Skip to main content
Log in

Somatic embryogenesis in sugarcane—An addendum to the invited review ‘sugarcane biotechnology: The challenges and opportunities,’ in vitro cell. Dev. Biol. Plant 41(4):345–363; 2005

  • Invited Review Addendum
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Since the 1960s, numerous studies on sugarcane plant regeneration have been reported. Essentially, successful culture and regeneration of plants from protoplasts, cells, callus, and various tissue and organs, have been achieved in this crop. Although plant regeneration from callus cultures had been reported since the 1960s, definitive proof of somatic embryo development was not available until 1983. Since then, considerable progress has been made in understanding and refining somatic embryogenesis and plant regeneration in sugarcane, for which development of an efficient embryogenic system was critical for the application of transgenic technology. Recent research in Australia and South Africa has led to the development of direct somatic embryogenic systems, which may improve transgenesis in sugarcane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahloowalia, B. S.; Maretzki, A. Plant regeneration via somatic embryogenesis in sugarcane. Plant Cell Rep. 2:21–25; 1983.

    Google Scholar 

  • Barba, R.; Nickell, L. G. Nutrition and organ differentiation in tissue culture of sugarcane—a monocotyledon. Planta 89:299–302; 1969.

    Article  Google Scholar 

  • Blanco, M. D. A.; Nieves, N.; Sanchez, M.; Borroto, C. G.; Castillo, R.; Gonzalez, J. L.; Escalona, M.; Baez, E.; Hernandez, Z. Protein changes associated with plant regeneration in embryogenic calli of sugarcane (Saccharum spp.). Plant Cell Tiss. Organ Cult. 51:153–158; 1997.

    Article  Google Scholar 

  • Bower, R.; Birch, R. G. Transgenic sugarcane plants via microprojectile bombardment. Plant J. 2:409–416; 1992.

    Article  CAS  Google Scholar 

  • Brisibe, E. A.; Miyake, H.; Taniguchi, T.; Maeda, E. Regulation of somatic embryogenesis in long term callus cultures of sugarcane (Saccharum officinarum L.). New Phytol. 126:301–307; 1994.

    Article  CAS  Google Scholar 

  • Chen, W. H.; Davey, M. R.; Power, J. B.; Cocking, E. C. Control and maintenance of plant regeneration in sugarcane callus cultures. J. Exp. Bot. 39:251–261; 1988.

    Article  CAS  Google Scholar 

  • Chen, W. H.; Gartland, K. M. A.; Davey, M. R.; Sotak, R.; Gartland, J. S.; Mulligan, B. J.; Power, J. B.; Cocking, E. C. Transformation of sugarcane protoplasts by direct uptake of a selectable chimaeric gene. Plant Cell Rep. 6:297–301; 1987.

    Article  CAS  Google Scholar 

  • Chengalrayan, K.; Gallo-Meagher, M. Effect of various growth regulators on shoot regeneration of sugarcane. In Vitro Cell. Dev. Biol. Plant 37:134–139; 2001.

    Google Scholar 

  • Chowdhury, M. K. U.; Vasil, I. Molecular analysis of plants regenerated from embryogenic cultures of hybrid sugarcane cultivars (Saccharum spp.). Theor. Appl. Genet. 86:181–188; 1993.

    Article  CAS  Google Scholar 

  • Desai, N. S.; Suprasanna, P.; Bapat, V. A. Simple and reproducible protocol for direct somatic embryogenesis from cultured immature inflorescence segments of sugarcane (Saccharum spp.). Curr. Sci. 87:764–768; 2004.

    Google Scholar 

  • Elliott, A. R.; Geijskes, R. J.; Lakshmanan, P.; M'Keon, M. G.; Wang, L. F.; Berding, N.; Grof, C. P. L.; Smith, G. R. Direct regeneration of transgenic sugarcane following microprojectile transformation of regenerable cells in thin transverse section explants. In: Vasil, I. F., ed. Proceedings of the Xth International Association Plant Culture Biotechnology. Orlando, June 23–28; 2002: P-1376 (Abstr.).

  • Evans, D. A.; Crocomo, O. J.; de Cavalco, M. T. V. Protoplast isolation and subsequent callus regeneration in sugarcane. Z. Pflanzenphysiol. 98:355–358; 1980.

    Google Scholar 

  • Falco, M. C.; Tulmann, N. A.; Ulian, C. Transformation and expression of a gene for herbicide resistance in Brazilian sugarcane. Plant Cell Rep. 19:1188–1194; 2000.

    Article  CAS  Google Scholar 

  • Finkle, B. J.; Ulrich, J. M. Effect of cryoprotectants in combination on the survival of frozen sugarcane cells. Plant Physiol. 63:598–604; 1979.

    PubMed  CAS  Google Scholar 

  • Finkle, B. J.; Ulrich, J. M. Cryprotectant removal temperature as a factor in the survival of frozen rice and sugarcane cells. Cryobiology 19:329–335; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Fitch, M. M. M.; Moore, P. H. Comparison of 2,4-D and picloram for selection of long-term totipotent green callus cultures of sugarcane. Plant Cell Tiss Organ Cult. 20:157–163; 1990.

    CAS  Google Scholar 

  • Gallo-Meagher, M.; English, R. G.; Abouzid, A. Thidiazuron stimulates shoot regeneration of sugarcane embryogenic callus. In Vitro Cell. Dev. Biol. Plant 36:37–40; 2000.

    Article  CAS  Google Scholar 

  • Gallo-Meagher, M.; Irvine, J. E. Herbicide resistant transgenic sugarcane plants containing the bar gene. Crop Sci. 36:1367–1374; 1996.

    Article  CAS  Google Scholar 

  • Geijskes, R. J.; Wan, L. F.; Lakshmanan, P.; McKeon, M. G.; Berding, N.; Swain, R. S.; Elliott, A. R.; Grof, C. P. L.; Jackson, J.; Smith, G. R. SmartsettTM seedlings: tissue culture seed plants for Australian sugar industry. Sugarcane Int., May/June:13–17; 2003.

    Google Scholar 

  • Gilbert, R. A.; Gallo-Meagher, M.; Comstock, J. C.; Miler, J. D.; Jain, M.; Abouzid, A. Agronomic evaluation of sugarcane lines transformed for resistance to sugarcane mosaic virus strain E. Crop Sci. 45:2060–2067; 2005.

    Article  Google Scholar 

  • Gnanapragasam, S.; Vasil, I. K. Plant regeneration from a cryopreserved embryogenic cell suspension of a commercial sugarcane hybrid (Saccharum sp.). Plant Cell Rep. 9:419–423; 1990.

    Article  CAS  Google Scholar 

  • Heinz, D. J.; Mee, G. W. P. Plant differentiation from callus tissue of Saccharum species. Crop Sci. 9:346–348; 1969.

    Article  Google Scholar 

  • Ho, W. J.; Vasil, I. K., Somatic embryogenesis in sugarcane (Saccharum officinarum L.). I. The morphology and ontogeny of somatic embryos. Protoplasma 118:169–180; 1983a.

    Article  Google Scholar 

  • Ho, W. J.; Vasil, I. K. Somatic embryogenesis in sugarcane (Saccharum officinarum L.): growth and plant regeneration from embryogenic cell suspension cultures. Ann. Bot. 51:719–726; 1983b.

    Google Scholar 

  • Lakshmanan, P.; Geijskes, R. J.; Aitken, K. S.; Grof, C. P. L.; Bonnett, G. D.; Smith, G. R. Sugarcane biotechnology: the challenges and opportunities. In Vitro Cell. Dev. Biol. Plant 41:345–363; 2005.

    Article  CAS  Google Scholar 

  • Lakshmanan, P.; Geijskes, R. J.; Wang, L. F.; Elliott, A.; Grof, C. P. I.; Smith, G. R. Developmental and hormonal regulation of direct shoot organogenesis and somatic embryogenesis in sugarcane (Saccharum spp. interspecific hybrids) leaf culture. Plant Cell Rep. (in press); 2006.

  • Lakshmanan, P.; Loh, C. S.; Goh, C. J. An in vitro method for rapid regeneration of a monopodial orchid hybrid Aranda Deborah using thin section culture. Plant Cell Rep. 14:510–514; 1995.

    Article  CAS  Google Scholar 

  • Larkin, P. J., Sugarcane tissue and protoplasts culture. Plant Cell Tiss. Organ Cult, 1:149–164; 1982.

    Article  CAS  Google Scholar 

  • Liu, M. C. Factors affecting induction, somatic embryogenesis and plant regeneration of callus from cultured immature inflorescences of sugarcane. J. Plant Physiol. 141:714–720; 1993.

    Google Scholar 

  • Liu, M. C.; Chen, W. H. Histological studies on the origin and process of plant differentiation in sugarcane callus mass. Proc. Int. Soc. Sugarcane Technol. 15:118–121: 1974.

    Google Scholar 

  • Lorenzo, J. C.; Gonzalez, B.; Escalona, M.; Teisson, C.; Espinosa, P.; Borroto, C. Sugarcane shoot formation in an improved temporary immersion system. Plant Cell Tiss. Organ Cult. 54:197–200; 1998.

    Article  CAS  Google Scholar 

  • Lorenzo, J. C.; Ojeda, E.; Espinosa, A.; Borroto, C. Field performance of temporary immersion bioreactor-derived sugarcane plants. In Vitro Cell. Dev. Biol. Plant 37:803–806; 2001.

    Article  Google Scholar 

  • Maretzki, A.; Nickell, L. G. Formation of protoplasts from sugarcane cell suspensions and the regeneration of cell cultures from protoplasts. Colloq. Int. CNRS 212:51–63; 1973.

    Google Scholar 

  • Ming, R.; Moore, P. H.; Woo, K. K.; D'Hont, A.; Glaszmann, J. C.; Tew, T. L.; Mirkov, T. E.; Silva, J. D.; Jifon, J.; Rai, M.; Schnell, R. J.; Brumbley, S. M.; Lakshmanan, P.; Comstock, J. C.; Paterson, A. H. Sugarcane improvement through breeding and biotechnology. Plant Breed. Rev. 27:17–117; 2006.

    Google Scholar 

  • Mulleegadoo, K. D.; Dookun-Saumtally, A. Genetic transformation of sugarcane by microprojectile bombardment of young leaf rolls. Proc. Int. Soc. Sugarcane Technol. Cong. 25:579–583; 2005.

    Google Scholar 

  • Nadar, H. M.; Heinz, D. J. Root and shoot development from sugarcane callus tissue. Crop Sci. 17:814–816; 1977.

    Article  Google Scholar 

  • Nickell, L. G. Tissue and cell cultures of sugarcane: another research tool. Hawaii Plant Rec 57:223–229; 1964.

    Google Scholar 

  • Oropeza, M.; Garcia, E. Somaclonal variants resistant to sugarcane mosaic virus and their agronomic characterization. In Vitro Cell. Dev. Biol. Plant 32:26–31; 1996.

    Article  Google Scholar 

  • Rathus, C.; Birch, R. G. Stable transformation of callus from electroporated sugarcane protoplasts. Plant Sci. 82:81–89; 1992.

    Article  CAS  Google Scholar 

  • Rathus, C.; Bower, R.; Birch, R G. Effects of promoter, intron and enhancer elements on transient gene expression in sugarcane and carrot protoplasts. Plant Mol. Biol. 23:613–618; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Schaufler, D. H.; Walker, P. N. Micropropagation of sugarcane between parallelplates. Trans. Am. Soc. Agric. Eng. 37:1225–1230; 1994.

    Google Scholar 

  • Schaufler, D. H.; Walker, P. N. Micropropagated sugarcane shoot identification using machine vision. Trans. Am. Soc. Agric. Eng. 38:1919–1925; 1995.

    Google Scholar 

  • Snyman, S.; Huckett, B.; Botha, F. C.; Watt, M. P. A comparison between direct and indirect somatic embryogenesis for the production of transgenic sugarcane (Saccharum spp. hybrids). Acta Hort. 56:105–108; 2001.

    Google Scholar 

  • Snyman, S.; Meyer, G.; Richards, J.: Haricharan, N.; Ramgareeb, S.; Huckett, B. Rehning the application of direct embryogenesis in sugarcane: effect of the developmental phase of leaf disc explants and the timing of DNA transfer on transformation efficiency. Plant Cell Rep. (in press); 2006.

  • Snyman, S.; Watt, M. P.; Huckett, B.; Botha, F. C. Direct somatic embryogenesis for rapid, cost effective production of transgenic sugarcane (Saccharum spp. hybrids). Proc. S. African Sugar Technol. Assoc. 74:186–187; 2000.

    Google Scholar 

  • Srinivasan, C.; Vasil, I. K.; Plant regeneration from protoplasts of sugarcane (Saccharum officinarum L.). J. Plant Physiol. 126:44–48; 1986.

    Google Scholar 

  • Tabacizadeh, Z.; Ferl, R. J.; Vasil, I. K. Somatic hybridisation in the Gramineae: Saccharum officinarum L. (sugarcane) and Pennisetum americanum (L.) K. Schum. (pearl millet). Proc. Natl. Acad. Sci. USA 83:5616–5619; 1986.

    Article  Google Scholar 

  • Taylor, P. W. J.; Dukic, S. D., Development of an in vitro culture technique for conservation of Saccharum spp. hybrid germplasm. Plant Cell Tiss. Organ Cult. 34:217–222; 1993.

    Article  CAS  Google Scholar 

  • Tran Thanh Van, K. In vitro control of de novo flower, bud, root and callus differentiation from excised epidermal tissues. Nature 246:44–45; 1973.

    Article  Google Scholar 

  • Urich, J. M.; Finkle, B. J.; Moore, P. H. Frozen preservation of cultured sugarcane cells. Sugarcane 3:11–14; 1984.

    Google Scholar 

  • Ulrich, J. M.; Finkle, B. J.; Moore, P. H.; Ginoza, H. Effect of a mixture of cryoprotectants in attaining liquid nitrogen survival of callus cultures of a tropical plant. Cryobiology 16:550–556; 1979.

    Article  PubMed  CAS  Google Scholar 

  • Vickers, J. E.; Grof, C. P. L.; Bonnett, G. D.; Jackson, P. A.; Morgan, T. E. Tissue culture and biolistic transformation of callus have independent effects on yield and sugar content of transgenic sugarcane in the field. Aust. J. Agric. Res. 56:57–68; 2005.

    Article  CAS  Google Scholar 

  • Walker, P. N.; Harris, J. P.; Gautz, L. D. Optimal environment for sugarcane micropropagation. Trans. Am. Soc. Agric. Eng. 34:2609–2614; 1991.

    Google Scholar 

  • Wang, Z.; Heinemann, P. H.; Sommer, H. J. III; Walker, P. N.; Morrow, C. T.; Heuser, C. Identification and separation of micropropagated sugarcane shoots based on the Hough transform. Trans. Am. Soc. Agric. Eng. 41:1535–1541; 1998.

    Google Scholar 

  • Wang, Z.; Heinemann, P. H.; Walker, P. N.; Heuser, C. Automated micropropagated sugarcane shoot separation by machine vision. Trans. Am. Soc. Agric. Eng. 42:247–254; 1999.

    Google Scholar 

  • World Sugar Statistics. Kent, UK: F.O. Lichts & Agra Informa Limited; 2005.

  • Yan, Q.; Li, X. Isolation, culture of sugarcane protoplasts and callus formation. Kexue Tongabo 29:381–385; 1984.

    Google Scholar 

  • Yan, Q.; Zhang, X.; Chen, Z. Organogenesis from sugarcane protoplasts. Kexue Tongabo 30:1392–1395; 1985.

    Google Scholar 

  • Zambranco, A. Y.; Demey, J. B.; Fuchs, M.; Gonzalez, V.; Rea, R.; Desousa, O.; Guitierrez, Z.; Selection of sugarcane plants resistant to SCMV. Plant Sci. 165:221–225; 2003b

    Article  CAS  Google Scholar 

  • Zambranco, A. Y.; Demey, J. R.; Gonzalez, V. Selection of an ametryn tolerant sugarcane cellular line. J. Agric. Univ. Puerto Rico 83:47–54; 1999.

    Google Scholar 

  • Zambranco, A. Y.; Demey, J. R.; Gonzalez, V. In vitro selection of a glyphosate-tolerant sugarcane cellular line. Plant Mol. Biol. Rep. 21:365–373: 2003a

    Google Scholar 

  • Zeng, J. S. In vitro embryogenesis from somatic leaf callus of sugarcane. Acta Phytophysiol. Sin. 5:411–416; 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash Lakshmanan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakshmanan, P. Somatic embryogenesis in sugarcane—An addendum to the invited review ‘sugarcane biotechnology: The challenges and opportunities,’ in vitro cell. Dev. Biol. Plant 41(4):345–363; 2005. In Vitro Cell.Dev.Biol.-Plant 42, 201–205 (2006). https://doi.org/10.1079/IVP2006772

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2006772

Key words

Navigation