In Vitro Cellular & Developmental Biology - Plant

, Volume 41, Issue 5, pp 620–644 | Cite as

Seed coats: Structure, development, composition, and biotechnology

  • Jaimie A. Moïse
  • Shuyou Han
  • Loreta Gudynaitę-Savitch
  • Douglas A. Johnson
  • Brian L. A. Miki
Article

Summary

Although seeds have been the subject of extensive studies for many years, their seed coats are just beginning to be examined from the perspective of molecular genetics and control of development. The seed coat, plays a vital role in the life cycle of plants by controlling the development of the embryo and determining seed dormancy and germination. Within the seed coat are a number of unique tissues that undergo differentiation to serve specific functions in the seed. A large number of genes are known to be specifically expressed within the seed coat tissues; however, very few of them are understood functionally. The seed coat synthesizes a wide range of novel compounds that may serve the plant in diverse ways, including defense and control of development. Many of the compounds are sources of industrial products and are components of food and feeds. The use of seed coat biotechnology to enhance seed quality and yield, or to generate novel components has not been exploited, largely because of lack of knowledge of the genetic systems that govern seed coat development and composition. In this review, we will examine the recent advances in seed coat, biology from the perspective of structure, composition and molecular genetics. We will consider the diverse avenues that are possible for seed coat biotechnology in the future. This review will focus principally on the seed coats of the Brassicaceae and Fabaceae as they allow us to merge the areas of molecular biology, physiology and structure to gain a perspective on the possibilities for seed coat modifications in the future.

Key words

biotechnology Brassica genes legume seed coat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahams, S.; Lee, E.; Walker, A. R.; Tanner, G. J.; Larkin, P. J.; Ashton, A. R. The Arabidopsis TDS4 gene encodes leucoanthocyanidin dioxygenase (LDOX) and is essential for proanthocyanidin synthesis and vacuole development. Plant J. 35:624–636; 2003.PubMedCrossRefGoogle Scholar
  2. Abrahams, S.; Tanner, G. J.; Larkin, P. J.; Ashton, A. R. Identification and biochemical characterization of mutants in the proanthocyanidin pathway in Arabidopsis. Plant Physiol. 130:561–576; 2002.PubMedCrossRefGoogle Scholar
  3. Aerts, R. J.; Barry, T. N.; McNabb, W. C. Polyphenols and agriculture: beneficial effects of proanthocyanidins in forages. Agric. Ecosyst. Environ. 75:1–12; 1999.CrossRefGoogle Scholar
  4. Akada, S.; Dube, S. K. Organization of soybean chalcone synthase gene clusters and characterization of a new member of the family. Plant Mol. Biol. 29:189–199; 1995.PubMedCrossRefGoogle Scholar
  5. Akada, S.; Kung, S.-D.; Dube, S. K. The nucleotide sequence of gene 3 of the soybean chalcone synthase multigene family Nucleic Acids Res. 18:5899; 1990.PubMedCrossRefGoogle Scholar
  6. Akada, S.; Kung, S.-D.; Dube, S. K. The nucleotide sequence of gene 1 of the soybean chalcone synthase multigene family. Plant Mol. Biol. 16:751–752; 1991.PubMedCrossRefGoogle Scholar
  7. Akada, S.; Kung, S.-D.; Dube, S. K. Nucleotide sequence and putative regulatory elements of gene 2 of the soybean (Glycine max) chalcone synthase multigene family. Plant Physiol. 102:317–319; 1993a.PubMedCrossRefGoogle Scholar
  8. Akada, S.; Kung, S.-D.; Dube, S. K. Nucleotide sequence of a soybean chalcone synthase gene with a possible role in ultraviolet-B sensitivity, Gmchs6. Plant Physiol. 102:699–701; 1993b.PubMedCrossRefGoogle Scholar
  9. Akada, S.; Kung, S.-D.; Dube, S. K. Nucleotide sequence and putative regulatory elements of a nodule-development-specific member of the soybean (Glycine max) chalcone synthase multigene family, Gmchs7. Plant Physiol. 102:321–323; 1993c.PubMedCrossRefGoogle Scholar
  10. Algan, G.; Büyükkartal, H. N. B. Ultrastructure of seed coat, development in the natural tetraploid Trifolium pratense L. J. Agron. Crop Sci. 184:205–213; 2000.CrossRefGoogle Scholar
  11. Alkharouf, N. W.; Matthews, B. F. SGMD: the soybean genomics and microarray database. Nucleic Acids Res. 32:D398-D400; 2004.PubMedCrossRefGoogle Scholar
  12. Applebaum, S. W.; Tadmor, U.; Podoler, H. The effect of starch and of a heteropolysaccharide fraction from Phaseolus vulgaris on development and fecundity of Callosobruchus chinensis (Coleoptera-Bruchidae). Entomol. Exp. Applicata 13:61–70; 1970.CrossRefGoogle Scholar
  13. Arenas-Mena, C.; Raynal, M.; Borrell, A.; Varoquaux, F.; Cutanda, M. C.; Stacy, R. A. P.; Pagès, M.; Delseny, M.; Culiáñez-Macià, F. A. Expression and cellular localization of Atrab28 during Arabidopsis embryogenesis. Plant Mol. Biol. 40:355–363; 1999.PubMedCrossRefGoogle Scholar
  14. Baker, S. C.; Robinson-Beers, K.; Villanueva, J. M.; Gaiser, J. C.; Gasser, C. S. Interactions among genes regulating ovule development in Arabidopsis thaliana. Genetics 145:1109–1124; 1997.PubMedGoogle Scholar
  15. Balasubramanian, S.; Schneitz, K. NOZZLE regulates proximal-distal pattern formation, cell proliferation and early sporogenesis during ovule development in Arabidopsis thaliana. Development 127:4227–4238; 2000.PubMedGoogle Scholar
  16. Balasubramanian, S.; Schneitz, K. NOZZLE links proximal-distal and adaxial-abaxial pattern formation during ovule development in Arabidopsis thaliana. Development 129:4291–4300; 2002.PubMedGoogle Scholar
  17. Batchelor, A. K.; Boutilier, K.; Miller, S. S.; Hattori, J.; Bowman, L. A.; Hu, M.; Lantin, S.; Johnson, D. A.; Miki, B. L. A. SCB1, a BURP-domain protein gene from developing soybean seed coats. Planta 215:523–532; 2002.PubMedCrossRefGoogle Scholar
  18. Batchelor, A. K.; Boutilier, K.; Miller, S. S.; Labbé, H.; Bowman, L. A.; Hu, M.; Johnson, D. A.; Gijzen, M.; Miki, B. L. A. The seed coat-specific expression of a subtilisin-like gene, SCS1, from soybean. Planta 211:484–492; 2000.PubMedCrossRefGoogle Scholar
  19. Baudry, A.; Heim, M. A.; Dubreucq, B.; Caboche, M.; Weisshaar, B.; Lepiniec, L. TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J. 39:366–380; 2004.PubMedCrossRefGoogle Scholar
  20. Baxter, I. R.; Young, J. C.; Armstrong, G.; Foster, N.; Bogenschutz, N.; Cordova, T.; Peer, W. A.; Hazen, S. P.; Murphy, A. S.; Harper, J. F. A plasma membrane H+-ATPase is required for the formation of proanthocyanidins in the seed coat endothelium of Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 102:2649–2654; 2005.PubMedCrossRefGoogle Scholar
  21. Beeckman, T.; De Rycke, R.; Viane, R.; Inzé, D. Histological study of seed coat development in Arabidopsis thaliana. J. Plant Res. 113:139–148; 2000.CrossRefGoogle Scholar
  22. Bekkara, F.; Jay, M.; Viricel, M. R.; Rome, S. Distribution of phenolic compounds within seed and seedlings of two Vicia faba cvs differing in their seed tannin content, and study of their seed and root phenolic exudations. Plant Soil 203:27–36; 1998.CrossRefGoogle Scholar
  23. Bell, C. J.; Dixon, R. A.; Farmer, A. D.; Flores, R.; Inman, J.; Gonzales, R. A.; Harrison, M. J.; Paiva, N. L.; Scott, A. D.; Weller, J. W.; May, G. D. The Medicago genome initiative: a model legume database. Nucleic Acids Res. 29:114–117; 2001.PubMedCrossRefGoogle Scholar
  24. Benitez, E. R.; Funatsuki, H.; Kaneko, Y.; Matsuzawa, Y.; Bang, S. W.; Takahashi, R. Soybean maturity gene effects on seed coat pigmentation and cracking in response to low temperatures. Crop Sci. 44:2038–2042; 2004.CrossRefGoogle Scholar
  25. Berger, F. Endosperm development. Curr. Opin. Plant. Biol. 2:28–32; 1999.PubMedCrossRefGoogle Scholar
  26. Bernard, R. L.; Weiss, M. G. Qualitative genetics, In: Caldwell, B. E., ed. Soybeans: Improvement, production and uses, 1st ed. Madison, WI: American Society of Agronomy; 1973:117–149.Google Scholar
  27. Bewley, J. D. Seed germinatin and dormancy. Plant Cell 9:1055–1066; 1997.PubMedCrossRefGoogle Scholar
  28. Borisjuk, L.; Walenta, S.; Weber, H.; Mueller-Klieser, W.; Wobus, U. High resolution histographical mapping of glucose concentrations in developing cotyledons of Vicia faba in relation to mitotic activity and storage processes: glucose as a possible developmental trigger. Plant J. 15:583–591; 1998.CrossRefGoogle Scholar
  29. Bouman, F. Integument initiation and testa development in some Cruciferae. Bot. J. Linn. Soc. 70:213–229; 1975.Google Scholar
  30. Bradley, D. J.; Kjellbom, P.; Lamb, C. J. Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell 70:21–30;1992.PubMedCrossRefGoogle Scholar
  31. Brady, L.; Bassett, M. J.; McClean, P. E. Molecular markers associated with T and Z, two genes controlling partly colored seed coat patterns in common bean. Crop Sci. 38:1073–1075; 1998.CrossRefGoogle Scholar
  32. Broadhvest, J.; Baker, S. C.; Gasser, C. S. SHORT INTEGUMENTS 2 promotes growth during Arabidopsis reproductive development. Genetics 155:899–907; 2000.PubMedGoogle Scholar
  33. Buchner, P.; Boutin, J.-P. A MADS box transcription factor of the AP1/AGL9 subfamily is also expressed in the seed coat of pea (Pisum sativum) during development. Plant Mol. Biol. 38:1253–1255; 1998.PubMedCrossRefGoogle Scholar
  34. Buchner, P.; Rochat, C.; Wuillème, S.; Boutin, J.-P. Characterization of a tissue-specific and developmentally regulated β-1,3-glucanase gene in pea (Pisum sativum). Plant Mol. Biol. 49:171–186; 2002.PubMedCrossRefGoogle Scholar
  35. Cabrera, A.; Martin, A. Variation in tannin content in Vicia faba L. J. Agric. Sci. 106:377–382; 1986.Google Scholar
  36. Cardador, M. A.; Castaño, T. E.; Loarca, P. G. Antimutagenic activity of natural phenolic compounds present in common bean (Phaseolus vulgaris) against aflatoxin B1. Food Addit. contam. 19:62–69; 2002.CrossRefGoogle Scholar
  37. Carlini, C. R.; Oliveira, A. E. A.; Azambuja, P.; Xavier-Filho, J.; Wells, M. A. Biological effects of canatoxin in different insect models: Evidence for a protolytic activation of the toxin by insect cathepsinlike enzymes. J. Econ. Entomol. 90:340–348; 1997.PubMedGoogle Scholar
  38. Chamberlin, M. A.; Horner, H. T.; Palmer, R. G. Early endosperm, embryo, and ovule development in Glycine max (L.) Merr. Int. J. Plant. Sci. 155:421–436; 1994.CrossRefGoogle Scholar
  39. Chowdhury, D. M. S.; Rathjen, J. M.; Tate, M. E.; McDonald, G. Genetics of colour traits in common vetch (Vicia sativa L.) Euphytica 136:249–255; 2004.CrossRefGoogle Scholar
  40. Clements, J. C.; Zvyagin, A. V.; Silva, K. K. M. B.; Wanner, T.; Sampson, D. D.; Cowling, W. A. Optical coherence tomography as a novel tool for non-destructive measurement of the hull thickness of lupin seeds. Plant Breed. 123:266–270; 2004.CrossRefGoogle Scholar
  41. Collier, E.; Watkinson, A.; Cleland, C. F.; Roth, J. Partial purification and characterization of an insulin-like material from spinach and Lemna gibba G3. J. Biol. Chem. 262:6238–6247; 1987.PubMedGoogle Scholar
  42. Collip, J. B.; Glucokinin. A new hormone present in plant tissue. Preliminary paper. J. Biol. Chem. 56:513–543; 1923.Google Scholar
  43. Colombo, L.; Franke, J.; Van der Krol, A. R.; Wittich, P. E.; Dons, H. J. M.; Angenent, G. C. Downregulation of ovule-specific MADS box genes from Petunia results in maternally controlled defects in seed development. Plant Cell 9:703–715; 1997.PubMedCrossRefGoogle Scholar
  44. Cook, D. R. Medicago trancatula—a model in the making! Curr. Opin. Plant Biol. 2:301–304; 1999.PubMedCrossRefGoogle Scholar
  45. Corner, E. J. H. The leguminous seed. Phytomorphology 1:117–150; 1951.Google Scholar
  46. Craik, D. J.; Daly, N. J.; Waine, C. The cystine knot motif in toxins and implications for drug design. Toxicon 39:43–60; 2001.PubMedCrossRefGoogle Scholar
  47. Dakora, F. D.; Phillip, D. A. Diverse functions of isoflavonoids in legumes transcend anti-microbial definitions of phytoalexins. Physiol. Mol. Plant Pathol. 49:1–20; 1996.CrossRefGoogle Scholar
  48. Debeaujon, I.; Koornneef, M. Gibberellin requirement for Arabidopsis seed germination is determined both by testa characteristics and embryonic abscisic acid. Plant Physiol. 122:415–424; 2000.PubMedCrossRefGoogle Scholar
  49. Debeaujon, I.; Léon-Kloosterziel, K. M.; Koornneef, M. Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiol. 122:403–413; 2000.PubMedCrossRefGoogle Scholar
  50. Debeaujon, I.; Nesi, N.; Perez, P.; Devic, M.; Grandjean, O.; Caboche, M.; Lepiniec, L. Proanthocyanidin-accumulating cells in Arabidopsis testa: regulation of differentiation and role in seed development. Plant Cell 15:2514–2531; 2003.PubMedCrossRefGoogle Scholar
  51. Debeaujon, I.; Peeters, A. J. M.; Léon-Kloosterziel, K. M.; Koornneef, M. The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of seed coat endothelium Plant Cell 13:853–871; 2001.PubMedCrossRefGoogle Scholar
  52. Dejardin, A.; Rochat, C.; Maugenest, S.; Boutin, J. P. Purification, characterization and physiological role of sucrose synthase in the pea seed coat (Pisum sativum L.). Planta 201:128–137; 1997.PubMedCrossRefGoogle Scholar
  53. Devic, M.; Guilleminot, J.; Debeaujon, I.; Bechtold, N.; Bensaude, E.; Koornneef, M.; Pelletier, G.; Delseny, M. The BANYLUS gene encodes a DFR-like protein and is a marker of early seed coat development. Plant J. 19:387–398; 1999.PubMedCrossRefGoogle Scholar
  54. Dhaubhadel, S.; McGarvey, B. D.; Williams, R.; Gijzen, M. Isoflavonoid biosynthesis and accumulation in developing soybean seeds. Plant Mol. Biol. 53:733–743; 2003.PubMedCrossRefGoogle Scholar
  55. Di Cristina, M.; Sessa, G.; Dolan, L.; Linstead, P.; Baima, S.; Ruberti, I.; Morelli, G. The Arabidopsis Athb-10 (GLABRA2) is an HD-Zip protein required for regulation of root hair development. Plant J. 10:393–402; 1996.PubMedCrossRefGoogle Scholar
  56. Dixon, R. A.; Paiva, N. L. Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097; 1995.PubMedCrossRefGoogle Scholar
  57. Dueñas, M.; Estrella, I.; Hernández, T. Occurrence of phenolic compounds in the seed coat and the cotyledon of peas (Pisum sativum L.). Eur. Food Res. Technol. 219:116–123; 2004.CrossRefGoogle Scholar
  58. Dueñas, M.; Hernández, T.; Estrella, I. Phenolic composition of the cotyledon and the seed coat of lentils (Lens culinaris L.). Eur. Food Res. Technol. 215:478–483; 2002.CrossRefGoogle Scholar
  59. Elliott, R. C.; Betzner, A. S.; Huttner, E.; Oakes, M. P.; Tucker, W. Q. J.; Gerentes, D.; Perez, P.; Smyth, D. R. AINTEGUMENTA, an, APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 8:155–168; 1996.PubMedCrossRefGoogle Scholar
  60. Emami, M. K.; Sharma, B. Inheritance of black testa colour in lentil (Lens culinaris Medik). Euphytica 115:43–47; 2000.CrossRefGoogle Scholar
  61. Ene-Obong, E. E.; Okoye, F. I. Effect of seed coat on water permeability in the African yam bean, Sphenostylis stenocarpa. Nigerian J. Bot. 6:43–51; 1993.Google Scholar
  62. Feinbaum, R. L.; Ausubel, F. M. Transcriptional regulation of the Arabidopsis thaliana chalcone synthase gene. Mol. Cell Biol. 8:1985–1992; 1988.PubMedGoogle Scholar
  63. Finkelstein, R. R.; Gampala, S. S. L.; Rock, C. D. Abscisic acid signaling in seeds and seedlings. Plant Cell 14:S15-S45; 2002.PubMedGoogle Scholar
  64. Flock, C.; Bassi, A.; Gijzen, M. Removal of aqueous phenol and 2-chlorophenol with purified soybean peroxidase and raw soybean hulls. J. Chem. Technol. Biotechnol. 74:303–309; 1999.CrossRefGoogle Scholar
  65. Forkman, G. Flavonoids as flower pigments: the formation of the natural spectrum and its extension by genetic engineering. Plant Breed. 106:1–26; 1991.CrossRefGoogle Scholar
  66. Frey, A.; Godin, B.; Bonnet, M.; Sotta, B.; Marion-Poll, A. Maternal synthesis of abscisic acid controls seed development and yield in Nicotiana plumbaginifolia. Planta 218:958–964; 2004.PubMedCrossRefGoogle Scholar
  67. Furbank, R. T.; White, R.; Palta, J. A.; Turner, N. C. Internal recycling of respiratory CO2 in pods of chickpea (Cicer arietinum L.): the role of pod walls, seed coat, and embryo. J. Exp. Bot. 55:1687–1696; 2004.PubMedCrossRefGoogle Scholar
  68. Gaiser, J. C.; Robinson-Beers, K.; Gasser, C. S. The Arabidopsis SUPERMAN gene mediates asymmetric growth of the outer integuments of ovules. Plant Cell 7:333–345; 1995.PubMedCrossRefGoogle Scholar
  69. Garcia, D.; Fitz Gerald, J. N.; Berger, F. Maternal control of integument cell elongation and zygotic control of endosperm growth are coordinated to determine seed size in Arabidopsis. Plant Cell 17:52–60; 2005.PubMedCrossRefGoogle Scholar
  70. Gatehouse, A. M. R.; Dobie, P.; Hodges, R. J.; Meik, J.; Puszlai, A.; Boulter, D. Role of carbohydrates in insect resistance in Phaseolus vulgaris. J. Insect Physiol. 33:843–850; 1987.CrossRefGoogle Scholar
  71. Geng, Z.; Bassi, A. S.; Gijzen, M. Enzymatic treatment of soils contaminated with phenols and chlorophenols using soybean seedhulls. Water, Air, Soil Pollut. 154:151–166; 2004.CrossRefGoogle Scholar
  72. Gibson, S. I. Sugar and phytohormone response pathways: navigating a signaling network J. Exp. Bot. 55:253–264; 2004.PubMedCrossRefGoogle Scholar
  73. Gijzen, M. A deletion mutation at the ep locus causes low seed coat peroxidase activity in soybean. Plant J. 12:991–998; 1997.PubMedCrossRefGoogle Scholar
  74. Gijzen, M.; Kuflu, K.; Quotob, D.; Chernys, J. T. A class I chitinase from soybean seed coat. J. Exp. Bot. 52:2283–2289; 2001.PubMedCrossRefGoogle Scholar
  75. Gijzen, M.; Miller, S. S.; Bowman, L.-A.; Batchelor, A. K.; Boutilier, K.; Miki, B. L. A. Localization of peroxidase mRNAs in soybean seeds by in situ hybridization. Plant Mol. Biol. 41:57–63; 1999a.PubMedCrossRefGoogle Scholar
  76. Gijzen, M.; Miller, S. S.; Kuflu, K.; Buzell, R. I.; Miki, B. L. A. Hydrophobic protein synthesized in the pod endocarp adheres to the seed surface. Plant Physiol. 120:951–959; 1999b.PubMedCrossRefGoogle Scholar
  77. Gijzen, M.; van Huystee, R.; Buzzell, R. I. Soybean seed coat peroxidase: a comparison of high and low activity genotypes. Plant Physiol. 103:1061–1066; 1993.PubMedGoogle Scholar
  78. Gijzen, M.; Weng, C.; Kuflu, K.; Woodrow, L.; Yu, K.; Poysa, V. Soybean seed lustre phenotype and surface protein cosegregate and map to linkage group E. Genome 46:659–664; 2003.PubMedCrossRefGoogle Scholar
  79. Gillikin, J. W.; Graham, J. S. Purification and developmental analysis of the major anionic peroxidase from the seed coat of Glycine max. Plant Physiol. 96:214–220; 1991.PubMedGoogle Scholar
  80. Golden, T. A.; Schauer, S. E.; Lang, J. D.; Pien, S.; Mushegian, A. R.; Grossniklaus, U.; Meinke, D. W.; Ray, A. SHORT INTEGUM-ENTS1/SUSPENSORI/CARPEL FACTORY, a dicer homolog, is a maternal effect gene required for embryo development in Arabidopsis. Plant Physiol. 130:808–822; 2002.PubMedCrossRefGoogle Scholar
  81. Golovan, S. P.; Meidinger, R. G.; Ajakaiye, A.; Cottrill, M.; Wiederkehr, M. Z.; Barney, D. J.; Plante, C.; Pollard, J. W.; Fan, M. Z.; Hayes, M.; Laursen, J.; Hjorth, J. P.; Hacker, R. R.; Phillips, J. P.; Forsberg, C. W. Pigs expressing salivary phytase produce low-phosphorus manure. Nat. Biotechnol. 19:741–745; 2001.PubMedCrossRefGoogle Scholar
  82. Gonzales, M. D.; Archuleta, E.; Farmer, A.; Gajendran, K.; Grant, D.; Shoemaker, R.; Beavis, W. D.; Waugh, M. E. The legume information system (LIS): an integrated information resource for comparative legume biology. Nucleic Acids Res. 33:D660-D665; 2005.PubMedCrossRefGoogle Scholar
  83. Gonzalez, R.; Valera, J.; Carreira, J.; Polo, F. Soybean hydrophobic protein and soybean hull allergy. Lancet 346:48–49. 1995.PubMedCrossRefGoogle Scholar
  84. Goodman, D. B. P.; Davis, W. L. Insulin accelerates the post germinative development of several fat-storing seeds. Biochem. Biophys. Res. Commun. 190:400–446; 1993.CrossRefGoogle Scholar
  85. Goto, N. A mucilage polysaccharide secreted from testa of Arabidopsis thaliana. Arabid. Inf. Serv. 22:143–145; 1985.Google Scholar
  86. Graham, M. A.; Silverstein, K. A. T.; Cannon, S. B.; VandenBosch, K. A. Computational identification and characterization of novel genes from legumes. Plant Physiol. 135:1179–1197; 2004.PubMedCrossRefGoogle Scholar
  87. Granger, C.; Coryell, V.; Khamma, A.; Keim, P.; Vodkin, L.; Shoemaker, R. C. Identification, structure, and differential expression of members of a BURP domain containing protein family in soybean. Genome 45:693–701; 2002.PubMedCrossRefGoogle Scholar
  88. Gressent, F.; Rahioui, I.; Rahbé, Y. Characterization of a high-affinity binding site for the pea albumin Ib entomotoxin in the weevil Sitophilus. Eur. J. Biochem. 270:2429–2435; 2003.PubMedCrossRefGoogle Scholar
  89. Grossniklaus, U.; Schneitz, K. The molecular and genetic bases of ovule and megagametophyte development. Semin. Cell Dev. Biol. 9:227–238; 1998.PubMedCrossRefGoogle Scholar
  90. Gupta, V.; Lamba, L. C.; Goel, J. P. Comparative study on the seed of two major pulses vis-à-vis their common adulterant. Plant Sci. 95:283–289; 1985.Google Scholar
  91. Hamilton, A. J.; Baulcombe, D. C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952; 1999.PubMedCrossRefGoogle Scholar
  92. Hanada, K.; Hirano, H. Interation of a 43-kDa receptor-like protein with a 4-kDa hormone-like peptide in soybean. Biochemistry 43:12105–12112; 2004.PubMedCrossRefGoogle Scholar
  93. Hanada, K.; Nishiuchi, Y.; Hirano, H. Amino acid residues on the surface of soybean 4-kDa peptide involved in the interaction with its binding protein. Eur. J. Biochem. 270:2583–2592; 2003.PubMedCrossRefGoogle Scholar
  94. Hancock, R. E.; Lehrer, R. Cationic peptides: a new source of antibiotics. Trends Biotechnol. 16:82–88; 1998.PubMedCrossRefGoogle Scholar
  95. Harborne, J. B.: The Havonoids: Advances in research since 1980. New York: Chapman and Hall; 1988.Google Scholar
  96. Harris, H. B.; Burns, R. E. Influence of tannin, content on preharvest seed germination in sorghum. Agron. J. 62:835–836; 1970.CrossRefGoogle Scholar
  97. Harris, W. M. On the development of osteosclereids in seed coats of Pisum sativum L. New Phytol., 98:135–141; 1984.CrossRefGoogle Scholar
  98. Harrison, M. J. Molecular genetics of model legumes. Trends Plant Sci. 5:414–415; 2000.PubMedCrossRefGoogle Scholar
  99. Helenius, A.; Aebi, M. Intracellular functions of N-linked glycans. Science 291:2364–2369; 2001.PubMedCrossRefGoogle Scholar
  100. Henriksen, A.; Mirza, O.; Indiani, C.; Teilum, K.; Smulevich, G.; Welinder, K. G.; Gajhede, M. Structure of soybean seed coat peroxidase: a plant peroxidase with unusual stability and haem-apoprotein interactions. Protein Sci. 10:108–115; 2001.PubMedCrossRefGoogle Scholar
  101. Herman, E. M.; Helm, R. M.; Jung, R.; Kinney, A. J. Genetic modification removes an immunodominant allergen from soybean. Plant Physiol. 132:36–43; 2003.PubMedCrossRefGoogle Scholar
  102. Higgins, T. J. V.; Chandler, P. M.; Randall, P. J.; Spencer, D.; Beach, L. R.; Blagrove, R. J.; Kort, A. A.; Inglis, A. S. Gene structure, protein structure and regulation of the synthesis of a sulfur-rich protein in pea seeds. J. Biol. Chem. 261:11124–11130; 1986.PubMedGoogle Scholar
  103. Hird, D. L.; Worrall, D.; Hodge, R.; Smartt, S.; Paul, W.; Scott, R. The anther-specific protein encoded by the Brassica napus and Arabidopsis thaliana A6 gene displays similarity to β-1,3-glucanases. Plant J. 4:1023–1033: 1993.PubMedCrossRefGoogle Scholar
  104. Hood, E. E. Where, oh where has my protein gone? Trends Biotechnol. 22:53–55; 2004.PubMedCrossRefGoogle Scholar
  105. Hou, D.-X. Potential mechanisms of cancer chemoprevention by anthocyanins. Curr. Mol. Med. 3:149–159; 2003.PubMedCrossRefGoogle Scholar
  106. Hungria, M.; Phillips, D. A. Effects of a seed color mutation on rhizobial nod-gene-inducing flavonoids and nodulation in common bean. Mol. Plant-Microbe Interact. 6:418–422; 1993.Google Scholar
  107. Ilgoutz, S. C.; Knittel, N.; Lin, J. M.; Sterle, S.; Gayler, K. R. Transcription of genes for conglutin γ and a leginsulin-like protein in narrow-leafed lupin. Plant Mol. Biol. 34:613–627; 1997.PubMedCrossRefGoogle Scholar
  108. Irving, D. W. Seed structure and histochemistry of Prosopis velutina (Leguminosae). Bot. Gaz. 145:340–345; 1984.CrossRefGoogle Scholar
  109. Izaguirre, P.; Mérola, S.; Beyhaut, R. Seed ontogeny in Adesmia securigerifolia (Fabaceae-Adesmieae). Nord. J. Bot. 14:547–556; 1994.Google Scholar
  110. Jofuku, D. D.; den Boer, B. G. W.; Van Montagu, M.; Okamuro, J. K. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6:1211–1225; 1994.PubMedCrossRefGoogle Scholar
  111. Jofuku, K. D.; Omidyar, P. K.; Gee, Z.; Okamuro, J. K. Control of seed mass and seed yield by the floral homeotic gene APETALA2. Proc. Natl Acad. Sci. USA 102:3117–3122; 2005.PubMedCrossRefGoogle Scholar
  112. Johnson, C. S.; Kolevski, B.; Smyth, D. R. TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell 14:1359–1375; 2002.PubMedCrossRefGoogle Scholar
  113. Karakaya, S.; Kavas, A. Antimutagenic activities of some foods. J. Sci. Food Agric. 79:237–242; 1999.CrossRefGoogle Scholar
  114. Karssen, C. M.; Brinkhorst-van der Swan, D. L. C.; Breekland, A. E.; Koornneef, M. Induction of dormancy during seed development by endogenous of Arabidopsis thaliana (L.). Heynh. Planta 157:158–165; 1983.CrossRefGoogle Scholar
  115. Kauffmann, S.; Legrand, M.; Geoffroy, P.; Fritig, B. Biological function of ‘pathogenesis-related’ proteins: four PR proteins from tobacco have 1,3-β-glucanase activity. EMBO J. 6:3209–3212; 1987.PubMedGoogle Scholar
  116. Keller, B. Structural cell wall proteins. Plant Physiol. 101:1127–1130; 1993.PubMedGoogle Scholar
  117. Khanna, P.; Jain, S. C.; Panagariya, A.; Dixit, V. P. Hypoglycemic activity of polypeptide-p from a plant source. J. Nat. Prod. 44:648–655; 1981.PubMedCrossRefGoogle Scholar
  118. Kitamura, S.; Shikazono, N.; Tanaka, A. TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant J. 37:104–114; 2004.PubMedCrossRefGoogle Scholar
  119. Kleis-San Francisco, S. M.; Tierney, M. L. Isolation and characterization of a proline-rich cell wall protein from soybean seedlings. Plant Physiol. 94:1897–1902; 1990.CrossRefGoogle Scholar
  120. Klucher, K. M.; Chow, H.; Reiser, L.; Fischer, R. L. The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell 8:137–153; 1996.PubMedCrossRefGoogle Scholar
  121. Komatsu, S.; Hirano, H. Plant basic 7S globulin-like proteins have insulin and insulin-like growth factor binding activity. FEBS Lett. 294:210–212; 1991.PubMedCrossRefGoogle Scholar
  122. Koornneef, M. The complex syndrome of ttg mutants. Arabid. Inf. Serv. 18:45–51; 1981.Google Scholar
  123. Kuang, A.; Xiao, Y.; Musgrave, M. E. Cytochemical localization of reserves during seed development in Arabidopsis thaliana under spaceflight conditions. Ann. Bot. 78:343–351; 1996.PubMedCrossRefGoogle Scholar
  124. Kuo, T. M.; Lowel, C. A.; Smith, P. T. Changes in soluble carbohydrates and enzymatic activities in maturing soybean seed tissues. Plant Sci. 125:1–11; 1997.CrossRefGoogle Scholar
  125. Léon-Kloosterziel, K. M.; Keijzer, C. J.; Koornneef, M. A seed shape mutant of Arabidopsis that is affected in integument development. Plant Cell 6:385–392; 1994.PubMedCrossRefGoogle Scholar
  126. Leubner-Metzger, G. Seed after-ripening and over-expression of class I β-1,3-glucanase confer maternal effects on tobacco testa rupture and dormancy release. Planta 215:959–968; 2002.PubMedCrossRefGoogle Scholar
  127. Leubner-Metzger, G. β-1,3-glucanase gene expression in low-hydrated seeds as a mechanism for dormancy release during tobacco after-ripening. Plant J. 41:133–145; 2005.PubMedCrossRefGoogle Scholar
  128. Lindstrom, J. T.; Vodkin, L. O. A soybean cell wall protein, is affected by seed color genotype. Plant Cell 3:561–571; 1991.PubMedCrossRefGoogle Scholar
  129. Ma, F.; Cholewa, E.; Mohamed, T.; Petersen, C. A.; Gijzen, M. Cracks in the palisade cuticle of soybean seed coats correlate with their permeability to water. Ann. Bot. 94:213–228; 2004a.PubMedCrossRefGoogle Scholar
  130. Ma, F.; Peterson, C. A.; Gijzen, M. Reassessment of the pits and antipits in soybean seeds. Can. J. Bot. 82:654–662; 2004b.CrossRefGoogle Scholar
  131. Maguire, T. L.; Grimmond, S.; Forrest, A.; Iturbe-Ormaetxe, I.; Meksem, K.; Gresshoff, P. Tissue-specific gene expression in soybean (Glycine max) detected by cDNA microarry analysis. J. Plant Physiol. 159:1361–1374; 2002.CrossRefGoogle Scholar
  132. Malik, K.; Wu, K.; Li, X.-Q.; Martin-Heller, T.; Hu, M.; Foster, E.; Tian, L.; Wang, C.; Ward, K.; Jordan, M.; Brown, D.; Gleddie, S.; Simmonds, D.; Zheng, S.; Simmonds, J.; Miki, B. A constitutive gene expression system derived from the tCUP cryptic promoter sequence. Theor. Appl. Genet. 105:505–514; 2002.PubMedCrossRefGoogle Scholar
  133. Manning, J. C.; van Staden, J. The functional differentiation of the testa in seed of Indigofera parvivlara (Leguminosae: Papilionoideae). Bot. Gaz. 148:23–34; 1987.CrossRefGoogle Scholar
  134. Marcus, A.; Greenberg, J.; Averyhart-Fullard, V. Repetitive proline-rich proteins in the extracellular matrix of the plant cell. Physiol. Plant. 81:273–279; 1991.CrossRefGoogle Scholar
  135. Marles, M. A. S.; Gruber, M. Y.; Scoles, G. J.; Muir, A. D. Pigmentation in the developing seed coat and seedling leaves of Brassica carinata is controlled at the dihydroflavonol reductase locus. Phytochemistry 62:663–672; 2003a.PubMedCrossRefGoogle Scholar
  136. Marles, M. A. S.; Ray, H.; Gruber, M. Y. New perspectives on proanthocyanidin biochemistry and molecular regulation. Phytochemistry 64:367–383; 2003b.PubMedCrossRefGoogle Scholar
  137. Martínez, C. J.; Loarca-Piña, G.; Ortíz, G. D. Antimutagenic activity of phenolic compounds, oligosaccharides and quinolozidinic alkaloids from Lupinus campestris seeds. Food Addit. Contam. 20:940–948. 2003.PubMedCrossRefGoogle Scholar
  138. Matsui, K.; Hiratsu, K.; Koyama, T.; Tanaka, H.; Ohme-Takagi, M. A chimeric AtMYB23 repressor induces hairy roots, elongation of leaves and stems, and inhibition of the deposition of mucilage on seed coats in Arabidopsis. Plant Cell Physiol. 46:147–155; 2005.PubMedCrossRefGoogle Scholar
  139. Memelink, J.; Linthorst, H. J.; Schilperoort, R. A.; Hoge, J. H. Tobacco genes encoding acidic and basic isoforms of pathogenesis-related proteins display different experssion patterns. Plant Mol. Biol. 14:119–126; 1990.PubMedCrossRefGoogle Scholar
  140. Miklas, P. N.; Townsend, C. E.; Ladd, S. L. Seed coat anatomy and the scarification of cicer milkvetch seed. Crop Sci. 27:766–772; 1987.CrossRefGoogle Scholar
  141. Miller, S. S.; Bowman, L. A.; Gijzen, M.; Miki, B. L. A. Early development of the seed coate of soybean (Glycine max). Ann. Bot. 84:297–304; 1999.CrossRefGoogle Scholar
  142. Modrusan, Z.; Reiser, L.; Feldmann, K. A.; Fischer, R. L.; Haughn, G. W. Homeotic transformation of ovules into carpel-like structures in Arabidopsis. Plant Cell 6:333–349; 1994.PubMedCrossRefGoogle Scholar
  143. Moraes, R. A.; Sales, M. P.; Pinto, M. S. P.; Silva, L. B.; Oliveira, A. E. A.; Machado, O. L. T.; Fernandes, K. V. S.; Xavier-Filho, J. Lima bean (Phaseolus lunatus) seed coat phaseolin is detrimental to the cowpea weevil (Callosobruchus maculates). Braz. J. Med. Biol. Res. 33:191–198; 2000.PubMedGoogle Scholar
  144. Nakajima, M.; Nakayama, A.; Xu, Z.-J.; Yamaguchi, I. Gibberellin induces α-amylase gene in seed coat of Ipomoea, nil immature seeds. Biosci. Biotechnol. Biochem. 68:631–637; 2004.PubMedCrossRefGoogle Scholar
  145. Nakamura, T.; Yang, D.; Kalaiselvi, S.; Uematsu, Y.; Takahashi, R. Genetic analysis of net-like cracking in soybean coats. Euphytica 133:179–184; 2003.CrossRefGoogle Scholar
  146. Nakaune, S.; Yamada, K.; Kondo, M.; Kato, T.; Tabata, S.; Nishimura, M.; Hara-Nishimura, I. A vacuolar processing enzyme, δVPE, is involved in seed coat formation at the early stage of seed development. Plant Cell 17:876–887; 2005.PubMedCrossRefGoogle Scholar
  147. Ndakidemi, P. A.; Dakora, F. D. Legume seed flavonoids and nitrogenous metabolites as signals and protectants in early seedling development. Funct. Plant Biol. 30:729–745; 2003.CrossRefGoogle Scholar
  148. Nesi, N.; Debeaujon, I.; Jond, C.; Pelletier, G.; Caboche, M.; Lepiniec, L. The TT8 gene encodes a basix Helix-Loop-Helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. Plant Cell 12:1863–1878; 2000.PubMedCrossRefGoogle Scholar
  149. Nesi, N.; Debeaujon, I.; Jond, C.; Stewart, A. J.; Jenkins, G. I.; Caboche, M.; Lepiniec, L. The TRANSPARENT TESTA16 locus encodes the ARABIDOPSIS BSISTER MADS domain protein and is required for proper development and pigmentation of the seed coat. Plant Cell 14:2463–2479; 2002.PubMedCrossRefGoogle Scholar
  150. Nesi, N.; Jond, C.; Debeaujon, I.; Caboche, M.; Lepiniec, L. The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 13:2099–2114; 2001.PubMedCrossRefGoogle Scholar
  151. Nicholas, C. D.; Lindstrom, J. T.; Vodkin, L. O. Variation of proline rich cell wall proteins in soybean lines with anthocyanin mutations. Plant Mol. Biol. 21:145–156; 1993.PubMedCrossRefGoogle Scholar
  152. Nissum, M.; Schiodt, C.; Welinder, K. G. Reaction of soybean peroxidase and hydrogen peroxide pH 2.4–12.0, and veratryl alcohol at pH 2.4. Biochim. Biophys. Acta 1545:339–348; 2001.PubMedGoogle Scholar
  153. Ohto, M.; Fischer R. L.; Goldberg, R. B.; Nakamura, K.; Harada, J. J. Control of seed mass by APETALA2. Proc. Natl Acad. Sci. USA 102:3123–3128; 2005.PubMedCrossRefGoogle Scholar
  154. Ogawa, T.; Bando, N.; Tsuji, H.; Okajima, H.; Nishikawa, K.; Sasaoka, K. Investigation of the IgE-binding proteins in soybean by immunobloting with the sera of the soybean-sensitive patients with atopic dermatitis. J. Nutr. Sci. Vitaminol. 37:555–565; 1991.PubMedGoogle Scholar
  155. Ogawa, T.; Tsuji, H.; Bando, N.; Kitamura, K.; Zhu, Y. L.; Hirano, H.; Nishikawa, K. Identification of the soybean allergenic protein, Gly m Bd 30K, with the soybean seed 34-kDa oil-body-associated protein. Biosci. Biotechnol. 57:1030–1033; 1993.Google Scholar
  156. Oigiangbe, N. O.; Onigbinde, A. O. The association between some physico-chemical characteristics and susceptibility of cowpea (Vigna unguiculata (L.) Walp) to Callasobruchus maculates (F). J. Stored Prod. Res. 32:7–11; 1996.CrossRefGoogle Scholar
  157. Oliveira, A. E. A.; Gomes, V. M.; Sales, M. P.; Fernandes, K. V. S.; Carlini, C. R.; Xavier-Filho, J. The toxicity of Jack bean [Canavalia ensiformis (L.) DC.] canatoxin to plant pathogenic fungi. Rev. Brasil. Biol. 59:59–62; 1999a.Google Scholar
  158. Oliveira, A. E. A.; Ribeiro, E. S.; da Cunha, M.; Gomes, V. M.; Fernandes, K. V. S.; Xavier-Filho, J. Insulin accelerates seedling growth of Canavalia ensiformis (Jack bean). Plant Growth Regul. 43:57–62. 2004.CrossRefGoogle Scholar
  159. Oliveira, A. E. A.; Sales, M. P.; Machado, O. L. T.; Fernandes, K. V. S.; Xavier-Filho, J. The toxicity of Jack bean (Canavalia ensiformis) cotyledon and seed coat protein to the cowpea weevil (Callosobruchus maculatus) Entomol. Exp. Appl. 92:249–255; 1999b.CrossRefGoogle Scholar
  160. Oliveira, A. E. A.; Sassaki, G. L.; Iacomini, M.; da Cunha, M.; Gomes, V. M.; Fernandes, B. K. V. S.; Xavier-Filho, J. Isolation and characterization of a galactorhamnan polysaccharide from the seed coat of Canavalia ensiformis that is toxic to the cowpea weevil (Callosobruchus maculatus). Entomol. Exp. Appl. 101:225–231; 2001.CrossRefGoogle Scholar
  161. Olszewski, N.; Sun, T.-P.; Gubler, F. Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14:S61-S80; 2002.PubMedGoogle Scholar
  162. Osusky, M.; Osuska, L.; Hancock, R. E.; Kay, W. W.; Misra, S. Transgenic potatoes expressing a novel cationic peptide are resistant to late blight and pink rot. Transgenic Res. 13:181–190; 2004.PubMedCrossRefGoogle Scholar
  163. Paiva, N. L. An introduction to the biosynthesis of chemicals used in plant-microbe communication. J. Plant Growth Regul. 19:131–143; 2000.PubMedGoogle Scholar
  164. Palmer, R. G.; Kilen, T. C. Qualitative genetics. In: Wilcox, J. R., ed. Soybeans: Improvement, production and uses, 2nd ed Madison, WI; American Society of Agronomy; 1987:135–209.Google Scholar
  165. Pandey, A. K.; Jha, S. S. Development and structure of seeds in some Genisteae (Papilionoideae-Leguminosae). Flora 181:415–424; 1988.Google Scholar
  166. Paria, N.; Deb, D. K.; Chattopadhyay, S. P. Seed-coat anatomy of some Indian leguminous taxa. J. Plant Anat. Morphol. 7:46–55; 1997.Google Scholar
  167. Patrick, J. W.; Offler, C. E. Compartmentation of transport and transport and transfer event in developing seeds. J. Exp. Bot. 52:551–564; 2001.PubMedCrossRefGoogle Scholar
  168. Penfield, S.; Meissner, R. C.; Shoue, D. A.; Carpita, N. C.; Bevan, M. W. MYB61 is required for mucilage deposition and extrusion in the Arabidopsis seed coat. Plant Cell 13:2777–2791; 2001.PubMedCrossRefGoogle Scholar
  169. Percy, J. D.; Philip, R.; Vodkin, L. O. A defective seed coat pattern (Net) is correlated with the post-transcriptional abundance of soluble proline-rich cell wall proteins. Plant Mol. Biol. 40:603–613; 1999.PubMedCrossRefGoogle Scholar
  170. Ragus, L. N. Role of water absorbing capacity in soybean germination and seedling vigour. Seed Sci. Technol. 15:285–296; 1987.Google Scholar
  171. Ray, S.; Golden, T.; Ray, A. Maternal effects of the short integument mutation on embryo development in Arabidopsis. Dev. Biol. 180:365–369; 1996.PubMedCrossRefGoogle Scholar
  172. Ray, A.; Robinson-Beers, K.; Ray, S.; Baker, S. C.; Lang, J. D.; Preuss, D.; Milligan, S. B.; Gasser, C. S. Arabidopsis floral homeotic gene BELL (BELI) controls ovule development through negative regulation of AGAMOUS gene (AG). Proc. Natl. Acad. Sci. USA 91:5761–5765; 1994.PubMedCrossRefGoogle Scholar
  173. Raz, V.; Bergervoet, J. H. W.; Koornneef, M. Sequential steps for developmental arrest in Arabidopsis seeds. Development 128:243–252; 2001.PubMedGoogle Scholar
  174. Reiser, L.; Modrusan, Z.; Margossian, L.; Samach, A.; Ohad, N.; Haughn, G. W.; Fischer, R. L. The BELL1 gene encodes a homeodomain protein involved in pattern formation in the Arabidopsis ovule primordium. Cell 83:735–742; 1995.PubMedCrossRefGoogle Scholar
  175. Robinson-Beers, K.; Pruitt, R. E.; Gasser, C. S. Ovule development in wild-type Arabidopsis and two female-sterile mutants. Plant Cell 4:1237–1249; 1992.PubMedCrossRefGoogle Scholar
  176. Rochat, C.; Boutin, J. P. Metabolism of phloem-borne amino acids in maternal tissues of fruit of nodulated or nitrate-fed pea plants (Pisum sativum L.). J. Exp. Bot. 42:207–214; 1991.CrossRefGoogle Scholar
  177. Rolletschek, H.; Borisjuk, L.; Koschorreck, M.; Wobus, U.; Weber, H. Legume embryos develop in a hypoxic environment. J. Exp. Bot. 53:1099–1107; 2002.PubMedCrossRefGoogle Scholar
  178. Ross, J. A.; Kasum, C. M. Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu. Rev. Nutr. 22:19–34; 2002.PubMedCrossRefGoogle Scholar
  179. Sagasser, M.; Lu, G.-H.; Hahlbrock, K.; Weisshaar, B. A. thaliana TRANSPARENT TESTA1 is involved in seed coat development and defines the WIP subfamily of plant zinc finger proteins. Genes Dev. 16:138–149; 2002.PubMedCrossRefGoogle Scholar
  180. Sakai, H.; Medrano, L. J.; Meyerowitz, E. M. Role of SUPERMAN in maitaining Arabidopsis floral whorl boundaries. Nature 378:199–203; 1995.PubMedCrossRefGoogle Scholar
  181. Salunkhe, D. K.; Jadhav, S. J.; Kadam, S. S.; Chavan, J. K. Chemical, biochemical and biological significance of polyphenols in cereals and legumes. Crit. Rev. Food Sci. Nutr. 17:277–305; 1982.PubMedCrossRefGoogle Scholar
  182. Schiefthaler, U.; Balasubramanian, S.; Sieber, P.; Chevalier, D.; Wisman, E.; Schneitz, K. Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesis during sex organ development in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 96:11664–11669; 1999.PubMedCrossRefGoogle Scholar
  183. Shlumbaum, A.; Mauch, F.; Vögeli, U.; Boller, T. Plant chitinases are potent inhibitors of fungal growth. Nature 324:365–367; 1986.CrossRefGoogle Scholar
  184. Schneitz, K. The molecular and genetic control of ovule development. Curr. Opin. Plant Biol. 2:13–17; 1999.PubMedCrossRefGoogle Scholar
  185. Schneitz, K.; Hülskamp, M.; Pruitt, R. E. Wild-type ovule development in Arabidopsis thaliana: a light microscope study of cleared whole-mount tissue. Plant J. 7:731–749; 1995.CrossRefGoogle Scholar
  186. Schoenbohm, C.; Martens, S.; Eder, C.; Forkmann, G.; Weisshaar, B. Identification of the Arabidopsis thaliana flavonoid 3′-hydroxylase gene and functional expression of the encoded P450 enzyme. Biol. Chem. 381:749–753; 2000.PubMedCrossRefGoogle Scholar
  187. Schopfer, P.; Plachy, C.; Frahry, G. Release of reactive, oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin, and abscisic acid. Plant Physiol. 125:1591–1602; 2001.PubMedCrossRefGoogle Scholar
  188. Schuurmans, A. M. J.; van Dongen, J. T.; Rutjens, B. P. W.; Boonman, A.; Pieterse, C. M. J.; Borstlap, A. C. Members of the aquaporin family in the developing pea seed coat include representatives of the PIP, TIP, and NIP subfamilies. Plant Mol. Biol. 53:655–667; 2003.CrossRefGoogle Scholar
  189. Senda, M.; Jumonji, A.; Yumoto, S.; Ishikawa, R.; Harada, T.; Niizeki, M.; Akada, S. Analysis of the duplicated CHS1 gene related to the suppression of the seed coat pigmentation in yellow soybeans. Theor. Appl. Genet. 104:1086–1091; 2002a.PubMedCrossRefGoogle Scholar
  190. Senda, M.; Kasai, A.; Yumoto, S.; Akada, S.; Ishikawa, R.; Harada, T.; Niizeki, M. Sequence divergence at chalcone synthase gene in pigmented seed coat soybean mutants of the Inhibitor locus. Genes Genet. Syst. 77:341–350; 2002b.PubMedCrossRefGoogle Scholar
  191. Senda, M.; Masuta, C.; Ohnishi, S.; Goto, K.; Kasai, A.; Sano, T.; Hong, J.-S.; MacFarlane, S. Patterning of virus-infected Glycine max seed coat is associated with suppression of endogenous silencing of chalcone synthase genes. Plant Cell 16:807–818; 2004.PubMedCrossRefGoogle Scholar
  192. Serrato-Valenti, G.; DeVries, M.; Cornara, L. The hilar region in Leucaena leucocephala Lam. (De Wit) seed: structure, histochemistry and the role of the lens in germination. Ann. Bot. 75:569–574; 1995.CrossRefGoogle Scholar
  193. Sharma, N. K.; Sharma, K. C. Development and structure of seedcoat in Tephrosia Pers. (Leguminosae). Feddes Repert. 105:287–292; 1994.Google Scholar
  194. Shikazono, N.; Yokota, Y.; Kitamura, S.; Suzuki, C.; Watanabe, H.; Tano, S.; Tanaka, A. Mutation rate and novel tt mutants of Arabidopsis thaliana induced by carbon ions. Genetics 163:1449–1455; 2003.PubMedGoogle Scholar
  195. Shimizu, T.; Akada, S.; Senda, M.; Ishikawa, R.; Harada, T.; Niiizeki, M.; Dube, S. K. Enhanced expression and differential inducibility of soybean chalcone synthase genes by supplemental UV-B in dark-grown seedlings. Plant. Mol. Biol. 39:785–795; 1999.PubMedCrossRefGoogle Scholar
  196. Shirley, B. W.; Hanley, S.; Goodman, H. M. Effects of ionizing radiation on a plant genome: analysis of two Arabidopsis transparent testa mutations. Plant Cell 4:333–347; 1992.PubMedCrossRefGoogle Scholar
  197. Shirley, B. W.; Kubasek, W. L.; Storz, G.; Bruggemann, E.; Koornneef, M.; Ausubel, F. M.; Goodman, H. M. Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. Plant J. 8:659–671; 1995.PubMedCrossRefGoogle Scholar
  198. Shoemaker, R.; Keim, P.; Vodkin, L.; Erpelding, J.; Coryell, V.; Khann, A.; Bolla, B.; Marra, M.; Hillier, L.; Kucaba, T; Martin, J.; Beck, C.; Wylie, T.; Undrewood, K.; Steptoe, M.; Theising, B.; Allen, M.; Bowers, Y.; Person, B.; Swaller, T.; Gibbons, M.; Pape, D.; Harvey, N.; Schurk,R.; Ritter, E.; Kohn, S.; Shin, T.; Jackson, Y.; Cardenas, M.; McCann,R.; Waterston, R.; Wilson, R. Public Soybean EST Project. (Available at website: http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&val=10846676); 1999a.Google Scholar
  199. Shoemaker, R.; Keim, P.; Vodkin, L., Erpelding, J; Coryell, V.; Khann, A.; Bolla, B.; Marra, M.; Hillier, L.; Kucaba, T.; Martin, J.; Beck, C.; Wylie, T.; Underwood, K.; Steptoe, M.; Theising, B.; Allen, M.; Bowers, Y.; Person, B.; Swaller, T.; Gibbons. M.; Pape, D; Harvey, N.; Schurk, R.; Ritter, E.; Kohn, S.; Shin, T.; Jackson, Y.; Cardenas, M.; McCann, R.; Waterston, R.; Wilson, R. Public Soybean EST Project. (Available at website: http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&val=7589170); 1999b.Google Scholar
  200. Shoemaker, R.; Keim, P.; Vodkin, L.; Erpelding, J.; Coryell, V.; Khann, A.; Bolla, B.; Marra, M.; Hillier L.; Kucaba, T.; Martin, J.; Beck, C.; Wylie, T.; Underwood, K.; Steptoe, M.; Theising, B.; Allen, M.; Bowers, Y., Person, B.; Swaller, T.; Gibbons, M.; Pape, D.; Harvey, N.; Schurk, R.; Ritter, E.; Kohn, S.; Shin, T.; Jackson, Y.; Cardenas, M.; McCann, R.; Waterston, R. and Wilson, R. Public Soybean EST Project. (Available at website: http://www.ncbi.nlm.nih.gov./entrez/viewer.fcgi?db=nucleotide&val=14259925); 1999c.Google Scholar
  201. Shoemaker, R.; Keim, P.; Vodkin, L.; Retzel, E.; Clifton, S. W.; Waterston R.; Smoller, D.; Coryell, V.; Khana, A.; Erpelding, J.; Gai, X.; Brendel, V.; Raph-Schmidt, C.; Shoop, E. G.; Vielweber, C. J.; Schmatz, M.; Pape, D.; Bowers, Y.; Theising, B.; Martin, J.; Dante, M.; Wylie, T.; Granger, C. A complication of soybean ESTs: generation and analysis. Genome 45:329–338; 2002.PubMedCrossRefGoogle Scholar
  202. Showalter, A. M. Structure and function of plant cell wall proteins. Plant Cell 5:9–23; 1993.PubMedCrossRefGoogle Scholar
  203. Sieber, P.; Petrascheck, M.; Barberis, A.; Schneitz, K. Organ polarity in Arabidopsis NOZZLE physically interacts with members of the YABBY family. Plant Physiol. 135:2172–2185; 2004.PubMedCrossRefGoogle Scholar
  204. Silva, L.B.; Sales, M. P.; Oliveira, A. E. A.; Machado, O. L. T.; Fernandes, K. V. S.; Xavier-Filho, J. The seed coat of Phaseolus vulgaris interferes with the development of the cowpea weevil [Callosobruchus maculatus (F.) (Coleoptera: Bruchidae)]. Ann. Braz. Acad. Sci 76:57–65; 2004.Google Scholar
  205. Silva, L. B.; Santos, S. S. S.; Azevedo, C. R.; Cruz, M. A. L.; Venâncio, T. M.; Cavalcante, C. V. S.; Xavier-Filho, J. The leaves of green plants as well as a cyanobacterium, a red alga, and fungi contain insulin-like antigens. Braz. J. Med. Biol. Res. 35:297–303; 2002.PubMedGoogle Scholar
  206. Simbaya, J.; Slominski, B. A.; Rakow, G.; Campbell, L. D.; Downey, R. K.; Bell, J. M. Quality characteristics of yellow-seeded Brassica seed meals: Protein, carbohydrates, and dietary fiber components. J. Agric. Food Chem. 43:2062–2066; 1995.CrossRefGoogle Scholar
  207. Simmons, C. R.; Litts, J. C.; Huang, N.; Rodriguez, R. L. Structure of a rice β-glucanase gene regulated by ethylene, cytokinin, wounding, salicylic acid and fungal elicitors. Plant Mol. Biol. 18:33–45; 1992.PubMedCrossRefGoogle Scholar
  208. Skinner, D. J.; Hill, T. A.; Gasser, C. S. Regulation of ovule development. Plant Cell 16:32–45; 2004.CrossRefGoogle Scholar
  209. Sornsathapornkul, P.; Owens, J. N. Zygotic embryo development in a tropical Acacia hybrid (Acacia mangium Willd × A. auriculformis A. Cunn. ex Benth.). Int. J. Plant. Sci. 160:445–458; 1999.CrossRefGoogle Scholar
  210. Souza, F. H. D. D.; Marcos-Filho, J. The seed coat as a modulator of seed-environment relationships in Fabaceae. Rev. Bras. Bot. 24:365–375; 2001.CrossRefGoogle Scholar
  211. Stacey, G.; Vodkin, L.; Parrott, W. A.; Shoemaker, R. C. National science foundation-sponsored workshop report. Draft plant for soybean genomics. Plant Physiol. 135:59–70; 2004.PubMedCrossRefGoogle Scholar
  212. Stavric, B. Antimutagens and anticarcinogens in foods. Food Chem. Toxicol. 32:79–90; 1994.PubMedCrossRefGoogle Scholar
  213. Swanson, M. C.; Li, J. T.; Wentz-Murtha P. E.; Trudeau, W. L.; Fernandez-Caldas, E.; Greife, A.; Rodrigo, M. A. J.; Morell, F.; Reed, C. E. Source of the aeroallergen of soybean dust: a low molecular mass glycopeptide from the soybean tela. J. Allergy Clin. Immunol. 87:783–788; 1991.PubMedCrossRefGoogle Scholar
  214. Tan, N.-H.; Rahim, Z. H. A.; Khor, H.-T.; Wong, K.-C. Winged bean (Psophocarpus tetragonolobus) tannin level, phytate content and hemagglutinating activity. J. Agric. Food Chem. 31:916–917; 1983.PubMedCrossRefGoogle Scholar
  215. Thibaud-Nissen, F.; Shealy, R. T.; Khanna, A.; Vodkin, L. O. Clustering of microarray data reveals transcript patterns associated with somatic embryogenesis in soybean. Plant Physiol. 132:118–136; 2003.PubMedCrossRefGoogle Scholar
  216. Thompson, R. D.; Hueros, G.; Becker, H.-A.; Maitz, M. Development and functions of seed transfer cells. Plant Sci. 160:775–783; 2001.PubMedCrossRefGoogle Scholar
  217. Toda, K.; Yang, D.; Yamanaka, N.; Watanaba, S.; Harada, K.; Takahashi, R. A single-base deletion in soybean flavonoid 3′-hydroxylase gene is associated with gray pubescence color. Plant Mol. Biol. 50:187–196; 2002.PubMedCrossRefGoogle Scholar
  218. Todd, J. J.; Vodkin, L. O. Dupliations that suppress and deletions that restore expression from a chalcone synthase multigene family. Plant Cell 8:687–699; 1996.PubMedCrossRefGoogle Scholar
  219. Tomlinson, K. L.; McHugh, S.; Labbe, H.; Grainger, J. L.; James, L. E.; Pomeroy, K. M.; Mullin, J. W.; Miller, S. S.; Dennis, D. T.; Miki, B. L. A. Evidence that the hexose-to-sucrose ratio does not control the switch to storage product accumulation in oilseeds: analysis of tobacco seed development and effects of overexpressing apoplastic invertase. J. Exp. Bot. 55:2291–2303; 2004.PubMedCrossRefGoogle Scholar
  220. Trivedi, B. S.; Gupta, M. T. Seed coat structure in some species of Atylosia phaseoleae cajaninae. Scan. Microscopy 1:1465–1474; 1987.Google Scholar
  221. Tuteja, J. H.; Clough, S. J.; Chan, W.-C.; Vodkin, L. O. Tissue-specific gene silencing mediated by a naturally occuring chalcone synthase gene cluster in Glycine max. Plant Cell 16:819–835; 2004.PubMedCrossRefGoogle Scholar
  222. Usadel, B.; Kuschinsky, A. M.; Rosso, M. G.; Eckerman, N.; Pauly, M. RHM2 is involved in mucilage pectin synthesis and is required for the development of the seed coat in Arabidopsis. Plant Physiol. 134:286–295; 2004.PubMedCrossRefGoogle Scholar
  223. Van Caeseele, L.; Mills, J. T.; Sumner, M.; Gillespie, R. Cytology of mucilage production in the seed coat of candle canola (Brassica campestris. Can. J. Bot. 59:292–300; 1981.Google Scholar
  224. Van Caeseele, L.; Mills, J. T.; Sumner, M.; Gillespie, R. Cytological study of palisade development in the seed coat of candle canola. Can. J. Bot. 60:2469–2475; 1982.Google Scholar
  225. VandenBosch, K. A.; Stacey, G. Summaries of legume genomics projects from around the globe. Community resources for crops and models. Plant Physiol. 131:840–865; 2003.CrossRefGoogle Scholar
  226. van Dongen, J. T.; Ammerlaan, A. M. H.; Wouterlood, M.; van Aelst, A. C.; Borstlap, A. C. Structure of the developing pea, seed coat and the post-phloem transport pathway of nutrients. Ann. Bot. 91:729–737; 2003.PubMedCrossRefGoogle Scholar
  227. Vaughan, J. G.; Whitehouse, J. M. Seed structure and the taxonomy of the Cruciferae. Bot. J. Linn. Soc. 64:383–409; 1971.Google Scholar
  228. Vanâncio, T. M.; Oliveira, A. E. A.; Silva, L. B.; Machado, O. L. T.; Fernandes, K. V. S.; Xavier-Filho, J. A protein with amino acid sequence homology to bovine insulin is present in the legume Vigna unguiculata (cowpea). Braz. J. Med. Biol. Res. 36:1167–1173; 2003.Google Scholar
  229. Villanueva, J. M.; Broadhvest, J.; Hauser, B. A.; Meister, R. J.; Schneitz, K.; Gasser, C. S. INNER NO OUTER regulates abaxial-adaxial patterning in Arabidopsis ovules. Genes Dev. 13:3160–3169; 1999.PubMedCrossRefGoogle Scholar
  230. Walker, A. R.; Davison, P. A.; Bolognesi-Winfield, A. C.; James, C. M.; Srinivasan, N.; Blundell, T. L.; Esch, J. J.; Marks, M. D.; Gray, J. C. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell 11:1337–1349; 1999.PubMedCrossRefGoogle Scholar
  231. Wan, L.; Xia, Q.; Qiu, X.; Selvaraj, G. Early stages of seed development in Brassica napus: a seed coat-specific cysteine proteinase associated with programmed cell death of the inner intergument. Plant J. 30:1–10; 2002.PubMedCrossRefGoogle Scholar
  232. Wang, C.-S.; Todd, J. J.; Vodkin, L. O. Chalcone synthase mRNA and activity are reduced in yellow soybean seed coats with dominant I alleles. Plant Physiol. 105:739–748; 1994.PubMedCrossRefGoogle Scholar
  233. Wang, H. L.; Grusak, M. A. Structure and development of Medicago truncatula pod wall and seed coat. Ann. Bot. 95:737–747; 2005.PubMedCrossRefGoogle Scholar
  234. Wang, X.; Warkentin, T. D.; Briggs, C. J.; Oomah, B. D.; Campbell, C. G.; Woods, S. Total phenolics and condensed tannins in field pea (Pisum sativum L.) and grass pea (Lathyrus sativus L.). Euphytica 101:97–102; 1998.CrossRefGoogle Scholar
  235. Weber, H.; Borisjuk, L.; Heim, U.; Buchner, P.; Wobus, U. Seed coat associated invertases of fava bean control both unloading and storage functions: cloning of cDNAs and cell type-specific expression. Plant Cell 7:1835–1846; 1995.PubMedCrossRefGoogle Scholar
  236. Weber, H.; Borisjuk, L.; Wobus, U. Controlling seed development and seed size in Vicia faba: a role for seed coat-associated invertases and carbohydrate state. Plant J. 10:823–834; 1996.CrossRefGoogle Scholar
  237. Weber, H.; Borisjuk, L.; Wobus, U. Molecular physiology of legume seed development. Annu. Rev. Plant Biol. 56:253–279; 2005.PubMedCrossRefGoogle Scholar
  238. Weber, H.; Heim, U.; Golombek, S.; Borisjuk, L.; Manteuffel, R.; Wobus, U. Expression of a yeast-derived invertase in developing cotyledons of Vicia narbonensis alters the carbohydrate state and affects storage functions. Plant J. 16:163–172; 1998.PubMedCrossRefGoogle Scholar
  239. Weijers, D.; van Hamburg, J.-P.; van Rijn, E.; Hooykaas, P. J. J.; Offringa, R. Diphtheria toxin-mediated cell ablation reveals interregional communication during Arabidopsis seed development. Plant Physiol. 133:1882–1892; 2003.PubMedCrossRefGoogle Scholar
  240. Welinder, K. G. Superfamily of plant, fungal and bacterial peroxidases. Curr. Opin. Struct. Biol. 2:388–393; 1992.CrossRefGoogle Scholar
  241. Welinder, K. G.; Larsen, Y. B. Covalent structure of soybean coat peroxidase. Biochim. Biophys. Acta 1698:121–126; 2004.PubMedGoogle Scholar
  242. Wester, T. L.; Burn, J.; Tan, W. L.; Skinner, D. J.; Martin-McCaffrey, L.; Moffat, B. A.; Haughn, G. W. Isolation and characterization of mutants defective in seed coat mucilage secretory cell development in Arabidopsis. Plant Physiol. 127:998–1011; 2001.CrossRefGoogle Scholar
  243. Western, T. L.; Haughn, G. W. BELL1 and AGAMOUS genes promote ovule identity in Arabidopsis thaliana. Plant J. 18:329–336; 1999.PubMedCrossRefGoogle Scholar
  244. Wester, T. L.; Skinner, D. J.; Haughn, G. W. Differentiation of mucilage secretory cells of the Arabidopsis seed coat. Plant Physiol. 122:345–355; 2000.CrossRefGoogle Scholar
  245. Western, T. L.; Young, D. S.; Dean, G. H.; Tan, W. L.; Samuels, A. L.; Haughn, G. W. MUCILAGE-MODIFIED4 encodes a putative pectin biosynthetic enzyme developmentally regulated by APETALA2 TRANSPARENT TESTA GLABRA1, and GLABRA2 in the Arabidopsis seed coat. Plant Physiol. 134:296–306; 2004.PubMedCrossRefGoogle Scholar
  246. Wilcox, J. R. Performance and use of seedcoat mutants in soybean. Crop Sci. 28:30–32; 1998.CrossRefGoogle Scholar
  247. Windsor, J. B.; Symonds, V. V.; Mendenhall, J.; Lloyd, A. M. Arabidopsis seed coat development: morphological differentiation of the outer integument. Plant J. 22:483–493; 2000.PubMedCrossRefGoogle Scholar
  248. Wingender, R.; Rohrig, H.; Horicke, C.; Wing, D.; Schell, J. Differential regulation of soybean chalcone synthase genes in plant defense, symbiosis and upon environmental stimuli. Mol. Gen. Genet. 218:315–322; 1989.PubMedCrossRefGoogle Scholar
  249. Winkel-Shirley, B. Flavonoid biosynthesis. A colourful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 126:485–493; 2001.PubMedCrossRefGoogle Scholar
  250. Wisman, E.; Hartmann, U.; Sagasser, M.; Baumann, E.; Palme, K.; Hahlbrock, K. Kneck-out mutants from an En-1 mutagenized Arabidopsis thaliana population generate phenylpropanoid biosynthesis phenotypes. Proc. Natl. Acad. Sci. USA 95:12432–12437; 1998.PubMedCrossRefGoogle Scholar
  251. Wobus, U.; Weber, H. Sugars as signal molecules in plant seed development. Biol. Chem. 380:937–944; 1999.PubMedCrossRefGoogle Scholar
  252. Wolf, W. J.; Baker, F. L. Scanning electron microscopy of soybeans. Cereal Sci. Today 17:125–130; 1972.Google Scholar
  253. Wu, S.; Druka, A.; Horvath, H.; Kleinhofs, A.; Kannangara, C. G.; von Wettstein, D. Functional characterization of seed coat-specific members of the barley germin gene family. Plant Physiol. Biochem. 38:685–698; 2000.CrossRefGoogle Scholar
  254. Xavier-Filho, J.; Oliveira, A. E. A.; da Silva, L. B.; Azevedo, C. R.; Venâncio, T. M.; Machado, O. L. T.; Oliva, M. L.; Fernandes, K. V. S.; Xavier-Neto, J. Plant insulin or glucokinin: a conflicting issue. Bras. J. Plant Physiol. 15:67–78; 2003.Google Scholar
  255. Xie, D.-Y.; Sharma, S. B.; Paiva, N. L.; Ferreira, D.; Dixon, R. A. Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299:396–399; 2003.PubMedCrossRefGoogle Scholar
  256. Xudong, Y.; Al-Babili, S.; Klöti, A.; Zhang, J.; Lucca, P.; Beyer, P.; Potrykus, I. Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305; 2000.CrossRefGoogle Scholar
  257. Yaklich, R. W.; Barla-Szabo, G. Seed coat cracking in soybean. Crop Sci. 33:1016–1019; 1993.CrossRefGoogle Scholar
  258. Yaklich, R. W.; Vigil, E. L.; Erbe, E. F.; Wergin, W. P. The fine structure of aleurone cells in the soybean seed coat. Protoplasma 167:108–119; 1992.CrossRefGoogle Scholar
  259. Yamazaki, T.; Takaoka, M.; Katoh, E.; Hanada, K.; Sakita, M.; Sakata, K.; Nishiuchi, Y.; Hirano, H. A possible physiological function and the tertiary structure of a 4-kDa peptide in legumes. Eur. J. Biochem. 270:1269–1276; 2003.PubMedCrossRefGoogle Scholar
  260. Yeung, E. Adhesion of endosperm cells to the inner surface of the bean seed coat. J. Struct. Biol. 105:103–110; 1990.CrossRefGoogle Scholar
  261. Young, N. D.; Mudge, J.; Ellis, T. H. N. Legume genomics: more than peas in a pod. Curr. Opin. Plant Biol. 6:199–204; 2003.PubMedCrossRefGoogle Scholar
  262. Zeng, C.-L.; Wang, J.-B.; Liu, A.-L.; Wu, X.-M. Seed coat microsculpturing changes during seed development in diploid and amphidiploid Brassica species. Ann. Bot. 93:555–566; 2004.PubMedCrossRefGoogle Scholar
  263. Zhang, F.; Gonzalez, A.; Zhao, M.; Payne, C. T.; Lloyd, A. A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development 130: 4859–4869; 2003.PubMedCrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 2005

Authors and Affiliations

  • Jaimie A. Moïse
    • 1
  • Shuyou Han
    • 1
  • Loreta Gudynaitę-Savitch
    • 1
  • Douglas A. Johnson
    • 1
  • Brian L. A. Miki
    • 2
  1. 1.Ottawa-Carleton Institute of Biology, Department of BiologyUniversity of OttawaOttawaCanada
  2. 2.BioProducts & BioProcesses, Research Branch, Agriculture and Agri-Food CanadaOttawaCanada

Personalised recommendations