Skip to main content
Log in

Synergistic promotion of gibberellin and cytokinin on direct regeneration of floral buds from in vitro cultures of sepal segments in sinningia speciosa hiern

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

This study reports the direct regeneration of flower buds from cultured sepal segments of Sinningia speciosa Hiern. Two types of floral bud regeneration were observed: regeneration of floral buds only (designed as BF) and regeneration of both floral and vegetative buds (designed as BF+V). The capacity of BF regeneration was closely related to the location of sepal segments and the concentration of exogenous gibberellin (GA3) and cytokinin in the medium. On the medium containing 1.0mgl−1 GA3, the addition of 6-benzyladenine (BA) significantly increased the frequency of total flower bud (BF+BF+V) formation, with the frequency up to 91.5% in the presence of 0.4mgl−1 BA. On the medium containing 0.1mgl−1 BA, the addition of GA3 also increased the frequency of total flower bud regeneration, with the frequency up to 74.3% in the presence of 1.0mgl−1 GA3, but no further increase in regeneration was observed when the GA3 concentration was higher than 1.0mgl−1. The capacity of BF regeneration from different locations of sepal segments was differential. The adaxial part of sepal segments gave rise to the highest frequency of 56.7 and 84.3% for BF and BF+BF+V, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Araki, T. Transition from vegetative to reproductive phase. Curr. Opin. Plant Biol. 4:63–68; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Bernier, G. The control of floral evocation and morphogenesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39:175–219; 1988.

    Article  Google Scholar 

  • Bernier, G.; Havelange, A.; Houssa, C.; Peitjean, A.; Lejeune, P. Physiological signals that induce flowering. Plant Cell 5:1147–1155; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Blázquez, M.; Green, R.; Nilsson, O.; Sussman, M.; Weigel, D. Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. Plant Cell 10:791–800; 1998.

    Article  Google Scholar 

  • Bonhomme, F.; Kurz, B.; Melzer, S.; Bernier, G.; Jacqard, A. Cytokinin and gibberellin activate SaMADS A, a gene apparently involved in regulation of the floral transition in Sinapis alba. Plant J. 24:103–111; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Evans, L. T.; King, R. W.; Chu, A.; Mander, L. N.; Pharis, R. P. Gibberellin structure and florigenic activity in Lolium temulentum L., a long-day plant. Planta 182:97–106; 1990.

    Article  CAS  Google Scholar 

  • Gocal, G. F. W.; Poole, A. T.; Gubler, F.; Watts, R. J.; Blundell, C.; King, R. W. Long-day up-regulation of a GAMYB gene during L. temulentum inflorescence formation. Plant Physiol. 119:1271–1278; 1999.

    Article  PubMed  CAS  Google Scholar 

  • King, R. W.; Blundell, C.; Evans, L. T. The behavior of shoot apices of Lolium temulentum L. in vitro as the basis of an assay system for florigenic extracts. Aust. J. Plant Physiol. 20:337–348; 1993.

    Article  CAS  Google Scholar 

  • King, R. W.; Moritz, T.; Evans, L. T.; Junttila, O.; Herlt, A. J. Long-day induction of flowering in Lolium temulentum involves sequential increases in specific gibberellins at the shoot apex. Plant Physiol. 127:624–632; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Lu, W. L. Direct regeneration of inflorescence from callus in Dracaena fragrans cy Massangeana Hort. Acta Bot. Sin. 44:113–116; 2002.

    CAS  Google Scholar 

  • Metzger, J. D. Hormones and reproductive development. In: Davies, P. J., ed. Plant hormones: physiology, biochemistry and molecular biology. Dordrecht, The Netherlands: Kluwer Academic Publishers; 1995:617–648.

    Google Scholar 

  • Moon, J.; Suh, S. S.; Lee, H.; Choi, K. R.; Hong, C. B.; Paek, N. C.; Kim, S. G.; Lee, I., The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J. 35:613–623; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Mouradov, A.; Cremer, F.; Coupland, G. Control of flowering time: interacting pathways as a basis for diversity. Plant Cell S111–S130; 2002.

  • Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    Article  CAS  Google Scholar 

  • Pang, J. L.; Wang, L. L.; Hu, J. Q.; Liang, H. M. Effect of gibberellin on direct regeneration of floral buds from young flower buds in Sinningia speciosa Hiern. Acta. Biol. Exp. Sin. 37:241–246; 2004.

    Google Scholar 

  • Pharis, R. P.; Evans, L. T.; King, R. W.; Mander, L. N., Gibberellins, endogenous and applied, in relation to flower induction in the long-day plant Lolium temulentum L.. Plant Physiol. 84:1132–1138; 1987.

    PubMed  CAS  Google Scholar 

  • Tran Thanh Van, K. Direct flower neoformation from superficial tissue of small explants of Nicotiana tobacum L. Planta 115:87–92; 1973.

    Article  Google Scholar 

  • Wilson, R. N.; Heckman, J. W.; Somerville, C. R. Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol. 100:403–408; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Yu, H.; Ito, T.; Zhao, Y.; Peng, J.; Kumar, P.; Meyerowitz, E. M. Floral homeotic genes are targets of gibberellin signaling in flower development. Proc. Natl Acad. Sci. USA. 101:7827–7832; 2004.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Liang Pang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pang, JL., Wang, LL., Hu, JQ. et al. Synergistic promotion of gibberellin and cytokinin on direct regeneration of floral buds from in vitro cultures of sepal segments in sinningia speciosa hiern. In Vitro Cell.Dev.Biol.-Plant 42, 450–454 (2006). https://doi.org/10.1079/IVP2006792

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2006792

Key words

Navigation