Skip to main content
Log in

Summary

The notion that the introduction of alien RNA into an organism can cause the silencing of endogenous genes and transgenes came to light in plants during the last decades of the 20th century. It was based on revealing virus-induced gene silencing (VIGS) and on the protection against pathogenic viruses by pre-infection with less pathogenic plant viruses or components of such viruses as well as on co-suppression phenomena. The breakthrough in RNA silencing research was the discovery of Mello, Fire and associates that double-stranded RNAs (dsRNAs) can silence specifically homologous genes in the nematode Caenorhabditis elegans. The discovery in C. elegans, published in 1998, immediately initiated studies in protozoa, metazoa, fungi, and plants, and similar RNA silencing mechanisms, albeit with some notable differences, were subsequently revealed in almost all eukaryotic organisms in which they were looked for. Investigators dealing with the different organisms were well aware of each others' results and a very active field of study emerged within a few years. Investigators of plant RNA silencing benefited from the findings in other organisms, especially in C. elegans, Drosophila, and mammals, where the protein complexes involved in RNA silencing, such as the Dicer complex and the RNA-induced silencing complex (RISC), were studied intensively. The study of RNA silencing in plants followed two avenues. In one avenue the process of initiation of endogenous dsRNA was followed, also the fate and the impact of dsRNA that was introduced into plant cells was investigated. It was found how this dsRNA is cut into ∼21 nt fragments and the derived ssRNA of ∼21 nt may guide the RISC to cleave specific mRNA sequences. In the other avenue the formation of ‘hairpin’, or ‘stem loop’ RNA sequences, from transcripts of genomic sequences, was investigated. The ‘maturation’ of these RNA structures into mature microRNA was studied and the possible roles of endogenously formed and introduced microRNAs in the regulation of expression of plant genes were gradually revealed. This review will update the findings in these two avenues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambros, V.; Bartel, B.; Bartel, D. P.; Burge, C. B.; Carrington, J. C.; Chen, X.; Dreyfuss, G.; Eddy, S. R.; Griffiths-Jones, S.; Marshall, M.; Matzke, M.; Ruvkun, G.; Tuschl, T. A uniform system for microRNA annotation. RNA 9:277–279; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Aukerman, M. J.; Sakai, H. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Bao, N.; Lye, K.-W.; Barton, M. K. MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome. Dev. Cell 7:653–662; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Bartel, B.; Bartel, D. P. MicroRNAs: at the root of plant development. Plant Physiol. 132:709–717; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Bass, B. L. Double-stranded RNA as a template for gene silencing. Cell 101:235–238; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Baulcombe, D. C.; English, J. J. Ectopic pairing of homologous DNA and post-transcriptional gene silencing in transgenic plants. Curr. Opin. Biotechnol. 7:173–180; 1996.

    Article  CAS  Google Scholar 

  • Bonner, J.; Huang, R.-C.; Maheshwari, S. The physical state of newly synthesized RNA. Proc. Natl Acad. Sci. USA 47:1548–1554; 1961.

    Article  PubMed  CAS  Google Scholar 

  • Byrne, M.; Timmermans, M.; Kidner, C.; Martienssen, R. Development of leaf shape. Curr. Opin. Plant Biol. 4:38–43; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Chen, X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Coen, E. S.; Meyerowitz, E. M. The war of the whorls—genetic interactions controlling flower development. Nature 353:31–37; 1991.

    Article  PubMed  CAS  Google Scholar 

  • de Haan, P.; Gielen, J. J. L.; Prins, M.; Wijkamp, I. G.; Vanschepen, A.; Peters, D.; Vangrinsven, M. Q. J. M.; Goldbach, R. Characterization of RNA-mediated resistance to tomato spotted wilt virus in transgenic tobacco plants. Bio-Technology 10:1133–1137; 1992.

    PubMed  Google Scholar 

  • Depicker, A.; Van Montagu, M. Post-transcriptional gene silencing in plants. Curr. Opin. Cell Biol. 9:373–382; 1997.

    Article  PubMed  Google Scholar 

  • Ding, S. W.; Li, H. W.; Lu, R.; Li, F.; Li, W. X. RNA silencing: a conserved antiviral immunity of plants and animals. Virus Res. 102:109–115; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Ding, S. W.; Li, W. X.; Symons, R. H. A novel naturally-occurring hybrid gene encoded by a plant RNA virus facilitates long-distance virus movement. EMBO J. 14:5762–5772; 1995.

    PubMed  CAS  Google Scholar 

  • Emery, J. F.; Floyd, S. K.; Alvarez, J.; Eshed, Y.; Hawker, N. P.; Izhaki, A.; Baum, S. F.; Bowman, J. L. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI Genes. Curr. Biol. 13:1768–1774; 2003.

    Article  PubMed  CAS  Google Scholar 

  • English, J. J.; Mueller, E.; Baulcombe, D. C. Suppression of virus accumulation in transgenic plants exhibiting silencing of nuclear genes. Plant Cell. 8:179–188; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Eshed, Y.; Bowman, J. L. MicroRNAs guide asymmetric DNA modifications guiding asymmetric organs. Dev. Cell 7:629–630; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Fagard, M.; Boutet, S.; Morel, J.-B.; Bellini, C.; Vaucheret, H. AGO1, QDE-2, RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals. Proc. Natl Acad. Sci. USA 97:11650–11654; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Fire, A.; Xu, S.; Montgomery, M. K.; Kostas, S. A.; Driver, S. E.; Mello, C. C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Galun, E. Transposable elements—a guide to the perplexed and the novice. Dordrecht: Kluwer Academic Publishers; 2003.

    Google Scholar 

  • Galun, E. RNA silencing. Singapore: World Scientific Publishing Co.; 2005.

    Google Scholar 

  • Galun, E.; Breiman, A. Transgenic plants. London: Imperial College Press; 1997.

    Google Scholar 

  • Galun, E.; Galun, E. Manufacture of medical and health products by transgenic plants. London: Imperial College Press; 2001.

    Google Scholar 

  • Golemboski, D. B.; Lomonossoff, G. P.; Zaitlin, M. Plants transformed with a tobacco mosaic-virus nonstructural gene sequence are resistant to the virus. Proc. Natl Acad. Sci. USA 87:6311–6315; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, A. J.; Baulcombe, D. C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Han, M. H.; Goud, S.; Song, L.; Fedoroff, N. The Arabidopsis double-stranded RNA-binding protein HYL1 plays a role in microRNA-mediated gene regulation. Proc. Natl Acad. Sci. USA 101:1093–1098; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Helliwell, C.; Waterhouse, P. Constructs and methods for high-throughput gene silencing in plants. Methods 30:289–295; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Horiguchi, G. RNA silencing in plants: a shortcut to functional analysis. Differentiation 72:65–73; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Huang, R.-C.; Bonner, J. Histone, a suppressor of chromosomal RNA synthesis. Proc. Natl Acad. Sci. USA 48:1216–1222; 1962.

    Article  PubMed  CAS  Google Scholar 

  • Jack, T. Molecular and genetic mechanisms of floral control. Plant Cell 16:S1-S17; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Jacob, F.; Monod, J. Genes de structure et gene de regulation dans la biosynthese de proteins. C.R. Biol. 249:1282–1284; 1959.

    CAS  Google Scholar 

  • Jones-Rhoades, M. W.; Bartel, D. P. Computational identification of plant MicroRNAs and their targets, including a stress-induced miRNA. Mol. Cell 14:787–799; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen, R. A. Sense cosuppression in plants: past, present and future. In: Hannon, G. J., ed. RNAi—a guide to gene silencing. New York: Cold Spring Harbor Laboratory Press; 2003:5–21.

    Google Scholar 

  • Kusaba, M.; Miyahara, K.; Lida, S.; Fukuoka, H.; Takano, T.; Sassa, H.; Nishimura, M. Low glutelin content1: a dominant mutation that suppresses the glutelin multigene family via RNA silencing in rice. Plant Cell 15:1455–1467; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Lindbo, J. A.; Silva-Rosales, L.; Proebsting, W. M.; Dougherty, W. G. Induction of a highly specific antiviral state in transgenic plants: implications for regulation of gene expression and virus resistance. Plant Cell 5:1749–1759; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Lippman, Z.; Martienssen, R. The role of RNA interference in heterochromatic silencing. Nature 431:364–370; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Q.; Singh, S. P.; Green, A. G. High-stearic and high-oleic cottonseed oils produced by hairpin RNA-mediated post-transcriptional gene silencing. Plant Physiol. 129:1732–1743; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Llave, C.; Kasschau, K.; Rector, M. A.; Carrington, J. C. Endogenous and silencing-associated small RNAs in plants. Plant Cell 14:1605–1619; 2002a.

    Article  PubMed  CAS  Google Scholar 

  • Llave, C.; Xie, Z.; Kasschau, K. D.; Carrington, J. Cleavage of scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297:2053–2056; 2002b.

    Article  PubMed  CAS  Google Scholar 

  • Longstaff, M.; Brigneti, G.; Boccard, F.; Chapman, S.; Baulcombe, D. Extreme resistance to potato virus-X infection in plants expressing a modified component of the putative viral replicase. EMBO J. 12:379–386; 1993.

    PubMed  CAS  Google Scholar 

  • Mallory, A.; Dugas, D. V.; Bartel, D. P.; Bartel, B. MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr. Biol. 14:1035–1046; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Matzke, M. A.; Primig, M.; Trnovsky, J.; Matzke, A. J. M. Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants. EMBO J. 8:643–649; 1989.

    PubMed  CAS  Google Scholar 

  • McConnell, J. R.; Emery, J.; Eshed, Y.; Bao, N.; Bowman, J.; Barton, M. K. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411:709–713; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Meister, G.; Tuschl, T. Mechanism of gene silencing by double-stranded RNA. Nature 431:343–349; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Mette, M. F.; Van der Winden, J.; Matzke, M. A.; Matzke, A. J. M. Short RNAs can identify new candidate transposable element families in Arabidopsis. Plant Physiol. 130:6–9; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Metzlaff, M.; O'Dell, M.; Cluster, P. D.; Flavell, R. B. RNA-mediated RNA degradation and chalcone synthase A silencing in Petunia. Cell 88:845–854; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Mueller, E.; Gilbert, J.; Davenport, G.; Brigneti, G.; Baulcombe, D. C. Homology-dependent resistance—transgenic virus-resistance in plants related to homology-dependent gene silencing. Plant J. 7:1001–1013; 1995.

    Article  CAS  Google Scholar 

  • Napoli, C.; Lemieux, C.; Jorgensen, R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Ogita, S.; Uefuji, H.; Yamaguchi, Y.; Koizumi, N.; Sano, H. RNA interference—producing decaffeinated coffee plants. Nature 423:823; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Palauqui, J.-C.; Elmayan, T.; Pollien, J.-M.; Vaucheret, H. Systemic acquired silencing: transgene-specific post-transcriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions. EMBO J. 16:4738–4745; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Park, W.; Li, J.; Song, R.; Messing, J.; Chen, X. CARPEL FACTORY, a dicer homolog and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr. Biol. 12:1481–1495; 2002.

    Article  Google Scholar 

  • Reinhart, B. J.; Weinstein, E. G.; Rhoades, M. W.; Bartel, B.; Bartel, D. P. MicroRNAs in plants. Genes Dev. 16:1616–1626; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Roth, B. M.; Pruss, G. J.; Vance, V. B. Plant viral suppressors of RNA silencing. Virus Res. 102:97–108; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Ruiz, M. T.; Voinnet, O.; Baulcombe, D. C. Initiation and maintenance of virus-induced gene silencing. Plant Cell 10:937–946; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Schwarz-Sommer, Z.; Huijser, P.; Nacken, W.; Saedler, H.; Sommer, H. Genetic-control of flower development by homeotic genes in Antirrhinum majus. Science 250:931–936; 1990.

    Article  CAS  Google Scholar 

  • Schweizer, P.; Pokorny, J.; Schulze-Lefert, P.; Dudler, R. Double-stranded RNA interferes with gene function at the single-cell level in cereals. Plant J. 24:895–903; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Segal, G.; Song, R. T.; Messing, J. A new opaque variant of maize by a single dominant RNA-interference-inducing transgene. Genetics 165:387–397; 2003.

    PubMed  CAS  Google Scholar 

  • Smith, H. A.; Swaney, S. L.; Park, T. D.; Wernsman, E. A.; Dougherty, W. G. Transgenic plant-virus resistance mediated by untranslatable sense RNAs—expression, regulation, and fate of nonessential RNAs. Plant Cell 6:1441–1453; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Smith, N. A.; Singh, S. P.; Wang, M.-B.; Stoutjesdijk, P. A.; Green, A. G.; Waterhouse, P. M. Total silencing by intron-spliced hairpin RNAs. Nature 407:319–320; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Snow, M.; Snow, R. The dorsoventrality of leaf primordia. New Phytol. 58:188–207; 1959.

    Article  Google Scholar 

  • Stoutjesdijk, P. A.; Singh, S. P.; Liu, Q.; Hurlstone, C. J.; Waterhouse, P. A.; Green, A. G. hpRNA-mediated targeting of the Arabidopsis FAD2 gene gives highly efficient and stable silencing. Plant Physiol. 129:1723–1731; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Sussex, I. M. Experiments on the cause of dorsoventrality in leaves. Nature 174:351–352; 1954.

    Article  Google Scholar 

  • Tang, G.; Galili, G. Using RNAi to improve plant nutritional value: from mechanism to application. Trends Biotechnol. 22:463–469; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Tang, G.; Reinhart, B. J.; Bartel, D. P.; Zamore, P. D. A biochemical framework for RNA silencing in plants. Genes Dev. 17:49–63; 2003.

    Article  PubMed  CAS  Google Scholar 

  • van der Krol, A.; Mur, L. A.; Beld, M.; Mol, J. N. M.; Stuitje, A. R. Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2:291–299; 1990.

    Article  PubMed  Google Scholar 

  • Vance, V. B. Replication of potato virus-X RNA is altered in coinfections with potato virus-Y. Virology 182:486–494; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Vance, V. B.; Berger, P. H.; Carrington, J. C.; Hunt, A. G.; Shi, X. M. 5′-proximal potyviral sequences mediate potato-virus-X potyviral synergistic disease in transgenic tobacco. Virology 206:583–590; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Vargason, J. M.; Szittya, G.; Burgyan, J.; Hall, T. M. T. Size selective recognition of siRNA by an RNA silencing suppressor. Cell 115:799–811; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Voinnet, O.; Baulcombe, D. C. Systemic signalling in gene silencing. Nature 389:553; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Wassenegger, M.; Heimes, S.; Riederl, L.; Sanger, H. L. RNA-directed de-novo methylation of genomic sequences in plants. Cell 76:567–576; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Waterhouse, P. M.; Graham, M. W.; Wang, M.-B. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc. Natl Acad. Sci. USA 95:13959–13964; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Wesley, S. V.; Helliwell, C. A.; Smith, N. A.; Wang, M.; Rouse, D. T.; Liu, Q.; Gooding, P. S.; Singh, S. P.; Abbott, D.; Stoutjesdijk, P. A.; Robinson, S. P.; Gleave, A. P.; Green, A. G.; Waterhouse, P. M. Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J. 27:581–590; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Ye, M. K.; Malinina, L.; Patel, D. J. Recognition of small interfering RNA by a viral suppressor of RNA silencing. Nature 426:874–878; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Zamore, P. D. Plant RNAi: How a viral silencing suppressor inactivates siRNA. Curr. Biol. 14:R198-R200; 2004.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esra Galun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galun, E. RNA silencing in plants. In Vitro Cell.Dev.Biol.-Plant 41, 113–123 (2005). https://doi.org/10.1079/IVP2004619

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2004619

Key words

Navigation