Skip to main content
Log in

Effects of carbon source and concentration on development of lingonberry (Vaccinium vitis-idaea L.) shoots cultivated in vitro from nodal explants

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Carbohydrate type and concentration and their interactive effects on in vitro shoot proliferation of three lingonberry (Vaccinium vitis-idaea ssp. vitis-idaea L.) cultivars (‘Regal’, ‘Splendor’, and ‘Erntedank’) and two V. vitis-idaea ssp. minus (Lodd) clones (‘NL1’ and ‘NL2’) were studied. Nodal explants were grown in vitro on medium with 2 μM zeatin and either glucose, sorbitol, or sucrose at a concentration of 0, 10, 20, or 30 gl−1. The interactive effects of carbohydrate type and concentration and genotype were important for shoot proliferation. The best response was afforded by sucrose at 20 gl−1 both in terms of explant response and shoot developing potential, although glucose supported shoot growth equally well, and in ‘NL1’ at 10 gl−1 it resulted in better in vitro growth than sucrose. Carbohydrate concentration had little effect on shoot vigor. The genotypes differed in terms of shoots per explant, length, and vigor, leaves per shoot, and callus formation at the base of explants; this was manifested with various types and concentrations of carbohydrate. Changing the positioning of explants on the medium from vertically upright to horizontal increased the shoot and callus size, but decreased shoot height and leaves per shoot. Proliferated shoots were rooted on a peat:perlite (1∶1, v/v) medium and the plantlets were acclimatized and eventually established in the greenhouse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Borkowska, B.; Szczerba, J. Influence of different carbon sources on invertase activity and growth of sour cherry (Pranus cerasus L.) shoot cultures. J. Exp. Bot. 42:911–915; 1991.

    Article  CAS  Google Scholar 

  • Chong, C.; Taper, C. D. Malus tissue cultures. I. Sorbitol (d-glucitol) as a carbon source for callus initiation and growth. Can. J. Bot. 50:1399–1404; 1972.

    CAS  Google Scholar 

  • Coffin, R.; Taper, C. D.; Chong, C. Sorbitol and sucrose as carbon source for callus culture of some species of Rosaceae. Can. J. Bot. 54:547–551; 1976.

    Article  Google Scholar 

  • Compton, E. C. Statistical methods suitable for the analysis of plant tissue culture data. Plant Cell Tiss. Organ Cult. 37:217–242; 1994.

    Google Scholar 

  • Debnath, S. C. Combined application of classical and biotechnological techniques in the development of small fruits important to Newfoundland and Labrador. Can. J. Plant Sci. 80:233; 2000.

    Google Scholar 

  • Debnath, S. C. Micropropagation of small fruits. In: Jain, S. M.; Ishii, K., eds. Micropropagation of woody trees and fruits. Dordrecht: Kluwer Academic Publishers; 2003a:465–506.

    Google Scholar 

  • Debnath, S. C. Improved shoot organogenesis from hypocotyl segments of lingonberry (Vaccinium vitis-idaea L.). In Vitro Cell. Dev. Biol. Plant 39:490–495; 2003b.

    Article  Google Scholar 

  • Debnath, S. C. In vitro culture of lowbush blueberry (Vaccinium angustifolium Ait.). Small Fruits Rev 3:393–408; 2004.

    Article  Google Scholar 

  • Debnath, S. C.; McRae, K. B. In vitro culture of lingonberry (Vaccinium vitisidaea L.): the influence of cytokinins and media types on propagation. Small Fruits Rev. 1:3–19; 2001a.

    Article  CAS  Google Scholar 

  • Debnath, S. C.; McRae, K. B. An efficient in vitro shoot propagation of cranberry (Vaccinium macrocarpon Ait.) by axillary bud proliferation. In Vitro Cell. Dev. Biol. Plant 37:243–249; 2001b.

    Article  CAS  Google Scholar 

  • Debnath, S. C.; McRae, K. B. An efficient adventitious shoot regeneration system on excised leaves of micropropagated lingonberry (Vaccinium vitis-idaea L.). J. Hort. Sci. Biotechnol. 77:744–752; 2002.

    CAS  Google Scholar 

  • Dierking, W. Jr; Dierking, S. European Vaccinium species. Acta. Hort. 241:299–304; 1993.

    Google Scholar 

  • Grizzle, J. E.; Starmer, C. F.; Koch, G. G. Analysis of categorical data by linear models. Biometrics 25:489–504; 1969.

    Article  PubMed  CAS  Google Scholar 

  • Gustavsson, B. A.; Stanys, V. Field performance of ‘Sanna’ lingonberry derived by micropropagation vs. stem cuttings. HortScience 35:742–744; 2000.

    Google Scholar 

  • Hulten, E. On the races in the Scandinavian flora. Svensk Botanisk Tidskrift Bd. 43:383–406; 1949.

    Google Scholar 

  • Jaakola, L.; Tolvanen, A.; Laine, K.; Hohtola, A. Effect of N6-isopenteny-ladenine concentration on growth initiation in vitro and rooting of bilberry and lingonberry microshoots. Plant Cell Tiss. Organ Cult. 66:73–77; 2001.

    Article  CAS  Google Scholar 

  • Karhu, S. T. The quality of applied carbohydrates affects the axillary branching of apple microshoots. Bull. Rech. Agron. Gembloux 30:21–27; 1995.

    CAS  Google Scholar 

  • Koch, G. G.; Amara, I. A.; Davis, G. W.; Gillings, D. B. A review of some statistical methods for covariance analysis of categorical data. Biometrics 38:563–595; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Kozai, T. Micropropagation under photoautotrophic conditions. In: Debergh, P. C.; Zimmerman, R. H., eds. Micropropagation—technology and application. Dordrecht: Kluwer Academic Publishers; 1991:447–469.

    Google Scholar 

  • Lane, W. D. Regeneration of pear plants from shoot meristem tips. Plant Sci. Lett. 17:337–342; 1979.

    Article  Google Scholar 

  • Luby, J. J.; Ballington, J. R.; Draper, A. D.; Pliszka, K.; Austin, M. E. Blueberries and cranberries (Vaccinium). Acta Hort. 290:391–456; 1991.

    Google Scholar 

  • Marcotrigiano, M.; McGlew, S. P. A two-stage micropropagation system for cranberries. J. Am. Soc. Hort. Sci. 116:911–916; 1991.

    CAS  Google Scholar 

  • McClelland, M. T.; Smith, M. A. L. Vessel type, closure, and explant orientation influence in vitro performance of five woody species. HortScience 25:797–800; 1990.

    Google Scholar 

  • Novelli, S. Developments in berry production and use. Bi-weekly Bull. Agric. Agri-Food Canada 16(21); 2003.

  • Pontis, H. G. On the scent of riddle of sucrose. TIBS 6: 137–139; 1978.

    Google Scholar 

  • Prior, R. L.; Cao, G. Antioxidant phytochemicals in fruits and vegetables: diet and health implications. HortScience 35:588–592; 2000.

    CAS  Google Scholar 

  • Serres, R. A.; Pan, S.; McCown, B. H.; Stang, E. J. Micropropagation of several lingonberry cultivars. Fruit Var. J. 48:7–14; 1994.

    Google Scholar 

  • Smagula, J. M.; Harker, J. Cranberry micropropagation using a lowbush blueberry medium. Acta Hort. 446:343–347; 1997.

    Google Scholar 

  • Stanek, E. J. III; Diehl, S. R.; Dgetluck, M.; Stockes, M. E.; Prokopy, R. J. Statistical methods for analyzing discrete responses of insects tested repeatedly. Environ. Entomol. 16:319–326; 1987.

    Google Scholar 

  • Stark, R.; Hall, I. V.; Hendrickson, P. A. The partridgeberry of Newfoundland. Canadex. (Hort. Crops) 230; 1978.

  • Swedlund, B.; Locy, R. D. Sorbitol as the primary carbon source for the growth of embryogenic callus of maize. Plant Physiol. 103:1339–1346; 1993.

    PubMed  CAS  Google Scholar 

  • Thompson, M.R.; Thorpe, T. A. Metabolic and non-metabolic roles of carbohydrates. In: Bonga, J. M.; Durzan, D. J., eds. Cell and tissue culture in forestry, vol. 1. General principles and biotechnology. Dordrecht: Martinus Nijhoff Publishers; 1987:89–112.

    Google Scholar 

  • Thorpe, T. A. Carbohydrate utilization and metabolism. In: Bonga, J. M.; Durzan, D. J., eds. Tissue culture in forestry. Dordrecht: Martinus Nijhoff Publishers; 1985:325–368.

    Google Scholar 

  • Uno, S.; Preece, J. E. Micro- and cutting propagation of ‘Crimson Pygmy’ barberry. HortScience 22:488–491; 1987.

    CAS  Google Scholar 

  • Vander Kloet, S. P. The genus Vaccinium in North America. Agric. Can. Publ. 1828; 1988.

  • Wang, H.; Cao, G.; Prior, R. L. Oxygen radical absorbing capacity of anthocyanins. J. Agric. Food Chem. 45:304–309; 1997.

    Article  CAS  Google Scholar 

  • Welander, M.; Welander, N. T.; Brackman, A. S. Regulation of in vitro shoot multiplication in Syringa, Alnus and Malus by different carbon sources. J. Hort. Sci. 64:361–366; 1989.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir C. Debnath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Debnath, S.C. Effects of carbon source and concentration on development of lingonberry (Vaccinium vitis-idaea L.) shoots cultivated in vitro from nodal explants. In Vitro Cell.Dev.Biol.-Plant 41, 145–150 (2005). https://doi.org/10.1079/IVP2004590

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2004590

Key words

Navigation