Neurotoxicity Research

, Volume 4, Issue 3, pp 191–209 | Cite as

Involvement of maillard reactions in Alzheimer disease

  • V. Prakash Reddy
  • Mark E. Obrenovich
  • Craig S. Atwood
  • George Perry
  • Mark A. Smith


Maillard reactions have been explored by food chemists for many years. It is only recently that the advanced glycation end products (AGEs), the end products of the Maillard reaction, have been detected in a wide variety of diseases such as diabetes, atherosclerosis, cataractogenesis, Parkinson disease and Alzheimer disease (AD). In this review, we discuss the chemistry and biochemistry of AGE-related crosslinks such as pyrraline, pentosidine, carboxymethyllysine (CML), crosslines, imidazolidinones, and dilysine crosslinks (GOLD and MOLD), as well as their possible involvement in neurodegenerative conditions. Pentosidine and CML are found in elevated amounts in the major lesions of the AD brain. Glycation is also implicated in the formation of the paired helical filaments (PHF), a component of the neurofibrillary tangles (NFTs). Amyloid-β peptide and proteins of the cerebrospinal fluid are also glycated in patients with AD. In order to ameliorate the effects of AGEs on AD pathology, various inhibitors of AGEs have been increasingly explored. It is hoped that understanding of the mechanism of the AGEs formation and their role in the neurodegeneration will result in vovel therapeutics for neuroprotection.


Advanced glycation end products Alzheimer disease Amyloid-β Glycation Maillard reaction Neurodegeneration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baynes, J.W. and Thorpe, S.R. (1999) “Role of oxidative stress in diabetic complication—a new perspective on an old paradigm”, Diabetes 48, 1–9.PubMedCrossRefGoogle Scholar
  2. Bence, N.F., Sampat, R.M. and Kopito, R.R. (2001) “Impairment of the ubiquitin-proteasome system by protein aggregation”, Science (Washington, DC, US) 292, 1552–1555.CrossRefGoogle Scholar
  3. Benson, L.M., Naylor, S. and Tomlinson, A.J. (1998) “Investigation of Maillard reaction products using 15N isotope studies and analysis by electrospray ionization-mass spectrometry”, Food Chem. 62, 179–183.CrossRefGoogle Scholar
  4. Booth, A.A., Khalifah, R.G., Todd, P. and Hudgon, B.G. (1997) “In vitro kinetic studies of formation of antigenic advanced glycation end products (AGEs). Novel inhibition of post-Amadori glycation pathways”, J. Biol. Chem. 272, 5430–5437.PubMedCrossRefGoogle Scholar
  5. Brownlee, M. (1995) “Advanced protein glycosylation in diabetes and aging”, Annu. Rev. Med. 46, 223–234.PubMedCrossRefGoogle Scholar
  6. Cai, J. and Hurst, H.E. (1999) “Identification and quantitation of N-(carboxymethyl)valine adduct in hemoglobin by gas chromatography mass spectrometry”, J. Mass Spectrom. 34, 537–543.PubMedCrossRefGoogle Scholar
  7. Castellani, R., Smith, M.A., Richey, P.L. and Perry, G. (1996) “Glycoxidation and oxidative stress in Parkinson disease and diffuse Lewy body disease”, Brain Res. 737, 195–200.PubMedCrossRefGoogle Scholar
  8. Castellani, R.J., Perry, G., Harris, P.L.R., Monnier, V.M., Cohen, M.L. and Smith, M.A. (1997) “Advanced glycation modification of Rosenthal fibers in patients with Alexander disease”, Neurosci. Lett. 231, 79–82.PubMedCrossRefGoogle Scholar
  9. Castellani, R.J., Harris, P.L., Sayre, L.M., Fujii, J., Taniguchi, N., Vitek, M.P., Founds, H., Atwood, C.S., Perry, G. and Smith, M.A. (2001) “Active glycation in neurofibrillary pathology of Alzheimer disease: N(epsilon)-(Carboxymethyl) lysine and hexitol-lysine”, Free Radic. Biol. Med. 31, 175–180.PubMedCrossRefGoogle Scholar
  10. Chellan, P. and Nagaraj, T.H. (1999) “Protein crosslinking by the Maillard reaction: dicarbonyl-derived imidazolium crosslinks in aging and diabetes”, Arch. Biochem. Biophys. 368, 98–104.PubMedCrossRefGoogle Scholar
  11. Colaco, C. and Harrington, C.R. (1996) “Inhibitors of the Maillard reaction—potential in the treatment of Alzheimer's disease”, CNS Drugs 6, 167–177.Google Scholar
  12. Calaco, C., Ledesma, M.D., Harrington, C.R. and Avilam, J. (1996) “The role of the Maillard reaction in other pathologies: Alzheimer's disease”, Nephrol. Dial. Transplant. 11, 7–12.Google Scholar
  13. Coleman, III, W.M. (1999) “SPME-GC-MS detection analysis of Maillard reaction products”, Appl. Solid Phase Microextr., 585–608.Google Scholar
  14. De Sa, P.F.G., Treubig, J.M., Brown, P.R. and Dain, J.A. (2001) “The use of capillary electrophoresis to monitor Maillard reaction products (MRP) by glyceraldehyde and the epsilon amino group of lysine”, Food Chem. 72, 379–384.CrossRefGoogle Scholar
  15. Devchand, K. and De Muelenaere, H.J.H. (1996) “Antioxidant activity of Maillard reaction products formed during extrusion”, SA J. Food Sci. Nutr. 8, 144–148.Google Scholar
  16. Dickson, D.W. (1996) “Glycoxidation in Alzheimer's disease: a specific mechanism of early lesion pathogenesis?”, Alzheimer's Dis. Rev. (Electronic Publication) 1, 75–76.Google Scholar
  17. Dukic-Stefanovic, S., Schinzel, R., Riederer, P. and Munch, G. (2001) “AGES in brain ageing: AGE-inhibitors as neuroprotective and anti-dementia drugs?”, Biogerontology 2, 19–34.PubMedCrossRefGoogle Scholar
  18. Durany, N., Munch, G., Michel, T. and Riederer, P. (1999) “Investigations on oxidative stress and therapeutical implications in dementia”, Eur. Arch. Psych. Clin. Neurosci. 249, 68–73.CrossRefGoogle Scholar
  19. Dyer, D.G., Blackledge, J.A., Thorpe, S.R. and Baynes, J.W. (1991) “Formation of pentosidine during nonenzymatic browning of proteins by glucose. Identification of glucose and other carbohydrates as possible precursors of pentosidine in vivo”, J. Biol. Chem. 266, 11654–11660.PubMedGoogle Scholar
  20. Eichner, K., Reutter, M. and Wittmann, R. (1990) “Detection of Maillard reaction intermediates by high-pressure liquid chromatography (HPLC) and gas chromatography”, Maillard React. Food Process., Hum. Nutr. Physiol., (Proc. Intl Symp. Maillard React.) 4, 63–77.Google Scholar
  21. Fayle, S.E., Healy, J.P., Brown, P.A., Reid, E.A., Gerrard, J.A. and Ames, J.M. (2001) “Novel approaches to the analysis of the Maillard reaction of proteins”, Electrophoresis 22, 1518–1525PubMedCrossRefGoogle Scholar
  22. Forbes, J.M., Soulis, T., Thallas, V., Panagiotopoulos, S., Long, D.M., Vasan, S., Wagle, D., Jerums, G. and Cooper, M.E. (2001) “Renoprotective effects of a novel inhibitor of advanced glycation”, Diabetologia 44, 108–114.PubMedCrossRefGoogle Scholar
  23. Frey, U., Retz, W., Riederer, P. and Rosler, M. (2000) “New aspects in antidemential drug therapy of Alzheimer's disease”, Aktuelle Neurol. 27, 305–317.CrossRefGoogle Scholar
  24. Giri, R., Shen, Y.M., Stins, M., Yan, S.D., Schmidt, A.M., Stern, D., Kim, K.S., Zlokovic, B. and Kalra, V.K. (2000) “beta-Amyloidinduced migration of monocytes across human brain endothelial cells involves RAGE and PECAM-1”, Am. J. Physiol.—Cell Physiol. 279, C1772-C1781.PubMedGoogle Scholar
  25. Glomb, M.A., Rosch, D. and Nagaraj, R.H. (2001) “N-delta-(5-hydroxy-4,6-dimethylpyrimidine-2-yl)-l-ornithine, a novel methylglyoxal-arginine modification in beer”, J. Agric. Food Chem. 49, 366–372.PubMedCrossRefGoogle Scholar
  26. Grandhee, S.K. and Monnier, V.M. (1991) “Mechanism of formation of the Maillard protein cross-link pentosidine. Glucose, fructose, and ascorbate as pentosidine precursors”, J. Biol. Chem. 266, 11649–11653.PubMedGoogle Scholar
  27. Hayase, F., Nagaraj, R.H., Miyata, S., Njoroge, F.G. and Monnier, V.M. (1989) “Aging of proteins: immunological detection of a glucose-derived pyrrole formed during the Maillard reaction in vivo”, J. Biol. Chem. 264, 3758–3764.PubMedGoogle Scholar
  28. Hayase, F., Konishi, Y. and Kato, H. (1995) “Identification of the Modified structure of Arginine residues in proteins with 3-Deoxyglucosone, a Maillard reaction intermediate”, Biosci. Biotechnol. Biochem. 59, 1407–1411.Google Scholar
  29. Heidrich, A., Rosler, M. and Riederer, P. (1997) “Pharmacotherapy in Alzheimer's dementia: treatment of cognitive symptoms—results of new studies”, Forschritte Neurol. Psychiatr. 65, 108–121.CrossRefGoogle Scholar
  30. Homoki-Farkas, P., Orsi, F. and Kroh, L.W. (1997) “Methylglyoxal determination from different carbohydrates during heat processing”, Food Chem. 59, 157–163.CrossRefGoogle Scholar
  31. Horie, K., Miyata, T., Yasuda, T., Takeda, A., Yasuda, Y., Maeda, K., Sobue, G. and Kurokawa, K. (1997) “Immunohistochemical localization of advanced glycation end products, pentosidine, and carboxymethyllysine in lipofuscin pigments of Alzheimer's disease and aged neurons”, Biochem. Biophys. Res. Commun. 236, 327–332.PubMedCrossRefGoogle Scholar
  32. Horvat, S., Varga-Defterdarovic, L. and Horvat, J. (1998) “Synthesis of novel imidazolidinones from hexose-peptide adducts: model studies of the Maillard reaction with possible significance in protein glycation”, Chem. Commun. (Cambridge), 1663–1664.Google Scholar
  33. Horvat, S., Roscic, M. and Horvat, J. (1999) “Synthesis of hexoserelated imidazolidinones: novel glycation products in the Maillard reaction”, Glycoconj. J. 16, 391–398.PubMedCrossRefGoogle Scholar
  34. Kimura, T., Takamatsu, J., Araki, N., Goto, M., Kondo, A., Miyakawa, T. and Horiuchi, S. (1995) “Are advanced glycation end-products associated with amyloidosis in Alzheimer's disease?”, NeuroReport, 6, 866–868.PubMedCrossRefGoogle Scholar
  35. Kimura, T., Ikeda, K., Takamatsu, J., Miyata, T., Sobue, G., Miyakawa, T. and Horiuchi, S. (1996) “Identification of advanced glycation end products of the Maillard reaction in Pick's disease”, Neurosci. Lett. 219, 95–98.PubMedCrossRefGoogle Scholar
  36. Ko, L.W., Ko, E.C., Nacharaju, P., Liu, W.K., Chang, E., Kenessey, A. and Yen, S.H. (1999) “An immunochemical study on tau glycation in paired helical filaments”, Brain Res. 830, 301–313.PubMedCrossRefGoogle Scholar
  37. Lapolla, A., Fedele, D., Martano, L., Arico, N.C., Garbeglio, M., Traldi, P., Seraglia, R. and Favretto, D. (2001) “Advanced glycation end products: a highly complex set of biologially relevant compounds detected by mass spectrometry”, J. Mass Spectrom. 36, 370–378.PubMedCrossRefGoogle Scholar
  38. Larisch, B., Gross, U. and Pischetsrieder, M. (1998) “On the reaction of l-ascorbic acid with propylamine under various conditions. Quantification of the main products by HPLC/DAD”, Z. Lebensm.—Unters. Forsch. A 206, 333–337.CrossRefGoogle Scholar
  39. Lederer, M.O. and Buhler, H.P. (1999) “Cross-linking of proteins by Maillard processes-characterization and detection of a lysine-arginine cross-link derived from d-glucose”, Bioorg. Med. Chem. 7, 1081–1088.PubMedCrossRefGoogle Scholar
  40. Lederer M.O., Gerum, F. and Severin, T. (1998) “Cross-linking of proteins by Maillard processes—model reactions of d-glucose or methylglyoxal with butylamine and guanidine derivatives”, Bioorg. Med. Chem. 6, 993–1002.PubMedCrossRefGoogle Scholar
  41. Lederer, M.O. and Klaiber, R.G. (1999) “Cross-linking of proteins by Maillard processes: characterization and detection of lysine-arginine cross-links derived from glyoxal and methylglyoxal”, Bioorg. Med. Chem. 7, 2499–2507.PubMedCrossRefGoogle Scholar
  42. Ledesma, M.D., Bonay, P., Colaco, C. and Avila, J. (1994) “Analysis of microtubule-associated protein tau glycation in paired helical filaments”, J. Biol. Chem. 269, 21614–21619.PubMedGoogle Scholar
  43. Ledl, F. and Schleicher, E. (1990) “New aspects of the Maillard reaction in foods and in the human body”, Angew Chem. Int. Ed. Engl. 29, 565–706.CrossRefGoogle Scholar
  44. Li, J.J., Surini, M., Catsicas, S., Kawashima, E. and Bouras, C. (1995) “Age-Dependent accumulation of avadenced glycosylation end-products in human neurons”, Neurobiol. Aging 16, 69–76.PubMedCrossRefGoogle Scholar
  45. Li, J.J., Dickson, D., Hof, P.R. and Vlassara, H. (1998) Receptors for advanced glycosylation endproducts in human brain: role in brain homeostasis”, Mol. Med. 4, 46–60.PubMedGoogle Scholar
  46. Linetsky, M., Lagrand, R.D., Mossine, V.V. and Ortwerth, B.J. (2001), Appl. Biochem. Biotechnol. 94, 71–96, Sugar-mediated crosslinking of alpha-biotinylated-Lys to cysteamine-agarose support: a method to isolate Maillard Lys-Lys-like crosslinks.PubMedCrossRefGoogle Scholar
  47. Litchfield, J.E., Thorpe, S.R. and Baynes, J.W. (1999) “Oxygen is not required for the browning and crosslinking of protein by pentoses: relevance to Maillard reactions in vivo”, Int. J. Biochem. Cell Biol. 31, 1297–1305.PubMedCrossRefGoogle Scholar
  48. Loske, C., Gerdemann, A., Schepl, W., Wycislo, M., Schinzel, R., Palm, D., Riederer, P. and Munch, G. (2000) “Transition metalmediated glycoxidation accelerates cross-linking of beta-amyloid peptide”, Eur. J. Biochem. 267, 4171–4178.PubMedCrossRefGoogle Scholar
  49. Madaj, J., Nishikawa, Y., Reddy, V.P., Rinaldi, P., Kurata, T. and Monnier, V.M. (2000) “6-Deoxy-6-fluoro-l-ascorbic acid: crystal structure and oxidative degradation”, Carbohydr. Res. 329, 477–485.PubMedCrossRefGoogle Scholar
  50. Mark, R.J., Lovell, M.A., Markesbery, W.R., Uchida, K. and Mattson, M.P. (1997) “A role for 4-hydroxynonenal, an aldehydic product of lipid peroxidation, in disruption of ion homeostasis and neuronal death induced by amyloid betapeptide”, J. Neurochem. 68, 255–264.PubMedGoogle Scholar
  51. Mastrocola, D. and Munari, M. (2000) “Progress of the Maillard reaction and antioxidant action of Maillard reaction products in preheated model systems during storage”, J. Agric. Food Chem. 48, 3555–3559.PubMedCrossRefGoogle Scholar
  52. Mattson, M.P., Carney, J.W. and Butterfield, D.A. (1995) “A tombstone in Alzheimer's?”, Nature 373, 481.PubMedCrossRefGoogle Scholar
  53. Mcpherson, J.D., Shilton, B.H. and Walton, D.J. (1988) “Role of fructose in glycation and cross-linking of proteins”, Biochemistry 27, 1901–1907.PubMedCrossRefGoogle Scholar
  54. Miyata, S. and Monnier, V. (1992) “Immunohistochemical detection of advanced glycosylation end products in diabetic tissues using monoclonal antibody to pyrraline”, J. Clin. Investig. 89, 1102–1112.PubMedCrossRefGoogle Scholar
  55. Mizutari, K., Ono, T., Ikeda, K., Kayashima, K. and Horiuchi, S. (1997) “Photo-enhanced modification of human skin elastin in actinic elastosis by N-epsilon-(carboxymethyl)lysine, one of the glycoxidation products of the Maillard reaction”, J. Investig. Dermatol. 108, 797–802.PubMedCrossRefGoogle Scholar
  56. Monnier, V.M. (1999) “Glycation, glycoxidation, and other Maillard reaction products”, Methods Aging Res., 657–681.Google Scholar
  57. Monnier, V.M., Nagaraj, R.H., Portero-Otin, M., Glomb, M., Elgawish, A.H., Sell, D.R. and Friedlander, M.A. (1996) “Structure of advanced Maillard reaction products and their pathological role”, Nephrol. Dial., Transplant. 11, 20–26.Google Scholar
  58. Monti, S.M., Ritieni, A., Graziani, G., Randazzo, G., Mannina, L., Segre, A. L. and Fogliano, V. (1999) “LC/MS analysis and antioxidative efficiency of Maillard reaction products from a lactose-lysine model system”, J. Agric. Food Chem. 47, 1506–1513.PubMedCrossRefGoogle Scholar
  59. Morishima-Kawashima, M., Hasegawa, M., Takio, K., Suzuki, M., Titani, K. and Ihara, Y. (1993) “Ubiquitin is conjugated with amino-terminally processed tau in paired helical filaments”, Neuron 10, 1151–1160.PubMedCrossRefGoogle Scholar
  60. Munch, G., Taneli, Y., Schraven, E., Schindler, U., Schinzel, R., Palm, D. and Riederer, P. (1994) “The Cognition-enhancing drug tenilsetam is an inhibitor of protein cross-linking by advanced glycosylation”, J. Neural Transm.—Park. Dis. Dement. Sect. 8, 193–208.PubMedCrossRefGoogle Scholar
  61. Munch, G., Mayer, S., Michaelis, J., Hipkiss, A.R., Riederer, P., Muller, R., Neumann, A., Schinzel, R. and Cunningham, A.M. (1997a) “Influence of advanced glycation end-products and AGE-inhibitors on nucleation-dependent polymerization of beta-amyloid peptide”, Biochim. Biophys. Acta 1360, 17–29.PubMedGoogle Scholar
  62. Munch, G., Thome, J., Foley, P., Schinzel, R. and Riederer, P. (1997b) “Advanced glycation endproducts in ageing and Alzheimer's disease”, Brain Res. Rev. 23, 134–143.PubMedCrossRefGoogle Scholar
  63. Munch, G., Cunningham, A.M., Riederer, P. and Braak, E. (1998a) “Advanced glycation endproducts are associated with Hirano bodies in Alzheimer's disease”, Brain Res. 796, 307–310.PubMedCrossRefGoogle Scholar
  64. Munch, G., Schinzel, R., Loske, C., Wong, A., Durany, N., Li, J.J., Vlassara, H., Smith, M.A., Perry, G. and Riederer, P. (1998b) “Alzheimer's disease—synergistic effects of glucose deficit, oxidative stress and advanced glycation endproducts”, J. Neural Transm. 105, 439–461.PubMedCrossRefGoogle Scholar
  65. Munch, G., Schicktanz, D., Behme, A., Gerlach, M., Riederer, P., Palm, D. and Schinzel, R. (1999) “Amino acid specificity of glycation and protein-AGE crosslinking reactivities determined with a dipeptide SPOT library”, Nat. Biotechnol. 17, 1006–1010.PubMedCrossRefGoogle Scholar
  66. Munch, G., Luth, H.J., Wong, A., Arendt, T., Hirsch, E., Ravid, R. and Riederer, P. (2000) “Crosslinking of alpha-synuclein by advanced glycation endproducts—an early pathophysiological step in Lewy body formation?”, J. Chem. Neuroanat. 20, 253–257.PubMedCrossRefGoogle Scholar
  67. Nagaraj, R.H. and Sady, C. (1996) “The presence of a glucosederived Maillard reaction product in the human lens”, FEBS Lett. 382, 234–238.PubMedCrossRefGoogle Scholar
  68. Nagaraj, R.H., Porterootin, M. and Monnier, V.M. (1996a) “Pyrraline ether crosslinks as a basis for protein crosslinking by the advanced Maillard reaction in aging and diabetes”, Arch. Biochem. Biophys. 325, 152–158.PubMedCrossRefGoogle Scholar
  69. Nagaraj, R.H., Shipanova, I.N. and Faust, F.M. (1996b) “Protein cross-linking by the Maillard reaction—isolation, characterization, and in vivo detection of a lysine-lysine cross-link derived from methylglyoxal”, J. Biol. Chem. 271, 19338–19345.PubMedCrossRefGoogle Scholar
  70. Nakamura, K., Hasegawa, T., Fukunaga, Y. and Ienaga, K. (1992) “Crosslines A and B as candidates for the fluorophores in age-and diabetes-related cross-linked proteins, and their diacetates produced by Maillard reaction of a-N-acetyl-l-lysine wid d-glucose”, J. Chem. Soc. Chem. Commun., 992–994.Google Scholar
  71. Neumann, A., Schinzel, R., Palm, D., Riederer, P. and Munch, G. (1999) “High molecular weight hyaluronic acid inhibits advanced glycation endproduct-induced NF-kappa B activation and cytokine expression”, FEBS Lett. 453, 283–287.PubMedCrossRefGoogle Scholar
  72. Niwa, T. and Tsukushi, S. (2001) “3-Deoxyglucosone and AGEs in uremic complications: inactivation of glutathione peroxidase by 3-deoxyglucosone”, Kidney Int. 59, S37-S41.CrossRefGoogle Scholar
  73. Niwa, T., Sato, M., Katsuzaki, T., Tomoo, T., Miyazaki, T., Tatemichi, N., Takei, Y. and Kondo, T. (1996) “Amyloid beta(2)-microglobulin is modified with N-epsilon-(carboxymethyl) lysine in dialysis-related amyloidosis”, Kidney Int. 50, 1303–1309.PubMedCrossRefGoogle Scholar
  74. Niwa, T., Katsuzaki, T., Miyazaki, S., Miyazaki, T., Ishizaki, Y., Hayase, F., Tatemichi, N. and Takei, Y. (1997a) “Immunohistochemical detection of imidazolone, a novel advanced glycation end product, in kidneys and aortas of diabetic patients”, J. Clin. Investig. 99, 1272–1280.PubMedCrossRefGoogle Scholar
  75. Niwa, T., Katsuzaki, T., Miyazaki, S., Momoi, T., Akiba, T., Miyazaki, T., Nokura, K., Hayase, F., Tatemichi, N. and Takei, Y. (1997b) “Amyloid beta 2-microglobulin is modified with imidazolone, a novel advanced glycation end product, in dialysis-related amyloidosis”, Kidney Int. 51, 187–194.PubMedCrossRefGoogle Scholar
  76. Niwa, T., Katsuzaki, T., Miyazaki, S., Momoi, T., Akiba, T., Miyazaki, T., Nokura, K., Hayase, F., Tatemichi, N. and Takei, Y. (1997c) “Amyloid beta(2)-microglobulin is modufied with imidazolone, a novel advanced glycation end product, in dialysis-related amyloidosis”, Kidney Int. 51, 187–194.PubMedCrossRefGoogle Scholar
  77. Niwa, H., Takeda, A., Wakai, M., Miyata, T., Yasuda, Y., Mitsuma, T., Kurokawa, K. and Sobue, G. (1998) “Accelerated formation of N epsilon-(carboxymethyl) lysine, and advanced glycation end product, by glyoxal and 3-deoxyglucosone in cultured rat sensory neurons”, Biochem. Biophys. Res. Commun. 248, 93–97.PubMedCrossRefGoogle Scholar
  78. Obayashi, H., Nakano, K., Shigeta, H., Yamaguchi, M., Yoshimori, K., Fukui, M., Fujii, M., Kitagawa, Y., Nakamura, N.,. Nakamura, K., Nakazawa, Y., Ienaga, K., Ohta, M., Nishimura, M., Fukui, I. and Kondo, M. (1996) “Formation of crossline as a fluorescent advanced glycation end product in vitro and in vivo”, Biochem. Biophys. Res. Commun. 226, 37–41.PubMedCrossRefGoogle Scholar
  79. Odani, H., Shinzato, T., Matsumoto, Y., Takai, I., Nakai, S., Miwa, M., Iwayama, N., Amano, I. and Maeda, K. (1996) “First evidence for accumulation of protein-bound and protein-free pyrraline in human uremic plasma by mass spectrometry”, Biochem. Biophys. Res. Commun. 224, 237–241.PubMedCrossRefGoogle Scholar
  80. Odetti, P., Angelini, G., Dapino, D., Zaccheo, D., Garibaldi, S., Dagna-Bricarelli, F., Piombo, G., Perry, G., Smith, M., Traverso, N. and Tabaton, M. (1998a) “Early glycoxidation damage in brains from Down's syndrome”, Biochem. Biophys. Res. Commun. 243, 849–851.PubMedCrossRefGoogle Scholar
  81. Odetti, P., Angelini, G., Dapino, D., Zaccheo, D., Garibaldi, S., Dagna-Bricarelli, F., Piombo, G., Perry, G., Smith, M., Traverso, N. and Tabaton, M. (1998b) “Early glycoxidation damage in brains from Down's syndrome”, Biochem. Biophys. Res. Commun. 243,. 849–851.PubMedCrossRefGoogle Scholar
  82. Odetti, P., Garbaldi, S., Norese, R., Angelini, G., Marinelli, L., Valentini, S., Menini, S., Traverso, N., Zaccheo, D., Siedlak, S., Perry, G., Smith, M.A. and Tabaton, M. (2000) “Lipoperoxidation is selectively involved in progressive supranuclear palsy”, Neuropathol. Exp. Neurol. 59, 393–397.Google Scholar
  83. Ohgami, N., Nagai, R., Nakayama, H., Ikemoto, M. and Horiuchi, S. (2000) “CD36, a member of class B scavenger receptor family, as a receptor for advanced glycation end products”, Diabetes 49, 312.Google Scholar
  84. Ohgami, N., Nagai, R., Ikemoto, M., Arai, H., Kuniyasu, A., Horiuchi, S., and Nakayama, H. (2001) “CD36, a member of the class B scavenger receptor family, as a receptor for advanced glycation end products”, J. Biol. Chem. 276, 3195–3202.PubMedCrossRefGoogle Scholar
  85. Okamoto, G., Hayase, F. and Kato, H. (1992) “Scavenging of active oxygen species by glycated proteins”, Biosci., Biotechnol., Biochem., 56, 928–931.Google Scholar
  86. Pari. K., Sundari, C.S., Chandani, S. and Balasubramanian, D. (2000) “beta-Carbolines that accumulate in human tissues may serve a protective role against oxidative stress”, J. Biol. Chem. 275, 2455–2462.PubMedCrossRefGoogle Scholar
  87. Pedersen, W.A., Cashman, N.R. and Mattson, M.P. (1999) “The lipid peroxidation product 4-hydroxynonenal impairs glutamate and glucose transport and choline acetyltransferase activity in NSC-19 motor neuron cells”, Exp. Neurol. 155, 1–10.PubMedCrossRefGoogle Scholar
  88. Perez, M., Cuadros, R., Smith, M.A., Perry, G. and Avila, J. (2000) “Phosphorylated, but not native, tau protein assembles following reaction with the lipid peroxidation product, 4-hydroxy-2-nonenal” FEBS Lett. 486, 270–274.PubMedCrossRefGoogle Scholar
  89. Perry, G., Nunomura, A. and Smith, M.A. (1999) “Antioxidant reversal of oxidative stress-induced memory deficits”, Neuroreport 10, I-I.Google Scholar
  90. Porretta, S. (1992) “Chromatographic analysis of Maillard reaction products”, J. Chromatogr. 624, 211–219.CrossRefGoogle Scholar
  91. Porterootin, M., Nagaraj, R.H. and Monnier, V.M. (1995) “Chromatographic evidence for Pyrraline formation during protein glycation in-vitro and in-vivo”, Biochim. Biophys. Acta—Protein Struct. Molec. Enzym. 1247, 74–80.Google Scholar
  92. Rahbar, S., Kumar Yernini, K., Scott, S., Gonzales, N. and Lalezari, I. (1999) “Novel inhibitors of advanced glycation end-products”, Biochem. Biophys. Res. Commun. 262, 651–656.PubMedCrossRefGoogle Scholar
  93. Roberts, R.L. and Lloyd, R.V. (1997) “Free radical formation from secondary amines in the Maillard reaction”, J. Agric. Food Chem. 45, 2413–2418.CrossRefGoogle Scholar
  94. Roscic, M., Versluis, C., Kleinnijenhuis, A.J., Horvat, S. and Heck, A.J. (2001) “The early glycation products of the Maillard reaction: mass spectrometric characterization of novel imidazolidinones derived from an opioid pentapeptide and glucose”, Rapid Commun. Mass Spectrom. 15, 1022–1029.PubMedCrossRefGoogle Scholar
  95. Rosler, M., Retz, W., Thome, J. and Riederer, P. (1998) “Free radicals in Alzheimer's dementia: currently available therapeutic strategies”, J. Neural Transm., Suppl. 54, 211–219.Google Scholar
  96. Royle, L., Bailey, R.G. and Ames, J.M. (1998) “Separation of Maillard reaction products from xylose-glycine and glucose-glycine model systems by capillary electrophoresis and comparison to reverse phase HPLC”, Food Chem. 62, 425–430.CrossRefGoogle Scholar
  97. Saez-Valero, J. and Small, D.H. (2001) “Altered glycosylation of cerebrospinal fluid butyrylcholinesterase in Alzheimer's disease”, Brain Res. 889, 247–250.PubMedCrossRefGoogle Scholar
  98. Salinero, O., Moreno-Flores, M.T. and Wandosell, F. (2000) “Increasing neurite outgrowth capacity of β-amyloid precursor protein proteoglycan in Alzheimer's disease”, J. Neurosci. Res. 60, 87–97.PubMedCrossRefGoogle Scholar
  99. Sasaki, N., Toki, S., Chowei, H., Saito, T., Nakano, N., Hayashi, Y., Takeuchi, M. and Makita, Z. (2001) “Immunohistochemical distribution of the receptor for advanced glycation end products in neurons and astrocytes in Alzheimer's disease”, Brain Res. 888, 256–262.PubMedCrossRefGoogle Scholar
  100. Sato, Y., Naito, Y., Grundke-Iqbal, I., Iqbal, K. and Endo, T. (2001) “Analysis of N-glycans of pathological tau: possible occurrence of aberrant processing of tau in Alzheimer's disease”, FEBS Lett. 496, 152–160.PubMedCrossRefGoogle Scholar
  101. Saxena, A.K., Saxena, P., Wu, X.L., Obrenovich, M., Weiss, M.F. and Monnier, V.M. (1999) “Protein aging by carboxymethylation of lysines generates sites for divalent metal and redox active copper binding: relevance to diseases of glycoxidative stress”, Biochem. Biophys. Res. Commun. 260, 332–338.PubMedCrossRefGoogle Scholar
  102. Sayre, L.M., Zelasko, D.A., Harris, P.L.R., Perry, G., Salomon, R.G. and Smith, M.A. (1997) “4-Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer's disease”, J. Neurochem. 68, 2092–2097.PubMedGoogle Scholar
  103. Sayre, L.M., Smith, M.A. and Perry, G. (2001) “Chemistry and biochemistry of oxidative stress in neurodegenerative disease”, Curr. Med. Chem. 8, 721–738.PubMedGoogle Scholar
  104. Schippling, S., Kontush, A., Arlt, S., Buhmann, C., Sturenburg, H.J., Mann, U., Muller-Thomsen, T. and Beisiegel, U. (2000) “Increased lipoprotein oxidation in Alzheimer's disease”, Free Radic. Biol. Med. 28, 351–360.PubMedCrossRefGoogle Scholar
  105. Schmidt, A.M., Yan, S.D., Wautier, J.L. and Stern, D. (1999) “Activation of receptor for advanced glycation end products—a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis”, Circ. Res. 84, 489–497.PubMedGoogle Scholar
  106. Schmidt, A.M., Yan, S.D., Yan, S.F. and Stern, D.M. (2000) “The biology of the receptor for advanced glycation end products and its ligands”, Biochim. Biophys. Acta—Mol. Cell Res. 1498, 99–111.CrossRefGoogle Scholar
  107. Seidl, R., Schuller, E., Cairns, N. and Lubec, G. (1997) “Evidence against increased glycoxidation in patients with Alzheimer's disease”, Neurosci. Lett. 232, 49–52.PubMedCrossRefGoogle Scholar
  108. Sell, D.R. and Monnier, V.M. (1989) “Structure elucidation of a senescence cross-link from human extracellular matrix. Implication of pentoses in the aging process”, J. Biol. Chem. 264, 21597–21602.PubMedGoogle Scholar
  109. Sell, D.R., Nagaraj, R.H., Grandhee, S.K., Odetti, P., Lapolla, A., Fogarty, J. and Monnier, V.M. (1991) “Pentosidine: a molecular marker for the cumulative damage to proteins in diabetes, aging, and uremia”, Diabetes Metab. Rev. 7, 239–251.PubMedCrossRefGoogle Scholar
  110. Sell, D.R., Primc, M., Schafer, I.A., Kovach, M., Weiss, M.A. and Monnier, V.M. (1998) “Cell-associated pentosidine as a marker of aging in human diploid cells in vitro and in vivo”, Mech. Ageing Dev. 105, 221–240.PubMedCrossRefGoogle Scholar
  111. Shipanova, I.N., Glomb, M.A. and Nagaraj, R.H. (1997) “Protein modification by methylglyoxal: chemical nature and synthetic mechanism of a major fluorescent adduct”, Arch. Biochem. Biophys. 344, 29–36.PubMedCrossRefGoogle Scholar
  112. Shoda, H., Miyata, S., Liu, B.F., Yamada, H., Ohara, T., Suzuki, K., Oimomi, M. and Kasuga, M. (1997) “Inhibitory effects of tenilsetam on the maillard reaction”, Endocrinology 138, 1886–1892.PubMedCrossRefGoogle Scholar
  113. Shuvaev, V.V., Laffont, I., Serot, J.M., Fujii, J., Taniguchi, N. and Siest, G. (2001) “Increased protein glycation in cerebrospinal fluid of Alzheimer's disease”, Neurobiol. Aging 22, 397–402.PubMedCrossRefGoogle Scholar
  114. Singh, R., Barden, A., Mori, T. and Beilin, L. (2001) “Advanced glycation end-products: a review”, Diabetologia 44, 129–146.PubMedCrossRefGoogle Scholar
  115. Smith, M.A., Richey, P.L., Taneda, S., Kutty, R.K., Sayre, L.M., Monnier, V.M. and Perry, G. (1994a) “Advanced Maillard reaction end-products. Free-radicals, and protein oxidation in Alzheimer's-disease”, Annal. NY Acad. Sci. 738, 447–454.CrossRefGoogle Scholar
  116. Smith, M.A., Taneda, S., Richey, P.L., Miyata, S., Yan, S.-D., Stern, D., Sayre, L.M., Monnier, V.M. and Perry, G. (1994b) “Advanced Maillard reaction end products are associated with Alzheimer disease pathology”, Proc. Natl Acad. Sci. USA 91, 5710–5714.PubMedCrossRefGoogle Scholar
  117. Smith, M.A., Sayre, L.M., Vitek, M.P., Monnier, V.M. and Perry, G. (1995a) “Early aging and Alzheimers”, Nature 374, 316–316.PubMedCrossRefGoogle Scholar
  118. Smith, M.A., Taneda, S., Richey, P.L., Miyata, S., Yan, S.D., Stern, D., Sayre, L.M., Monnier, V.M. and Perry, G. (1995b) “Advanced Maillard reaction end-products are associated with Alzheimer-disease pathology”, Proc. Natl Acad. Sci. USA 92, 1794–1794; and 91, 5710–5714.CrossRefGoogle Scholar
  119. Smith, M.A., Sayre, L.M., Anderson, V.E., Harris, P.L.R., Beal, M.F., Kowall, N. and Perry, G. (1998) “Cytochemical demonstration of oxidative damage in Alzheimer disease by immunochemical enhancement of the carbonyl reaction with 2,4-dinitrophenylhydrazine”, J. Histochem. Cytochem. 46, 731–735.PubMedGoogle Scholar
  120. Sugimoto, H. (1999) “Structure-activity relationships of acetylcholinesterase inhibitors: donepezil hydrochloride for the treatment of Alzheimer's disease”, Pure Appl. Chem. 71, 2031–2037.CrossRefGoogle Scholar
  121. Tabaton, M., Perry, G., Smith, M., Vitek, M., Angelini, G., Dapino, D., Garibaldi, S., Zaccheo, D. and Odetti, P. (1997) “Is amyloid beta-protein glycated in Alzheimer's disease?”, Neuroreport 8, 907–909.PubMedCrossRefGoogle Scholar
  122. Takahashi, M., Tsujioka, Y., Yamada, T., Tsuboi, Y., Okada, H., Yamamoto, T. and Liposits, Z. (1999) “Glycosylation of microtubule-associated protein tau in Alzheimer's disease brain”, Acta Neuropathol. 97, 635–641.PubMedCrossRefGoogle Scholar
  123. Takeda, A., Yasuda, T., Miyata, T., Goto, Y., Wakai, M., Watanabe, M., Yasuda, Y., Horie, K., Inagaki, T., Doyu, M., Maeda, K. and Sobue, G. (1998) “Advanced glycation end products colocalized with astrocytes and microglial cells in Alzheimer's disease brain”, Acta Neuropathol. 95, 555–558.PubMedCrossRefGoogle Scholar
  124. Takeda, A., Smith, M.A., Avila, J., Nunomura, A., Siedlak, S.L., Zhu, X.W., Perry, G. and Sayre, L.M. (2000) In Alzheimer's disease, heme oxygenase is coincident with Alz50, an epitope of tau induced by 4-hydroxy-2-nonenal modification”, J. Neurochem. 75, 1234–1241.PubMedCrossRefGoogle Scholar
  125. Takeda, A., Wakai, M., Niwa, H., Dei, R., Yamamoto, M., Li, M., Goto, Y., Yasuda, T., Nakagomi, Y., Watanabe, M., Inagaki, T., Yasuda, Y., Miyata, T. and Sobue, G. (2001) “Neuronal and glial advanced glycation end product [N-epsilon-(carboxymethyl)lysine] in Alzheimer's disease brains”, Acta Neuropathol. 101, 27–35.PubMedGoogle Scholar
  126. Takeuchi, M., Bucala, R., Suzuki, T., Ohkubo, T., Yamazaki, M., Koike, T., Kameda, Y. and Makita, Z. (2000) “Neurotoxicity of advanced glycation end-products for cultured cortical neurons”, J. Neuropathol. Exp. Neurol. 59, 1094–1105.PubMedGoogle Scholar
  127. Tessier, F., Obrenovich, M. and Monnier, V.M. (1999) “Structure and mechanism of formation of human lens fluorophore LM1—relationship to vesperlysine A and the advanced Maillard reaction in aging, diabetes, and cataractogenesis”, J. Biol. Chem. 274, 20796–20804.PubMedCrossRefGoogle Scholar
  128. Thorpe, S.R. and Baynes, J.W. (1996) “Role of the maillard reaction in diabetes mellitus and diseases of aging”, Drugs Aging 9, 69–77.PubMedCrossRefGoogle Scholar
  129. Tomlinson, A.J., Landers, J.P., Lewis, I.A.S. and Naylor, S. (1993) “Buffer conditions affecting the separation of Maillard reaction products by capillary electrophoresis”, J. Chromatogr. 652, 171–177.CrossRefGoogle Scholar
  130. Uesugi, N., Sakata, N., Nagai, R., Jono, T., Horiuchi, S. and Takebayashi, S. (2000) “Glycoxidative modification of AA amyloid deposits in renal tissue”, Nephrol. Dial. Transplant. 15, 355–365.PubMedCrossRefGoogle Scholar
  131. Ulrich, P. and Cerami, A. (2001) “Protein glycation, diabetes, and aging”, Recent Prog. Horm. Res. 56, 1–21.PubMedCrossRefGoogle Scholar
  132. Vitek, M.P., Bhattacharya, K., Glendening, J.M., Stopa, E., Vlassara, H., Bucala, R., Manogue, K. and Cerami, A. (1994) “Advanced glycation end products contribute to amyloidosis in Alzheimer disease”, Proc. Natl Acad. Sci. USA 91, 4766–4770.PubMedCrossRefGoogle Scholar
  133. Vlassara, H., Bucala, R. and Striker, L. (1994) “Pathogenic effects of advanced glycosylation: biochemical, biologic, and clinical implications for diabetes and aging”, Lab. Investig. 70, 138–151.PubMedGoogle Scholar
  134. Wang, J.Z., Gong, C.X., Zaidi, T., Grundke-Iqbal, I. and Iqbal, K. (1995) “Dephosphorylation of Alzheimer paired helical filaments by protein phosphatase-2A and-2B”, J. Biol. Chem. 270, 4854–4860.PubMedCrossRefGoogle Scholar
  135. Wang, J.-Z., Grundke-Iqbal, I. and Iqbal, K. (1996a) “Glycosylation of microtubule-associated protein tau: an abnormal post-translational modification in Alzheimer's disease”, Nat. Med. (NY) 2, 871–875.CrossRefGoogle Scholar
  136. Wang, J.-Z., Grundke-Iqbal, I. and Iqbal, K. (1996b) “Restoration of biological activity of Alzheimer abnormally phosphorylated tau by dephosphorylation with protein phosphatase-2A,-2B and-1”, Mol. Brain Res. 38, 200–208.PubMedCrossRefGoogle Scholar
  137. Wang, M., Jin, Y., Li, J. and Ho, C.-T. (1999) “Two novel β-Carboline compounds from the Maillard reaction between Xylose and Tryptophan”, J. Agric. Food Chem. 47, 48–50.PubMedCrossRefGoogle Scholar
  138. Weber, K., Schmahl, W. and Munch, G. (1998) “Distribution of advanced glycation end products in the cerebellar neurons of dogs”, Brain Res. 791, 11–17.PubMedCrossRefGoogle Scholar
  139. Wilker, S.C., Chellan, P., Arnold, B.M. and Nagaraj, R.H. (2001) “Chromatographic quantification of argpyrimidine, a methylglyoxal-derived product in tissue proteins: comparison with pentosidine”, Anal. Biochem. 290, 353–358.PubMedCrossRefGoogle Scholar
  140. Wolffenbuttel, B.H.R., Boulanger, C.M., Crijns, F.R.L., Huijberts, M.S.P., Poitevin, P., Swennen, G.N.M., Vasan, S., Egan, J.J., Ulrich, P., Cerami, A. and Levy, B.I. (1998a) “Breakers of advanced glycation end products restore large artery properties in experimental diabetes”, Proc. Natl Acad. Sci. USA 95, 4630–4634.PubMedCrossRefGoogle Scholar
  141. Wolffenbuttel, B.H.R., Boulanger, C.M., Crijns, F.R.L., Poitevin, P., Egan, J.J., Cerami, A. and Levy, B.I. (1998b) “ALT-711, a breaker of advanced glycation endproducts (AGEs), restores large artery elasticity in experimental diabetes”, Diabetes 47, 88.Google Scholar
  142. Yamaguchi, M., Nakamura, N., Nakano, K., Kitagawa, Y., Shigeta, H., Hasegawa, G., Ienaga, K., Nakamura, K., Nakazawa, Y., Fukui, I., Obayashi, H. and Kondo, M. (1998) “Immunochemical quantification of crossline as a fluorescent advanced glycation endproduct in erythrocyte membrane proteins from diabetic patients with or without retinopathy”, Diabetic Med. 15, 458–462.PubMedCrossRefGoogle Scholar
  143. Yan, S.D., Chen, X., Schmidt, A.M., Brett, J., Godman, G., Zou, Y.S., Scott, C.W., Caputo, C., Frappier, T., Smith, M.A., Perry, G., Yen, S.H. and Stern, D. (1994) “Glycated tau protein in Alzheimer disease: a mechanism for induction of oxidant stress”, Proc. Natl Acad. Sci. USA 91, 7787–7791.PubMedCrossRefGoogle Scholar
  144. Yan, S.D., Chen, X., Fu, J., Chen, M., Zhu, H., Roher, A., Slattery, T., Zhao, L., Nagashima, M., Morser, J., Migheli, A., Nawroth, P., Stern, D. and Schmidt, A.M. (1996) “RAGE and amyloid-beta peptide neurotoxicity in Alzheimer's disease”, Nature 382, 685–691.PubMedCrossRefGoogle Scholar
  145. Yan, S.D., Fu, J., Soto, C., Chen, X., Zhu, H.J., Almohanna, F., Collison, K., Zhu, A.P., Stern, E., Saido, T., Tohyama, M., Ogawa, S., Roher, A. and Stern, D. (1997) “An intracellular protein that binds amyloid-beta peptide and mediates neurotoxicity in Alzheimer's disease”, Nature 389, 689–695.PubMedCrossRefGoogle Scholar
  146. Yan, S.D., Stern, D., Kane, M.D., Kuo, Y.M., Lampert, H.C. and Roher, A.E. (1998) “RAGE—a beta interactions in the pathophysiology of Alzheimer's disease”, Restor. Neurol. Neurosci. 12, 167–173.PubMedGoogle Scholar
  147. Yan, S.D., Roher, A., Chaney, M., Zlokovic, B., Schmidt, A.M. and Stern, D. (2000) “Cellular cofactors potentiating induction of stress and cytotoxicity by amyloid beta-peptide”, Biochim. Biophys. Acta-Mol. Basis Dis. 1502, 145–157.Google Scholar
  148. Yoshimura, Y., Iijima, T., Watanabe, T. and Nakazawa, H. (1997) “Antioxidative effect of Maillard reaction products using glucose-glycine model system”, J. Agric. Food Chem. 45, 4106–4109.CrossRefGoogle Scholar
  149. Zyzak, D.V., Richardson, J.M., Thorpe, S.R. and Baynes, J.W. (1995) “Formation of reactive intermediates from Amadori compounds under physiological Conditions”, Arch. Biochem. Biophys. 316, 547–554.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2002

Authors and Affiliations

  • V. Prakash Reddy
    • 1
  • Mark E. Obrenovich
    • 2
  • Craig S. Atwood
    • 2
  • George Perry
    • 2
  • Mark A. Smith
    • 2
  1. 1.Department of ChemistryUniversity of Missouri-RollaRollaUSA
  2. 2.Institute of PathologyCase Western Reserve UniversityClevelandUSA

Personalised recommendations