In Vitro Cellular & Developmental Biology - Plant

, Volume 41, Issue 6, pp 806–811 | Cite as

Production of pilocarpine in callus of jaborandi (pilocarpus microphyllus stapf)

  • Ilka Nacif De AbreuEmail author
  • Alexandra Christine H. F. Sawaya
  • Marcos Nogueira Eberlin
  • Paulo Mazzafera


Jaborandi (Pilocarpus microphyllus) is the only known source of pilocarpine, and although this alkaloid is the only natural compoud used to treat glaucoma, very little is known about its metabolism. Calluses obtained from petioles of P. microphyllus leaves were partially immersed in MS (Murashige and Skoog) liquid medium containing different pH levels (4.8, 5.8, and 6.8), nutrient concentration (MS normal basal medium concentration, absence of N, P, and K and three times normal concentrations), histidine and threonine (0.05, 0.15 and 0.75 mM) NaCl (25 and 75 mM) and polyethylene glycol (5 and 15%). Exposure to methyljasmonic acid (MJ) vapor was also investigated. The calluses were subjected to these conditions for 4 and 8d under gentle agitation in the dark. Some calluses were also kept under continuous light. Pilocarpine was identified in the liquid medium by liquid chromatography-mass spectrometry/mass spectrometry. The alkaloid quantifications in the media and cells were carried out by high performance liquid chromatography (HPLC). The calluses maintained in the dark released the greatest quantities of pilocarpine into the medium. Methyljasmonate inhibited the release of pilocarpine in the medium. High pH (6.8), absence and excess of N, excess of P, and 0.75 mM of histidine and threonine induced the highest production of the alkaloid.

Key words

Pilocarpus microphyllus jaborandi alkaloid stress 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aerts, R. J.; De Luca, V. Phytochrome is involved in the light-regulation of vindoline biosynthesis in Catharanthus. Plant Physiol. 100:1029–1032; 1992.PubMedCrossRefGoogle Scholar
  2. Aerts, R. J.; Gisi, D.; Carolis, E.; DeLuca, V.; Baumann, T. W. Methyl jasmonate vapor increases the developmentally controlled synthesis of alkaloids in Catharanthus and Cinchona seedlings. Plant J. 5:635–643; 1994.CrossRefGoogle Scholar
  3. Avancini, G.; Abreu, I. N.; Saldana, M. D. A.; Mohamed, R. S.; Mazzafera, P. Induction of pilocarpine formation in Jaborandi leaves by salicylic acid and methyljasmonate. Phytochemistry 63:171–175; 2003.PubMedCrossRefGoogle Scholar
  4. Baricevic, D.; Umek, A.; Kreft, S.; Maticic, B.; Zupancic, A. Effect of water stress and nitrogen fertilization on the content of hyoscyamine and scopolamine in the roots of deadly nightshade (Atropa belladonna). Environ. Exp. Bot. 42:17–24; 1999.CrossRefGoogle Scholar
  5. Brenneke, F.; Bukalo, O.; Dityatev, A.; Lie, A. A. Mice deficient for the extracellular matrix glycoprotein tenascin-R structural hallmarks show physiological and increased hippocampal excitability, but no increased susceptibility to seizures in the pilocarpine model of epilepsy. Neuroscience 124:841–855; 2004.PubMedCrossRefGoogle Scholar
  6. Davies, A. N.; Broadley, K.; Beighton, D. Kerostomia in patients with advanced cancer. J. Pain Symp. Manag. 22:820–825; 2001.CrossRefGoogle Scholar
  7. Devasagayam, T. P. A.; Kamat, J. P.; Mohan, H.; Kesavan, P. C. Caffeine as an antioxidant: inhibition of lipid peroxidation induced by reactive oxygen species. Biochem. Biophys. Acta 1282:63–70; 1996.PubMedGoogle Scholar
  8. Dewick, P. M. Medicinal natural products: a biosynthetic approach. New York: John Wiley and Sons; 1997:352–353.Google Scholar
  9. Dixon, R. A.; Paiva, N. L. Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097; 1995.PubMedCrossRefGoogle Scholar
  10. Endt, D. V.; Kijne, J. W.; Memelink, J. Transcription factors controlling plant secondary metabolism: what regulates the regulators? Phytochemistry 61:107–114; 2002.CrossRefGoogle Scholar
  11. Facchimi, P. J. Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Ann. Rev. Plant Physiol. Plant. Mol. Biol. 52:29–66; 2001.CrossRefGoogle Scholar
  12. Farmer, E. E.; Ryan, C. A. Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell 4:129–134; 1992.PubMedCrossRefGoogle Scholar
  13. Foyer, C. H.; Descourvières, P.; Kunert, K. J. Protection against oxygen radicals: an important defence mechanism studied in transgenic plants. Plant Cell Environ. 17:507–523; 1994.CrossRefGoogle Scholar
  14. Godoy-Hernandez, G. C.; Vazquez-Flota, F. A.; Loyola-Vargas, V. M. The exposure to trans-cinnamic acid of osmotically stressed Catharanthus roseus cells cultured in a 14-1 bioreactor increases alkaloid accumulation. Biotechnol. Lett. 22:921–925; 2000.CrossRefGoogle Scholar
  15. Gregianini, T. S.; Silveira, V. C.; Porto, D. D.; Kerber, V. A.; Henriques A. T.; Fett-Neto, A. G. The alkaloid brachycerine is induced by ultraviolet radiation and is a singlet oxygen quencher. Photochem. Photobiol. 78:470–474; 2003.PubMedCrossRefGoogle Scholar
  16. Gundlach, H.; Muller, M. J.; Kutchan, T. M.; Zenk, M. H. Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc. Natl. Acad. Sci. USA 89:2389–2393; 1992.PubMedCrossRefGoogle Scholar
  17. Hashimoto, T.; Yamada, Y. Regulatory mechanisms and metabolic engineering of plant alkaloid biosynthesis. Nippon Nogeik. Kaishi 75:674–677; 2001.Google Scholar
  18. Hobbs, M. C.; Yeoman, M. M. Effect of light on alkaloid accumulation in cell cultures of Nicotiana species. J. Exp. Bot. 42:1371–1378; 1991.CrossRefGoogle Scholar
  19. Imanishi, S.; Hashizume, K.; Nakakita, M.; Kojima, H.; Matsubayashi, Y.; Hashimoto, T.; Sakagami, Y.; Yamada, Y.; Nakamura, K. Differential induction by methyl jasmonate of genes encoding ormithine decarboxylase and other enzymes involved in nicotine biosynthesis in tobacco cell cultures. Plant Mol. Biol. 38:1101–1111; 1998.PubMedCrossRefGoogle Scholar
  20. Khan, M. B.; Harborne, J. B. Potassium deficiency increases tropane alkaloid synthesis in Atropa accuminata via arginine and ornithine decarboxylase levels. Phytochemistry 30:3559–3563; 1991.CrossRefGoogle Scholar
  21. Li, Z. H.; Liu, Z. J. Effect of NaCl on growth, and camptothecin accumulation in Camptotheca acuminata seedlings Can J. Plant Sci. 83:931–938; 2003.Google Scholar
  22. McConn, M.; Creelman, R. A.; Bell, E.; Mullet, J. E.; Browse, J. Jasmonate is essential for insect defense in Arabidopsis. Proc. Natl. Acad. Sci. USA 94:5473–5477; 1997.PubMedCrossRefGoogle Scholar
  23. Migdal, C. Glaucoma medical treatment: philosophy, principles and practice. Eye 14:515–518; 2000.PubMedGoogle Scholar
  24. Mulabagal, V.; Tsay, H. Plant cell cultures—an alternative and efficient source for the production of biologically important secondary metabolites. Int. J. Appl. Sci. Eng. 2:29–48; 2004.Google Scholar
  25. Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–497; 1962.CrossRefGoogle Scholar
  26. Pinheiro, C. U. B. Jaborandi (Pilocarpus sp. Rutaceae): a wild species and its rapid transformation into a crop. Econ. Bot. 51:49–58; 1997.Google Scholar
  27. Pinheiro, C. U. B. Extrativismo, cultivo e Privatização do Jaborandi (Pilocarpus microphyllus Stapf ex Holm. Rutaceae) no Maranhão, Brasil. Acta Bot. Bras. 16:141–150; 2002.CrossRefGoogle Scholar
  28. Pitta-Alavarez, S.; Giulietti, A. M. Influence of chitosan, acetic acid and citric acid on growth and tropane alkaloid production on transformed roots of Brugmansia candida. Effect of medium pH and growth phase. Plant Cell Tiss. Org. Cult. 59:31–38; 1999.CrossRefGoogle Scholar
  29. Saenz-Carbonell, L.; Loyola-Vargas, V. M. Datura stramonium hairy roots tropane alkaloid content as a response to changes in Gamborg's B-5 medium. Appl. Biochem. Biotechnol. 61:321–337; 1996.Google Scholar
  30. Schmeda-Hirschmann, G.; Rodriguez, J. A.; Theoduloz, C.; Astudillo, S. L.; Feresin, G. E.; Tapia, A. Free-radical scavengers and antioxidants from Peumus boldus Mol (‘Boldo’). Free Radic. Res. 37:447–452; 2003.PubMedCrossRefGoogle Scholar
  31. Thomma, B. P. H. J.; Eggermont, K.; Broekaert W. F.; Cammue, B. P. A. Disease development of several fungi on Arabdopsis can be reduced by treatment with methyl jasmonate. Plant Physiol. Biochem. 38:421–427; 2000.CrossRefGoogle Scholar
  32. Torres, A. C.; Caldas, L. S.; Buso, J. A. Cultura de tecidoe e transformação genética de plantas. Brasília. EMBRAPA; 1998:509.Google Scholar
  33. Van der Fits, L.; Zhang, H.; Menke, F. L. H.; Deneka, M.; Memelink, J. A Catharanthus roseus BPF-1 homologue interacts with an elicitor-responsive region of the secondary metabolite biosynthetic gene Str and is induced by elicitor via a JA-independent signal transduction pathway. Plant Mol. Biol. 44: 675–685; 2000.PubMedCrossRefGoogle Scholar
  34. Vijayan, P.; Shockey, J.; Lévesque, C. A.; Cook, R. J.; Browse, J. A role for jasmonate in pathogen defense of Arabidopsis Proc. Natl Acad. Sci. USA 95:7209–7214; 1998.PubMedCrossRefGoogle Scholar
  35. Walker, T. S.; Bais, H. P.; Vivanco, J. M. Jasmonic acid-induced hypericin production in cell suspension cultures of Hypericum perforatum L. (St. John's wort). Phytochemistry 60:289–293; 2002.PubMedCrossRefGoogle Scholar
  36. Waller, G. R.; Nowacki, E. K. Alkaloid biology and metabolism in plants. New York: Perseus Publishing; 1978:312.Google Scholar
  37. Webster, A. R.; Luff, A. J.; Canning, C. R.; Elkington, A. R. The effect of Pilocarpine on the glaucomatous visual-field. Br. J. Opthalmol. 77:721–725; 1993.Google Scholar
  38. Yu, K. W.; Gao, W. Y.; Hahn, E. J.; Paek, K. Y. U. Jasmonic acid improves ginsenoside accumulation in adventitious root culture of Panax ginseng. Biochem. Eng. J. 11:211–215; 2002.CrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 2005

Authors and Affiliations

  • Ilka Nacif De Abreu
    • 1
    Email author
  • Alexandra Christine H. F. Sawaya
    • 2
  • Marcos Nogueira Eberlin
    • 2
  • Paulo Mazzafera
    • 1
  1. 1.Department de Fisiologia Vegetal, Instituto de BiologiaUniversidade Estadual de Campinas, CEPCampinasBrazil
  2. 2.Departmento de Química Orgânica, Laboratório Thomson de Espectrometria de MassaInstituto de QuímicaCampinasBrazil

Personalised recommendations