossRefGoogle Scholar
  94. Luthman, J., Bassen, M., Fredriksson, A. and Archer, T. (1997) “Functional changes induced by neonatal 6-hydroxydopamine lesions: effects of dose levels on behavioural parameters”, Behav. Brain Res. 82, 213–221.PubMedCrossRefGoogle Scholar
  95. Maccari, S., Piazza, P.V., Kabbaj, M., Barbazanges, A., Simon, H. and Le Moal, M. (1995) “Adoption reverses the long-term impairment in glucocorticoid feedback induced by prenatal stress”, J. Neurosci. 15, 110–116.PubMedGoogle Scholar
  96. Maier, S.E., Chen, W.J. and West, J.R. (1996) “Prenatal binge-like alcohol exposure alters neurochemical profiles in fetal rat brain”, Pharmacol. Biochem. Behav. 55, 521–529.PubMedCrossRefGoogle Scholar
  97. Mailleux, P. and Vanderhaeghen, J.J. (1992a) “Localization of cannabinoid receptor in the human developing and adult basal ganglia. Higher levels in the striatonigral neurons”, Neurosci. Lett. 148, 173–176.PubMedCrossRefGoogle Scholar
  98. Mailleux, P. and Vanderhaeghen, J.J. (1992b) “Distribution of neuronal cannabinoid receptor in the adult rat brain: a comparative receptor binding radioautography and in situ hybridation histochemistry”, Neuroscience 48, 655–668.PubMedCrossRefGoogle Scholar
  99. Mallet, P.E. and Beninger, R.J. (1996) “The endogenous cannabinoid receptor agonist anandamide impairs memory in rats”, Behav. Pharmacol. 7, 276–284.CrossRefGoogle Scholar
  100. Mao, J., Price, D.D., Phillips, L.L., Lu, J. and Mayer, D.J. (1995) “Increases in protein kinase C immunoreactivity in the spinal cord of rats associated with tolerance to the analgesic effects of morphine”, Brain Res. 677, 257–267.PubMedCrossRefGoogle Scholar
  101. Marcus, P. and Snyder, R. (1995) “Reduction of comorbid substance abuse with clozapine”, Am. J. Psychiatry 152, 959.PubMedGoogle Scholar
  102. Markou, A. and Kenny, P.J. (2002) “Neuroadaptations to chronic exposure to drugs of abuse: relevance to depressive symptomatology seen across psychiatric diagnostic categories”, Neurotoxicity Res. 4, 297–313.CrossRefGoogle Scholar
  103. Masterson, E. and O'Shea, B. (1984) “Smoking and malignancy in schizophrenia”, Br. J. Psychiatry 145, 429–432.PubMedCrossRefGoogle Scholar
  104. Miller, M.W. (1992), “The effects of prenatal exposure to ethanol on cell proliferation and neuronal migration”, In: Miller, M., ed, Developmental of the Central Nervous System: Effects of Alcohol and Opiates (Liss, New York), pp 47–69.Google Scholar
  105. Miller, M.W. (1995) “Effect of pre- or postnatal exposure to ethanol on the total number of neurons in the principal sensory nucleus of the trigeminal nerve: cell proliferation and neuronal death”, Alcohol. Clin. Exp. Res. 19, 1359–1363.PubMedCrossRefGoogle Scholar
  106. Miñana, R., Climent, E., Barettino, D., Segui, J.M., Renau-Piqueras, J. and Guerri, C. (2000) “Alcohol exposure alters the expression pattern of neural cell adhesion molecules during brain development”, J. Neurochem. 75, 954–964.PubMedCrossRefGoogle Scholar
  107. Mokler, D.A., Robinson, S.E., Johnson, J.H., Hong, J.S. and Rosecrans, J.A. (1987) “Neonatal administration of Δ9-tetrahydrocannabinol alters the neurochemical response to stress in the adult Fischer-344 rat”, Neurotoxicol. Teratol. 9, 321–326.PubMedCrossRefGoogle Scholar
  108. Molina-Holgado, F., Amaro, A., Gonzalez, M.I., Alvarez, F.J. and Leret, M.L. (1996) “Effect of maternal delta 9-tetrahydrocannabinol on developing serotonergic system”, Eur. J. Pharmacol. 316, 39–42.PubMedCrossRefGoogle Scholar
  109. Molina-Holgado, F., Alvarez, F.J., González, I., Antonio, M.T. and Leret, M.L. (1997) “Maternal exposure to Δ9-tetrahydrocannabinol (Δ9-THC) alters indolamine levels and turnover in adult male and female rat brain regions”, Brain Res. Bull. 43, 173–178.PubMedCrossRefGoogle Scholar
  110. Montoliu, C., Sancho-Tello, M., Azorin, I., Burgal, M., Valles, S., Renau-Piqueras, J. and Guerri, C. (1995) “Ethanol increases cytochrome, P4502E1 and induces oxidative stress in astrocytes”, J. Neurochem. 65, 2561–2570.PubMedGoogle Scholar
  111. Monyer, H., Burnashev, N., Laurie, D.J., Sakmann, B. and Seeburg, P.H. (1994) “Developmental and regional expression in the rat brain and functional properties of four NMDA receptors”, Neurom 12, 529–540.Google Scholar
  112. Morinan, A. (1987) “Reduction in striatal 5-hydroxytryptamine turnover following chronic administration of ethanol to rats”, Alcohol Alcohol. 22, 53–60.PubMedGoogle Scholar
  113. Myers, R.D. and Veale, W.L. (1968) “Alcohol preference in the rat: reduction following depletion of brain serotonin”, Science 160, 1469–1471.PubMedCrossRefGoogle Scholar
  114. Naranjo, C.A., Chu, A. and Tremblay, Y. (2002) “Neurodevelopmental liabilities in alcohol dependence: central serotonin and dopamine dysfunctions”, Neurotoxicity Res. 4, 343–361.CrossRefGoogle Scholar
  115. Navarro, M., Rodríguez, F., Hernández, M.L., Ramos, J.A. and Fernández, J.J. (1994) “Motor behavior and nigrostrital dopaminergic activity in adult rats perinatally exposed to cannabinoids”, Pharmacol. Biochem. Behav. 47, 47–58.PubMedCrossRefGoogle Scholar
  116. Nunes, E.V., McGrath, P.J., Quitkin, F.M., Ocepek-Welikson, K., Stewart, J.W., Koenig, T., Wager, S. and Klein, D.F. (1995) “Imipramine treatment of cocaine abuse: possible boundaries of efficacy”, Drug Alcohol. Depend. 39, 185–195.PubMedCrossRefGoogle Scholar
  117. Olincy, A., Young, D.A. and Freedman, R. (1997) “Increased levels of the nicotine metabolite cotinine in schizophrenic smokers compared to other smokers”, Biol. Psychiatry 42, 1–5.PubMedCrossRefGoogle Scholar
  118. Olive, M.F., Mehmert, K.K., Messing, R.O. and Hodge, C.W. (2000) “Reduced operant ethanol self-administration and in vivo mesolimbic dopamine responses to ethanol in PKCepsilon-deficient mice”, Eur. J. Neurosci. 12, 4131–4140.PubMedCrossRefGoogle Scholar
  119. Olney, J.W., Labruyere, J., Wang, G., Wozniak, D.F., Price, M.T. and Sesma, M.A. (1991) “NMDA antagonist neurotoxicity: mechanism and prevention”, Science 254, 1515–1518.PubMedCrossRefGoogle Scholar
  120. Olney, J.W., Wozniak, D.F., Jevtovic-Todorovic, V., Farber, N.B. and Ikonomidou, C. (2002) “Glutamate and GABA receptor dysfunction in the fetal alcohol syndrome”, Neurotoxicity Res. 4, 315–325.CrossRefGoogle Scholar
  121. Pagel, M.D., Smilkstein, G., Regen, H. and Montano, D. (1990) “Psychosocial influences on new born outcomes: a controlled prospective study”, Soc. Sci. Med. 30, 597–604.PubMedCrossRefGoogle Scholar
  122. Parsons, L.H., Koob, G.F. and Weiss, F. (1995) “Serotonin dysfunction in the nucleus accumbens of rats during with-drawal after unlimited access to intravenous cocaine”, J. Pharmacol. Exp. Ther. 274, 1182–1191.PubMedGoogle Scholar
  123. Perez-Rosado, A., Gomez, M., Manzanares, J., Ramos, J.A. and Fernandez-Ruiz, J. (2002) “Changes in prodynorphin and POMC gene expression in several brain regions of rat fetuses prenatally exposed to Δ9-tetrahydrocannabinol”, Neurotoxicity Res. 4, 211–218.CrossRefGoogle Scholar
  124. Persico, A.M., Mengual, E., Moessner, R., Hall, F.S., Revay, R.S., Sora, I., Arellano, J., DeFelipe, J., Gimene-Amaya, J.M., Conciatori, M., Marino, R., Baldi, A., Cabib, S., Pascucci T., Uhl, G.R., Murphy, D.L., Lesch, K.P., Keller, F. and Hall, S.F. (2001) “Barrel pattern formation requires serotonin uptake by thalamocortical afferents, and not vesicular monoamine releae”, J. Neurosci. 21, 6862–6873.PubMedGoogle Scholar
  125. Peterson, D.J., Trujillo, K.A. (2001) The, NMDA receptor antagonist memantine inhibits morphine-induced behavioral and neural plasticity. Presented by Trujillo's team at College on Problems of Drug Dependence Annual Meeting, Scottsdale, AZ.Google Scholar
  126. Piazza, P.V., Rouge-Pont, E., Deminiere, J.M., Kharoubi, M., Le Moal, M. and Simon, H. (1991) “Dopaminergic activity is reduced in the prefrontal cortex and increased in the nucleus accumbens of rats predisposed to develop, amphetamine self-administration”, Brain Res. 567, 169–174.PubMedCrossRefGoogle Scholar
  127. Poulter, M.O., Barker, J.L., O'Carroll, A.M., Lolait, S.J. and Mahan, L.C. (1993) “Co-existent expression of GABAA receptor beta 2, beta 3 and gamma 2 subunit messenger RNAs during embryogenesis and early postnatal development of the rat central nervous system”, Neuroscience 53, 1019–1033.PubMedCrossRefGoogle Scholar
  128. Ramanathan, R., Wilkemeyer, M.F., Mittal, B., Perides, G. and Charness, M.E. (1996) “Alcohol inhibits cell-cell adhesion mediated by human L1”, J. Cell Biol. 133, 381–390.PubMedCrossRefGoogle Scholar
  129. Ramos, J.A., de Miguel, R., Cebeira, M., Hernandez, M. and Fernandez-Ruiz, J. (2002) “Exposure to cannabinoids in the development of endogenous cannabinoid system”, Neurotoxicity Res. 4, 363–372.CrossRefGoogle Scholar
  130. Rausch, J.L., Monteiro, M.G. and Schuckit, M.A. (1991) “Platelet serotonin uptake in men with family histories of alcoholism”, Neuropsychopharmacology 4, 83–86.PubMedGoogle Scholar
  131. Regan, R.F. and Guo, Y. (1997) “Estrogens attenuate neuronal injury due to hemoglobin, chemical hypoxia, and excitatory amino acids in murine cortical cultures”, Brain Res. 764, 133–140.PubMedCrossRefGoogle Scholar
  132. Rifas, L., Towler, D.A. and Avioli, L.V. (1997) “Gestational exposure to ethanol suppresses msx2 expression in developing mouse embryos”, Proc. Natl. Acad. Sci. USA 94, 7549–7554.PubMedCrossRefGoogle Scholar
  133. Robinson, D., Mayerhoff, D., Alvir, J., Cooper, T. and Lieberman, J. (1991) “Mood responses of remitted schizophrenics to methylphenidate infusion”, Psychopharmacology 105, 247–252.PubMedCrossRefGoogle Scholar
  134. Rodríguez de Fonseca, F., Cebeira, M., Fernández-Ruiz, J.J., Navarro, M. and Ramos, J.A. (1991) “Effects of pre- and perinatal exposure to hashish extracts on the ontogeny of brain dopaminergic neurons”, Neuroscience 43, 713–723.PubMedCrossRefGoogle Scholar
  135. Rosenthal, N.E., Davenport, Y., Cowdry, R.W., Webster, M.H. and Goodwin, F.K. (1980) “Monoamine metabolites in cerebrospinal fluid of depressive subgroups”, Psychiatry, Res. 2, 113–119.CrossRefGoogle Scholar
  136. Ross, S.A., McCaffery, P.J., Drager, U.C. and De Luca, L.M. (2000) “Retinoids, in embryonal development”, Physiol. Rev. 80, 1021–1054.PubMedGoogle Scholar
  137. Sari, Y., Powrozek, T. and Zhou, F.C. (2001) “Alcohol deters the outgrowth of serotonergic neurons at midgestation”, J. Biomed. Sci. 8, 119–125.PubMedCrossRefGoogle Scholar
  138. Schneier, F.R. and Siris, S.G. (1987) “A review of psychoactive substance use and abuse in schizophrenia: patterns of drug choice”, J. Nerv. Ment. Dis. 175, 641–652.PubMedCrossRefGoogle Scholar
  139. Schuckit, M.A., Gold, E. and Risch, C. (1987a) “Plasma cortisol levels following ethanol in sons of alcoholics and controls”, Arch. Gen. Psychiatry 44, 942–945.PubMedGoogle Scholar
  140. Schuckit, M.A., Gold, E. and Risch, C. (1987b) “Serum prolactin levels in sons of alcoholics and control subjects”, Am. J. Psychiatry 144, 854–859.PubMedGoogle Scholar
  141. Shivachar, A.C., Martin, B.R. and Ellis, E.F. (1996) “Anandamide and Δ9-tetrahydrocannabinol-evoked arachidonic acid mobilization and blockade by SR141716A”, Biochem. Pharmacol. 51, 669–676.PubMedCrossRefGoogle Scholar
  142. Simpkins, J.W., Rajakumar, G., Zhang, Y.Q., Simpkins, C.E., Greenwald, D., Yu, C.J., Bodor, N. and Day, A.L. (1997) “Estrogens may reduce mortality and ischemic damage caused by middle cerebral artery occlusion in the female rat”, J. Neurosurg. 87, 724–730.PubMedCrossRefGoogle Scholar
  143. Singer, C.A., Rogers, K.L., Strickland, T.M. and Dorsa, D.M. (1996) “Estrogen protects primary cortical neurons from glutamate toxicity”, Neurosci. Lett. 212, 13–16.PubMedCrossRefGoogle Scholar
  144. Singer, C.A., Rogers, K.L. and Dorsa, D.M. (1998) “Modulation of Bcl-2 expression: a potential component of estrogen protection in NT2 neurons”, NeuroReport 9, 2565–2568.PubMedCrossRefGoogle Scholar
  145. Sjötrom, K., Valentin, L., Thelin, T. and Marsal, K. (1997) “Maternal anxiety in late pregnancy and fetal hemodynamics”, Eur. J. Obstet. Gynecol. Reprod. Biol. 74, 149–155.CrossRefGoogle Scholar
  146. Stone, D.J., Rozovsky, I., Morgan, T.E., Anderson, C.P., Hajain, H. and Finch, C.E. (1997) “Astrocytes and microglia respond to estrogen with increased apoE mRNA in vivo and in vitro”, Exp. Neurol. 143, 313–318.PubMedCrossRefGoogle Scholar
  147. Thanos, P.K., Volkow, N.D., Freimuth, P., Umegaki, H., Ikari, H., Roth, G., Ingram, D.K. and Hitzemann, R. (2001) “Over-expression of dopamine D2 receptors reduces alcohol self administration”, J. Neurochem. 78, 1094–1103.PubMedCrossRefGoogle Scholar
  148. Trujillo, K.A. (2002) “The neurobiology of opiate tolerance, dependence and sensitization: mechanisms of NMDA receptor-dependent synaptic plasticity”, Neurotoxicity Res. 4, 373–391.CrossRefGoogle Scholar
  149. Trujillo, K.A. and Akil, H. (1990) “Behavioral interactions between morphine and MK-801: analgesia, tolerance, dependence and lethality”, Soc. Neurosci. Abstr. 16, 211.Google Scholar
  150. Trujillo, K.A. and Akil, H. (1991) “Inhibition of morphine tolerance and dependence by the NMDA receptor antagonist MK-801”, Science 251, 85–87.PubMedCrossRefGoogle Scholar
  151. Trujillo, K.A., Warmoth, K.P., Peterson, D.J., Albertson, D.N., Watorski, K. and Swadley-Lewellen, R.M. (2001) “NMDA receptor antagonists inhibit the development of tolerance and sensitisation to the locomotor effects of opiates”, Soc. Neurosci. Abstr., 27.Google Scholar
  152. Vallés, S., Lindo, L., Montoliu, C., Renau-Piqueras, J. and Guerri, C. (1994) “Prenatal exposure to ethanol induces changes in the nerve growth factor and its receptor in proliferating astrocytes in primary culture”, Brain Res. 656, 281–286.PubMedCrossRefGoogle Scholar
  153. Vallés, S., Felipo, V., Montoliu, C. and Guerri, C. (1995) “Alcohol exposure during brain development reduces. 3H-MK-801 binding and enhances metabotropic-glutamate receptor-stimulated phosphoinositide hydrolysis in rat hippocampus”, Life Sci. 56, 1373–1383.PubMedCrossRefGoogle Scholar
  154. Vallés S., Sancho-Tello, M., Miñana, R., Climent, E., Renau-Piqueras, J. and Guerri, C. (1996) “Glial fibrillary acidic protein expression in rat brain and in radial glia culture is delayed by prenatal ethanol exposure”, J. Neurochem. 67, 2425–2433.PubMedGoogle Scholar
  155. Vela, G., Fuentes, J.A., Bonnin, A., Fernández-Ruiz, J.J. and Ruiz-Gayo, M. (1995) “Perinatal exposure to Δ9-tetrahydrocannabinol (Δ9-THC). leads to changes in opioid-related behavioral patterns in rats”, Brain Res. 680, 142–147.PubMedCrossRefGoogle Scholar
  156. Vela, G., Martín, S., García-Gil, L., Crespo, J.A., Ruiz-Gayo, M., Fernández-Ruiz, J.J., García-Lecumberri, C., Pelaprat, D., Fuentes, J.A., Ramos, J.A. and Ambrosio, E. (1998) “Maternal exposure to Δ9-tetrahydrocannabinol facilitates morphine self-administration behavior and changes μ-opioid receptor binding in adult offspring female rats”, Brain Res. 807, 101–109.PubMedCrossRefGoogle Scholar
  157. Virkkunen, M., Kallio, E., Rawlings, R., Tokola, R., Poland, R.E., Guidotti, A., Nemeroff, C., Bissette, G., Kalogeras, K., Karonen, S.L. and Linnoila, M. (1994) “Personality profiles and state aggressiveness in Finnish alcoholic, violent offenders, fire setters, and healthy volunteers”, Arch. Gen. Psychiatry 51, 28–33.PubMedGoogle Scholar
  158. Waddington, W.W., Brown, B.S., Haertzen, C.A., Cone, E.J., Dax, E.M., Herning, R.I. and Michaelson, B.S. (1990) “Changes in mood, craving, and sleep during short-term abstinence reported by male cocaine addicts: a controlled, residential study”, Arch. Gen. Psychiatry 47, 861–868.Google Scholar
  159. Wang, J.Y., Shum, A.Y., Lin, T.C. and Wang, Y. (1996) “Central serotonergic lesions increase, voluntary alcohol consumption in Sprague Dawley rats: moderation by long-term ethanol administration”, Alcohol. Clin. Exp. Res. 20, 1252–1259.PubMedCrossRefGoogle Scholar
  160. Webster, W.S., Walsh., D.A., McEwen., S.E. and Lipson, A.H. (1983) “Some teratogenic properties of ethanol and acetaldehyde in C57BL/6J mice: Implications for the study of the fetal alcohol syndrome”, Teratology 27, 231–243.PubMedCrossRefGoogle Scholar
  161. Weiss, F., Markou, A., Lorang, M.T. and Koob, G.F. (1992) “Basal dopamine levels in the nucleus accumbens are decreased during cocaine withdrawal after unlimited-access self-administration”, Brain Res. 593, 314–318.PubMedCrossRefGoogle Scholar
  162. West, R. and Gossop, M. (1994) “Overview: a comparison of withdrawal symptoms from different drug classes”, Addiction 89, 1483–1489.PubMedCrossRefGoogle Scholar
  163. West, R.J., Jarvis, M.J., Russell, M.A.H., Carruthers, M.E. and Feyerabend, C. (1984) “Effect of nicotine replacement on the cigarette withdrawal syndrome”, Br. J. Addict. 79, 215–219.PubMedGoogle Scholar
  164. Whitaker-Azmitia, P.M., Druse, M., Walker, P. and Lauder, J.M. (1996) “Serotonin as a developmental signal”, Behav. Brain Res. 73, 19–29.PubMedCrossRefGoogle Scholar
  165. Wolf, M.E. and Jeziorski, M. (1993) “Coadministration of MK-801 with amphetamine, cocaine or morphine prevents rather than transiently masks the development of behavioral sensitization”, Brain Res. 613, 291–294.PubMedCrossRefGoogle Scholar
  166. Zafar, H., Shelat, S.G., Redei, E. and Tejani-Butt, S. (2000) “Fetal alcohol exposure alters serotonin transporter sites in rat brain”, Brain Res. 856, 184–192.PubMedCrossRefGoogle Scholar
  167. Zaulyanov, L.L., Green, P.S. and Simpkins, J.W. (1999) “Glutamate receptor requirement for neuronal cell death from anoxiareoxygenation: an in vitro model for assessment of the neuroprotective effects of estrogens”, Cell. Mol. Neurobiol. 19, 705–718.PubMedCrossRefGoogle Scholar
  168. Zhou, F.C., Bledsoe, S., Lumeng, L. and Li, T.K. (1991) “Immunostained serotonergic fibers are decreased in selected brain regions of alcohol-preferring rats”, Alcohol 8, 425–431.PubMedCrossRefGoogle Scholar
  169. Zhou, F.C., Sari, Y., Zhang, J.K., Goodlett, C.R. and Li, T.-K. (2001) “Prenatal alcohol exposure retards the migration and development of serotonin neurons in fetal C57BL mice”, Brain Res. Dev. Brain. Res. 126, 147–155.PubMedCrossRefGoogle Scholar
  170. Zhou, F.C., Sari, Y., Li, T.-K., Goodlett, C. and Azmitia, E.C. (2002) “Deviations in brain early serotonergic deelopment as a result of fetal alcohol exposure”, Neurotoxicity Res. 4, 337–342.CrossRefGoogle Scholar
  171. Zhu, H. and Ho, I.K. (1998) “NMDA-R1 antisense oligonucleotide attenuates withdrawal signs from morphine”, Eur. J. Pharmacol. 352, 151–156.PubMedCrossRefGoogle Scholar
  172. Ziedonis, D.M. and Kosten, T.R. (1991) “Depression as a prognostic factor for pharmacological treatment of cocaine dependence”, Psychopharmacol. Bull. 27, 337–343.PubMedGoogle Scholar
  173. Zimmet, S.V., Strous, R.D., Burgess, E.S., Kohnstamm, S. and Green, A.I. (2000) “Effects of clozapine on substance use in patients with schizophrenia and schizoaffective disorder: a retrospective survey”, J. Clin. Pharmacol. 20, 94–98.Google Scholar

Copyright information

© Springer 2002

Authors and Affiliations

  • Tomas Palomo
    • 1
  • Trevor Archer
    • 2
  • Richard J. Beninger
    • 3
  • Richard M. Kostrzewa
    • 4
  1. 1.Servicio de PsiquiatriaHospital 12 de OctobreMadridSpain
  2. 2.Department of PsychologyUniversity of GóteborgGóteborgSweden
  3. 3.Departments of Psychology and PsychiatryQueen's UniversityKingstonCanada
  4. 4.Department of Pharmacology, Quillen College of MedicineEast Tennessee State UniversityJohnson CityUSA

Personalised recommendations