Skip to main content
Log in

Using a competent tissue for efficient transformation of sugarbeet (Beta vulgaris L.)

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Despite intensive efforts, a reproducible and reliable method for transformation of sugarbeet plants is still lacking. Having examined several explants, we found that cells around the main vein of leaves of plantlets reared from tissue-cultured apical meristems are sufficiently competent for transformation and subsequent regeneration. A transformation protocol was designed by evaluating alterations in several parameters such as plant genotype, Agrobacterium strain, antibiotics, darkness and duration of co-culture period. An average transformation rate of 6.2% transformed shoots per explant was achieved as judged by Southern blotting. Consistent inactivation of reporter genes was correlated to multiple copies of transgenes present in some transformants. The necessary steps for rooting and planting of transformed shoots were also established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Connor-Ward, D.; Hinchee, A. W. M. Sugarbeet regeneration and transformation. Patent no. WO 0142480; 2001.

  • De Greef, W.; Jacobs, M. In vitro culture of the sugarbeet: description of a cell line with high regeneration capacity. Plant Sci. Lett. 17:55–61; 1979.

    Article  Google Scholar 

  • Feinberg, A. P.; Vogelstein, B. A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132:6–13; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Gamborg, O. L.; Miller, R. A.; Ojima, K. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50:151–158; 1968.

    Article  PubMed  CAS  Google Scholar 

  • Hall, R. D.; Bruinsma, T. R.; Weyens, G. J.; Rosquin, I. J.; Denys, P. N.; Evans, I. J.; Lathouwers, J. E.; Lefebvre, M. P.; Dunwell, J. M.; Tunen, A. V.; Krens, F. A. A high efficiency technique for the generation of transgenic sugarbeets from stomatal guard cells. Nature Biotechnol. 14:1133–1138; 1996.

    Article  CAS  Google Scholar 

  • Horsch, R. B.; Fry, J. E.; Hoffmann, N.; Eicholz, D.; Rogers, S. G.; Fraley, R. T. A simple and general method for transferring genes into plants. Science 227:1229–1231; 1985.

    Article  CAS  Google Scholar 

  • Jacq, B.; Lesobre, O.; Sangwan, R. S.; Sangwan, B. S. Factors influencing T-DNA transfer in Agrobacterium-mediated transformation of sugarbeet. Plant Cell Rep. 12: 621–624; 1993.

    Article  CAS  Google Scholar 

  • Jefferson, R. A.; Kavanagh, T. A.; Bevan, M. W. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6:3901–3907; 1987.

    PubMed  CAS  Google Scholar 

  • Joersbo, M.; Donaldson, I.; Kreiberg, J.; Petersen, S. G.; Brunstedt J.; Okkels, F. T. Analysis of mannose selection used for transformation of sugarbeet. Mol. Breed. 4:111–117; 1998.

    Article  CAS  Google Scholar 

  • Joersbo, M.; Okkels, F. T. A novel principle of selection of transgenic plant cells: positive selection. Plant Cell Rep. 16:219–221; 1996.

    Article  CAS  Google Scholar 

  • Koncz, C.; Schell, J. The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol. Gen. Genet. 204:393–396; 1986.

    Article  Google Scholar 

  • Konward, B. K. Agrobacterium tumefaciens-mediated genetic transformation of sugarbeet (Beta vulgaris L.). J. Plant Biochem. Biotechnol. 3:37–41; 1994.

    Google Scholar 

  • Krens, F. A.; Trifonova, A.; Keizer, L. C. P.; Hall, R. D. The effect of exogenously-applied phytohormones on gene transfer efficiency in sugarbeet (Beta vulgaris L.). Plant Sci. 116:97–106; 1996.

    Article  CAS  Google Scholar 

  • Lindsey, K.; Gallois, P. Transformation of sugarbeet (Beta vulgaris L.) by Agrobacterium tumefaciens. J. Exp. Bot. 41:529–536; 1990.

    Article  CAS  Google Scholar 

  • Mannerlöf, M.; Lennerfors, B. L.; Tenning, P. Reduced titer of BNYVV in transgenic sugarbeets expressing the BNYVV coat protein. Euphytica 90:293–299; 1996.

    Article  Google Scholar 

  • Mannerlöf, M.; Tuvesson, S.; Steem, P.; Tenning, P. Transgenic sugarbeet tolerant to glyphosate. Euphytica 94:83–91; 1997.

    Article  Google Scholar 

  • Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    Article  CAS  Google Scholar 

  • Norouzi, P.; Yazdi-Samadi, B.; Malboobi, M. A. Investigating the effect of plant hormones on direct shoot regeneration from sugarbeet explants. Iranian J. Agric. Sci. 33:233–239; 2002.

    Google Scholar 

  • Saghai-Maroof, M. A.; Soliman, K. M.; Jorgensen, R. A.; Allard, R. W. Ribosomal DNA spacer-length polymorphism in barley: Mendelian inheritance, chromosomal, location and population dynamics. Proc. Natl Acad. Sci. USA 81:8014–8018; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook, J.; Fritsch, E. F.; Maniatis, T. Molecular cloning: a laboratory manual, 2nd edn, vol. 2. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1989.

    Google Scholar 

  • Saunders, J. W.; Doley, W. P.; Theurer, J. C.; Yu, M. H. Somaclonal variation in sugarbeet. In: Bajaj, Y. P. S., ed. Biotechnology in agriculture and forestry, vol. 11. Heidelberg: Springer-Verlag Press; 1990:465–490.

    Google Scholar 

  • Snyder, G. W.; Ingersoll, J. C.; Simigocki, A. C. Introduction of pathogen defense genes and a cytokinin biosynthesis gene into sugarbeet (Beta vulgaris L.) by Agrobacterium or particle bombardment. Plant Cell Rep. 18:829–834; 1999.

    Article  CAS  Google Scholar 

  • Velten, J.; Schell, J. Selection-expression plasmid vectors for use in genetic transformation of higher plants. Nucleic Acids Res. 13:6981–6998; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Winner, C. History of the crop. In: Cooke, D. A.; Scott, R. K., eds. The sugarbeet crop, London: Chapman and Hall 1993;1–36.

    Google Scholar 

  • Wozniak, C. A. Transgenic sugarbeet: progress and development. In: Chopra, V. L.; Malik, V. S.; Bhat, S. R., eds. Applied plant biotechnology, Enfield: Science Publisher, Inc; 1999:301–324.

    Google Scholar 

  • Wozniak, C. A.; Owens, L. D. Native β-glucuronidase activity in sugarbeet (Beta vulgaris L.). Physiol. Plant. 90:763–771; 1994.

    Article  CAS  Google Scholar 

  • Zhang, C. L.; Chen, D. F.; McCormac, A. C.; Scott, N. W.; Elliott, M. C.; Slater, A. Use of the GFP reporter as a vital marker for Agrobacterium-mediated transformation of sugarbeet (Beta vulgaris L.). Mol. Biotechnol. 17:109–117; 2001.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad A. Malboobi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norouzi, P., Malboobi, M.A., Zamani, K. et al. Using a competent tissue for efficient transformation of sugarbeet (Beta vulgaris L.). In Vitro Cell.Dev.Biol.-Plant 41, 11–16 (2005). https://doi.org/10.1079/IVP2004589

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2004589

Key words

Navigation