Skip to main content
Log in

Enhanced production of tropane alkaloids in Scopolia parviflora by introducing the PMT (putrescine N-methyltransferase) gene

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

In wild-type Scopolia parvilfora (Solanaceae) tissues, only the roots express the enzyme putrescine N-methyltransferase (PMT; EC 2.1.1.53), which is the first specific precursor of the tropane alkaloids. Moreover, the tropanane alkaloid levels were the highest in the root (0.9 mg g−1 on a dry weight basis), followed by the stem and then the leaves. We metabolically engineered S. parviflora by introducing the tobacco pmt gene into its genome by a binary vector system that employs disarmed Agrobacterium rhizogenes. The kanamycin-resistant hairy root lines were shown to bear the pmt gene and to overexpress its mRNA and protein product by at least two-fold, as determined by polymerase chain reaction (PCR) and Northern and Western blottings, respectively. The transgenic lines also showed higher PMT activity and were morphologically aberrant in terms of slower growth and the production of lateral roots. The overexpression of pmt markedly elevated the scopolamine and hyoscyamine levels in the transgenic lines that showed the highest pmt mRNA and PMT protein levels. Thus, overexpression of the upstream regulator of the tropane alkaloid pathway enhanced the biosynthesis of the final product. These observations may be useful in establishing root culture systems that generate large yields of tropane alkaloids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benfey, P. N.; Chau, N. H. The cauliflower mosaic 35S promoter: combinational regulation of transcription in plants. Science 250:959–966; 1990.

    Article  CAS  PubMed  Google Scholar 

  • Bourgaud, F.; Gravot, A.; Milesi, E.; Gontier, E. Production of plant secondary metabolietes: a historical perspective. Plant Sci. 161:839–851; 2001.

    Article  CAS  Google Scholar 

  • Canel, C.; Lopes, Cardoso M. I.; Whitmer, S.; van-der Fits, L.; Pasquali, G.; van-der Heijden, R.; Hoge, J. H. C.; Verpoorte, R. Effects of overexpression of strictosidine synthase and tryptophan decarboxylase on alkaloid production by cell cultures of Catharanthus roseus. Planta 205:414–419; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Cusido, R.; Palazon, J.; Pinol, M. T.; Bonfill, M.; Marales, C. Datura metel: in vitro propagation of tropane alkaloids. Planta Med. 65:144–148; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Dixon, R. A. Natural products and plant disease resistance. Nature 411:843–847; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Ebel, J. Biochemical analysis of the induction process. Annu. Rev. Phytopathol. 24:235–264; 1986.

    Article  CAS  Google Scholar 

  • Giri, A.; Narasu, M. L. Recent trends and applications. Biotechnol. Adv. 18:1–22; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto, T.; Hayashi, A.; Amano, Y.; Kohno, J.; Iwanari, H.; Usuda, S.; Yamada, Y. Hyoscyamine 6β-hydroxylase, an enzyme involved in tropane alkaloid biosynthesis, is localized at the pericycle of the root. J. Biol. Chem. 266:4648–4653; 1991.

    PubMed  CAS  Google Scholar 

  • Hashimoto, T.; Matsuda, J.; Yamada, Y. Two-step expoxidation of hyoscyamine to scopolamine is catalyzed by bifunctional hyoscyamine 6β-hydroxylase. FEBS Lett. 329:35–39; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto, T.; Shoji, T.; Mihara, T.; Ogari, H. Tamaki, Y.; Yamada Y. Intraspecific variability of the tandem repeats of putrescine N-methyltransferase. Plant Mol. Biol. 37:25–37; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto, T.; Yamada, Y. Alkaloids biogenesis: molecular aspects. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45:257–285; 1994.

    CAS  Google Scholar 

  • Hibi, N.; Fujita, T.; Hatano, M.; Hashimoto, T.; Yamada, Y. Putrescine N-methyltransferase in cultured roots of Hyoscyamus albus. Plant Physiol. 100:826–835; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Jung, H. Y.; Kang, M. J.; Kang, Y. M.; Yun, D. J., Bahk, J. D.; Chung, Y. G.; Choi, M. S. Production of tropane alkaloids by optimum culture conditions and XAD resin, on hairy root cultures from Scopolia parviflora Nak. Kor. J. Biotechnol. Bioengng 17:525–530; 2002.

    Google Scholar 

  • Kang, Y. M.; Min, J. Y.; Kim, W. J.; Kim, Y. D.; Lee, B. H.; Choi, M. S. Growth pattern and content of tropane alkaloids of metabolic engineered Scopolia parviflora hairy root lines. Korean J. Med. Crop. Sci. 12:123–128; 2004a.

    Google Scholar 

  • Kang, Y. M.; Min, J. Y.; Moon, S. H.; Karigar, C. S.; Prasad, D. T.; Lee, C. H.; Choi, M. S. Rapid in vitro adventitious shoot propagation of Scopolia parviflora through rhizome cultures for enhanced production of tropane alkaloids. Plant Cell Rep. 23:128–133; 2004b.

    Article  PubMed  CAS  Google Scholar 

  • Laemmli, U. K. Cleaage of structural protein during the assembly of the lead of bacteriophage T4. Nature 227:680–685; 1970.

    Article  PubMed  CAS  Google Scholar 

  • Mitsuhara, I.; Ugaki, M.; Hirochika, H.; Ohshima, M.; Murakami T.; Gotoh, Y.; Katayose, Y.; Nakamura, S.; Honkura, R., Nishimiya, S.; Ueno, K.; Mochizuki, A.; Tanimoto, H.; Tsugawa, H.; Otsuki, Y.; Ohashi, Y. Efficient promoter cassettes for enhanced expression of foregign genes in cotyledonous and monoctyledonous plants. Plant Cell Physiol. 37:49–59; 1996.

    PubMed  CAS  Google Scholar 

  • Moyano, E.; Fornale, S.; Palazon, J.; Cusido, R. M.; Bagni, N.; Pinol, M. T. Alkaloid production in Duboisia hybrid hairy root cultures overexpressing the pmt gene. Phytochemistry 59:697–702; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Oksman, C. K. M.; Arro, R. Regulation of tropane alkaloid metabolism in plants and plant cell cultures. In: Verpoorte, R.; Alfermann, A. W., eds. Metabolic engineering of plant secondary metabolism. Dordrecht: Kluwer Academic Publisher; 2000:254–281.

    Google Scholar 

  • Sambrook, J.; Fritsch, E. F.; Maniatis, T. Molecular cloning: a laboratory manual. New York: Cold Springer Harbor Laboratory Press; 1998.

    Google Scholar 

  • Sato, F.; Hashimoto, T.; Hachiya, A.; Tamura, K.; Choi, K. B.; Morishige, T.; Fujimoto, H.; Yamada, Y. Metabolic engineering of plant alkaloid biosynthesis. Proc. Natl Acad. Sci. USA 98:367–372; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, K.; Yamada, Y.; Hashimoto, T. Expression of Atropa belladonna putrescine N-methyltransferase gene in root pericycle. Plant Cell Physiol. 40:298–297; 1999.

    Google Scholar 

  • Waller, G. R.; Nowacki, E. K. Alkaloid biology and metabolism in plants. New York: Kluwer Academic Publishers/Plenum; 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myung-Suk Choi.

Additional information

These authors contributed equally to this paper (co-first authors).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, OS., Kang, YM., Jung, HY. et al. Enhanced production of tropane alkaloids in Scopolia parviflora by introducing the PMT (putrescine N-methyltransferase) gene. In Vitro Cell.Dev.Biol.-Plant 41, 167–172 (2005). https://doi.org/10.1079/IVP2004621

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2004621

Key words

Navigation