Skip to main content

Cucurbit biotechnology-the importance of virus resistance

Summary

The cucurbit family includes a number of valuable crop species (melon, cucumber, squash/pumpkin, watermelon). Much of this review is concerned with transgenic resistance to viruses, shown to be the major application of biotechnology in the cucurbit family. Progress made with the production of transgenic cucurbit crops is discussed. Published data on field tests of transgenic cucurbits are reviewed, showing that much progress has been made with multiple virus-resistant cucurbit crops which can be productive without chemical control of insect virus vectors. Modes of virus resistance in trangenic cucurbits are discussed, as is the bio-safety of such crops. For the first time a detailed analysis has been made of world-wide and US field test applications for cucurbit crops. World-wide, most field test applications were for melon (54%), followed by squash (32%). World-wide most field test applications were for virus resistance (84%), and most applications (77%) were in the USA. Two transgenic multiple virus-resistant squash crops have been deregulated (released for sale). Additionally, the analysis shows that there are transgenic multiple virus-resistant crops in all major cucurbit species already available, for which several different companies have applied for field tests. This would imply that such crops are ready to be marketed should conditions permit, which would have an impact world-wide in reduction of ecological damage due to chemical control of the insect viral vectors.

This is a preview of subscription content, access via your institution.

References

  1. An, G. H. Development of plant promoter expression vectors and their use for analysis of differential activity of nopaline synthase promoter in transformed tobacco cells. Plant Physiol. 81:86–91; 1986.

    PubMed  CAS  Google Scholar 

  2. Ananthakrishnan, G.; Xia, X.; Elman, C.; Singer, S.; Paris, H. S.; Gal-On, A.; Gaba, V. Shoot production in squash (Cucurbita pepo) by in vitro organogenesis. Plant Cell Rep. 21:739–746; 2003.

    PubMed  CAS  Google Scholar 

  3. APHIS. Applications for deregulated status for cucurbit crops in the USA (data downloaded 1 January 2002), http://www.aphis.usda.gov/ ppq/biotech/not_reg.html; 2002 (on February 19, 2004 this site was not available, although some of this data was found at http://www.isb.vt.edu/cfdocs/biopetitionsl.cfm or http://www.aphis.usda.gov/brs/status/petday.html).

  4. APHIS. Website for information on biotechnology permits, http://www.aphis. usda.gov/bbep/; 2004a (confirmed February 19, 2004).

  5. APHIS. Environmental assessments and determinations in PDF format for deregulated crops are available at http://www.aphis.usda.gov/brs/not_reg.html; 2004b (confirmed February 19, 2004).

  6. APHIS. The documents on deregulation of the squash transformants ZW-20 and CWZ-3 and are, respectively, http://www.aphis.usda.gov/brs/aphisdocs2/92_20401p_com.pdf and http://www.aphis.usda.gov/brs/aphisdocs2/95_35201p_com.pdf; 2004c (confirmed February 19, 2004).

  7. Arce-Ochoa, J. P.; Dainello, F.; Pike, L. M.; Drews, D. Field performance comparison of two transgenic summer squash hybrids to their parental hybrid line. HortScience 30:492–493; 1995.

    Google Scholar 

  8. Ayub, R.; Guis, M.; BenAmor, M.; Gillot, L.; Roustan, J. P.; Latche, A.; Bouzayen, M.; Pech, J. C. Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits. Nat. Biotechnol. 14:862–866; 1996.

    PubMed  Article  CAS  Google Scholar 

  9. Barker, I.; Henry, C. M.; Thomas, M. R.; Straford, R. Potential benefits of the transgenic control of plant viruses in the United Kingdom. Methods Mol. Biol. 81:557–566; 1998.

    PubMed  CAS  Google Scholar 

  10. Bates, D. M.; Robinson, R. W.; Jeffrey, C., eds. Biology and utilization of the Cucurbitaceae. Ithaca, NY and London: Cornell University Press; 1990.

    Google Scholar 

  11. Beachy, R. N. Coat-protein-mediated resistance to tobacco mosaic virus: discovery mechanisms and exploitation. Phil. Trans. Roy. Soc. B. 354:659–664; 1999.

    Article  CAS  Google Scholar 

  12. Bendahmane, M.; Beachy, R. N. Control of tobamovirus infections via pathogen-derived resistance. Adv. Virus Res. 53:369–386; 1999.

    PubMed  CAS  Google Scholar 

  13. Blanchard, D.; Lecoq, H.; Pitrat, M. A color atlas of cucurbit diseases. New York: Manson Publishing/John Wiley; 1994.

    Google Scholar 

  14. Chee, P. P. Transformation of Cucumis sativus tissue by Agrobacterium tumefaciens and the regeneration of transformed plants. Plant Cell Rep. 9:245–248; 1990.

    Article  CAS  Google Scholar 

  15. Chee, P. P. Initiation and maturation of somatic embryos of squash (Cucurbita pepo). HortScience 27:59–60; 1992.

    Google Scholar 

  16. Chee, P. P. Somatic embryogenesis and transformation of squash. US patent 5,677,157; 1997.

  17. Chee, P. P.; Slightom, J. L. Transfer and expression of cucumber mosaic virus coat protein gene in the genome of Cucumis sativus. J. Am. Soc. Hort. Sci. 116:1098–1102; 1991.

    CAS  Google Scholar 

  18. Chee, P. P.; Slightom, J. I. Transformation of cucumber tissues by microprojectile bombardment: identification of plants containing functional and non-functional transferred genes. Gene 118:255–260; 1992.

    PubMed  Article  CAS  Google Scholar 

  19. Chiang, C. H.; Wang, J. J.; Jan, F. J.; Yeh, S. D.; Gonsalves, D. Comparative reactions of recombinant papaya ringspot viruses with chimeric coat protein (CP) genes and wild-type viruses on CP-transgenic papaya. J. Gen. Virol. 82:2827–2836; 2001.

    PubMed  CAS  Google Scholar 

  20. Choi, P. S.; Soh, W. Y.; Kim, Y. S.; Yoo, O. J.; Liu, J. R. Genetic transformation and plant regeneration of watermelon using Agrobacterium tumefaciens. Plant Cell Rep. 13:344–348; 1994.

    Article  CAS  Google Scholar 

  21. Clough, G. H.; Hamm, P. B. Coat protein transgenic resistance to watermelon mosaic and zucchini yellow mosaic virus in squash and cantaloupe. Plant Dis. 79:1107–1109; 1995.

    CAS  Article  Google Scholar 

  22. Colijn-Hooymans, C. M.; Hakkert, J. C.; Jansen, J.; Custers, J. M. B. Competence for regeneration of cucumber cotyledons is restricted to specific developmental stages. Plant Cell Tiss. Organ Cult. 39:211–217; 1994.

    Article  Google Scholar 

  23. Compton, M. E.; Gray, D. J.; Elmstrom, G. W. Identification of tetraploid regenerants from cotyledons of diploid watermelon cultured in vitro. Euphytica 87:165–172; 1996.

    Article  Google Scholar 

  24. Compton, M. E.; Gray, D. J.; Gaba, V. P. Genetic transformation of watermelon. In: Curtis, I. S., ed. Transgenic crops of the world—essential protocols. Amsterdam: Kluwer Academic Publishers; 2004 (in press).

    Google Scholar 

  25. Curuk, S.; Ananthakrishnan, G.; Singer, S.; Xia, X.; Elman, C.; Nestel, D.; Cetiner, S.; Gaba, V. Regeneration in vitro from the hypocotyl of Cucumis species produces almost exclusively diploid shoots, and does not require light. HortScience 38:105–109; 2003.

    Google Scholar 

  26. Dabauza, M.; Bordas, M.; Salvador, A.; Roig, L. A.; Moreno, V. Plant regeneration and Agrobacterium-mediated transformation of cotyledon explants of Citrullus colocynthis (L.) Schrad. Plant Cell Rep. 16:888–892; 1997.

    Article  CAS  Google Scholar 

  27. Danin-Poleg, Y.; Paris, H. S.; Cohen, S.; Rabinowitch, H. D.; Karchi, Z. Oligogenic inheritance of resistance to zucchini yellow mosaic virus in melons. Euphytica 93:331–337; 1997.

    Article  Google Scholar 

  28. Dong, J. Z.; Yang, M. Z.; Jia, S. R.; Chua, N. H. Transformation of melon (Cucumis melo L.) and expression from the cauliflower mosaic virus 35S promoter in transgenic melon plants. Biotechnology 9:858–863; 1991.

    Article  CAS  Google Scholar 

  29. Dougherty, W. G.; Lindbo, J. A.; Smith, H. A.; Parks, T. D.; Swaney, S.; Proebsting, W. M. RNA-mediated virus resistance in transgenic plants: exploitation of a cellular pathway possibly involved in RNA degradation. Mol. Plant Microbe Interact. 7:544–552; 1994.

    PubMed  CAS  Google Scholar 

  30. Ellul, P.; Rios, G.; Atares, A.; Roig, L. A.; Serrano, R.; Moreno, V. The expression of the Saccharomyces cerevisiae HAL1 gene increases salt tolerance in transgenic watermelon [Citrullus lanatus (Thunb.) Matsun. & Nakai.]. Theor. Appl. Genet. 107:462–469; 2003.

    PubMed  Article  CAS  Google Scholar 

  31. European Union. News release no. 03/01, 16 February 2001. EU commission welcomes adoption of new GMO rules, http://www.eurunion.org/news/press/2001/2001003.htm; 2001 (confirmed February 19, 2004).

  32. European Union, European Community database for transgenic crop releases, then see under selected countries (Spain, Italy, France), http://biotech.jrc.it/deliberate/dbplants.asp; 2004 (confirmed February 19, 2004).

  33. Ezura, H. How biotechnology can contribute to conventional breeding in melon. Acta Hort. 492:135–147; 1999.

    Google Scholar 

  34. Fang, G. W.; Grumet, R. Genetic engineering of potyvirus resistance using constructs derived from the zucchini yellow mosaic virus coat protein gene. Mol. Plant Microbe Interact. 6:358–367; 1993.

    PubMed  CAS  Google Scholar 

  35. FAO. FAOSTAT—World agricultural data, http://apps.fao.org/; 2002 (confirmed February 19, 2004).

  36. Ferreira, S. A.; Pitz, K. Y.; Manshardt, R.; Zee, F.; Fitch, M.; Gonsalves, D. Virus coat protein transgenic papaya provides practical control of papaya ringspot virus in Hawaii. Plant Dis. 86:101–105; 2002.

    Article  Google Scholar 

  37. Ferro, A. J.; Bestwick, R. K.; Brown, L. R. Genetic control of ethylene biosynthesis in plants. US patent 5,589,623; 1996.

  38. Flores, F.; El Yahyaoui, F.; de Billerbeck, G.; Romojaro, F.; Latche, A.; Bouzayen, M.; Pech, J. C.; Ambid, C. Role of ethylene in the biosynthetic pathway of aliphatic ester aroma volatiles in Charentais Cantaloupe melons. J. Exp. Bot. 53:201–206; 2002.

    PubMed  Article  CAS  Google Scholar 

  39. Fuchs, M.; Gal-On, A.; Raccah, B.; Gonsalves, D. Epidemiology of an aphid nontransmissible potyvirus in fields of nontransgenic and coat protein transgenic squash. Transgenic Res. 8:429–439; 1999.

    Article  CAS  Google Scholar 

  40. Fuchs, M.; Gonsalves, D. Resistance of transgenic hybrid squash ZW-20 expressing the coat protein genes of zucchini yellow mosaic virus and watermelon mosaic virus 2 to mixed infections by both potyviruses. Biotechnology 13:1466–1473; 1995.

    Article  CAS  Google Scholar 

  41. Fuchs, M.; Gonsalves, D. Risk assessment of gene flow associated with the release of virus-resistant transgenic crop plants. In: Tepfer, M.; Balazs, E., eds. Virus-resistant transgenic plants potential ecological impact, Berlin and New York: Springer, Paris: INRA Editions, OECD/OCDE; 1997:114–120.

    Google Scholar 

  42. Fuchs, M.; Klas, F. E.; McFerson, J. R.; Gonsalves, D. Transgenic melon and squash expressing coat protein genes of aphid-borne viruses do not assist the spread of an aphid non-transmissible strain of cucumber mosaic virus in the field. Transgenic Res. 7:449–462; 1998a.

    Article  CAS  Google Scholar 

  43. Fuchs, M.; McFerson, J. R.; Tricoli, D. M.; McMaster, J. R.; Deng, R. Z.; Boeshore, M. L.; Reynolds, J. F.; Russell, P. F.; Quemada, H. D.; Gonsalves, D. Cantaloupe line CZW-30 containing coat protein genes of cucumber mosaic virus, zucchini yellow mosaic virus, and watermelon mosaic virus-2 is resistant to these three viruses in the field. Mol. Breeding 3:279–290; 1997.

    Article  Google Scholar 

  44. Fuchs, M.; Tricoli, D. M.; Carney, K. J.; Schesser, M.; McFerson, J. R.; Gonsalves, D. Comparative virus resistance and fruit yield of transgenic squash with single and multiple coat protein genes. Plant Dis. 82:1350–1356; 1998b.

    Article  Google Scholar 

  45. Gaba, V.; Elman, E.; Perl-Treves, R.; Gray, D. J. A theoretical investigation of the genetic variability in the ability of Agrobacterium to transform Cucumis melo L. In: Gomez-Guillamon, M. L.; Soria, C.; Cuartero, J.; Tores, J. A.; Fernandez-Munoz, R., eds. Cucurbits Towards 2000. Proc. 6th Eucarpia meeting on Cucurbit Genetics and Breeding, Malaga, Spain, 1996. Malaga, Spain: Estacion Experimental ‘La Mayora’; 1996:172–178.

    Google Scholar 

  46. Gal-On, A.; Meiri, E.; Raccah, B.; Gaba, V. Recombination of engineered defective RNA species produces infective potyvirus in planta. J. Virol. 72:5268–5270; 1998a.

    PubMed  CAS  Google Scholar 

  47. Cal-On, A.; Wolf, D.; Wang, Y.; Faure, J. E.; Pilowsky, M.; Zelcer, A. Transgenic resistance to CMV in tomato: blocking of long-distance movement of the virus in lines harboring a defective viral replicase gene. Phytopathology 88:1101–1107; 1998b.

    Article  Google Scholar 

  48. Galperin, M.; Patlis, L.; Ovadia, A.; Wolf, D.; Zelcer, A.; Kenigsbuch, D. A melon genotype with superior competence for regeneration and transformation. Plant Breeding 122:66–69; 2003.

    Article  Google Scholar 

  49. Gianessi, L. P.; Sankula, S.; Reigner, N. Plant biotechnology: potential impact for improving pest management in European agriculture. A summary of nine case studies, http://www.ncfap.org/reports/Europe/ExecutiveSummaryDecember.pdf; 2003 (confirmed February 19, 2004).

  50. Gianessi, L. P.; Silvers, C. S.; Sankula, S.; Carpenter, J. E. Plant biotechnology: current and potential impact for improving pest management in U.S. agriculture. Executive summary, http://www.ncfap.org/40CaseStudies.htm; 2002 (confirmed February 19, 2004).

  51. Goldbach, R.; Bucher, E.; Prins, M. Resistance mechanisms to plant viruses: an overview. Virus Res. 92:207–212; 2003.

    PubMed  Article  CAS  Google Scholar 

  52. Gonsalves, D.; Chee, P.; Provvidenti, R.; Seem, R.; Slightom, J. L. Comparison of coat protein-mediated and genetically-derived resistance in cucumbers to infection by cucumber mosaic virus under field conditions with natural challenge inoculations by vectors. Biotechnology 10:1562–1570; 1992.

    Article  CAS  Google Scholar 

  53. Gonsalves, D.; Slightom, J. L. Coat protein-mediated protection—analysis of transgenic plants for resistance in a variety of crops. Semin. Virol. 4:397–405; 1993.

    Article  CAS  Google Scholar 

  54. Gonsalves, C.; Xue, B.; Yepes, M.; Fuchs, M.; Ling, K.; Namba, S.; Chee, P.; Slingtom, J. L.; Gonsalves, D. Transferring cucumber mosaic virus-white leaf strain coat protein gene into Cucumis melo L. and evaluating transgenic plants for protection against infections. J. Am. Soc. Hort. Sci. 119:345–355; 1994.

    CAS  Google Scholar 

  55. Grafton-Cardwell, E. E.; Smith, R. F.; Valencia, J.; Farrar, C. A. Occurrence of mosaic viruses in melons in the central valley of California. Plant Dis. 80:1092–1097; 1996.

    Article  Google Scholar 

  56. Gray, D. J.; McColley, D. W.; Compton, M. E. High-frequency somatic embryogenesis from quiescent seed cotyledons of Cucumis melo cultivars. J. Am. Soc. Hort. Sci. 118:425–432; 1993.

    Google Scholar 

  57. Grumet, R. Development of virus resistant plants via genetic engineering. Plant Breeding Rev. 12:47–79; 1994.

    Google Scholar 

  58. Grumet, R. Plant biotechnology in the field—a snapshot with emphasis on horticultural crops. HortScience 37:435–436; 2002.

    Google Scholar 

  59. Guis, M.; Ben Amor, M.; Latche, A.; Peche, J.-C.; Roustan, J.-P. A reliable method for the transformation of Cantaloupe Charentais melon (Cucumis melo L. var. cantalupensis) leading to a majority of diploid regenerants. Sci. Hort. 84:91–99; 2000.

    Article  CAS  Google Scholar 

  60. Guis, M.; Roustan, J. P.; Dogimont, C.; Pitrat, M.; Pech, J. C. Melon biotechnology. Biotechnol. Genet. Engng Rev. 15:289–311; 1998.

    CAS  Google Scholar 

  61. Hare, P. D.; Chua, N. H. Excision of selectable marker genes from transgenic plants. Nat. Biotechnol. 20:575–580; 2002.

    PubMed  Article  CAS  Google Scholar 

  62. Huttner, E.; Tucker, W.; Vermeulen, A.; Ignart, F.; Sawyer, B.; Birch, R. Ribozyme genes protecting transgenic melon plants agaist potyviruses. Curr. Issues Mol. Biol. 3:27–34; 2001.

    PubMed  CAS  Google Scholar 

  63. ISB. Information Systems for Biotechnology contact page for international field test sources, http://www.isb.vt.edu/cfdocs/globalfieldtests.cfm; 2002 (confirmed February 19, 2004, when the links to the Mexican and Egyptian data were no longer available).

  64. ISB. Archived data on US transgenic field tests at Information Systems for Biotechnology (ISB) of the National Biological Impact Assessment Program administered by USDA’s Cooperative State Research Service, http://www.isb.vt.edu/cfdocs/fieldtests1.cfm; 2004 (confirmed February 19, 2004).

  65. Jan, F. J.; Fagoaga, C.; Pang, S. Z.; Gonsalves, D. A single chimeric transgene derived from two distinct viruses confers multi-virus resistance in transgenic plants through homology-dependent gene silencing. J. Gen. Virol. 81:2103–2109; 2000a.

    PubMed  CAS  Google Scholar 

  66. Jan, F. J.; Pang, S. Z.; Tricoli, D. M.; Gonsalves, D. Evidence that resistance in squash mosaic comovirus coat-protein-transgenic plants is affected by plant developmental stage and enhanced by combination of transgenes from different lines. J. Gen. Virol. 81:2299–2306; 2000b.

    PubMed  CAS  Google Scholar 

  67. Jelaska, S. Embryoid formation by fragments of cotyledons and hypocotyls in Cucurbita pepo. Planta 103:278–280; 1972.

    Article  Google Scholar 

  68. Kaniewski, W. K.; Thomas, P. E. Field testing for virus resistance and agronomic performance in transgenic plants. Mol. Biotechnol. 12:101–115; 1999.

    PubMed  Article  CAS  Google Scholar 

  69. Karchi, Z.; Cohen, S.; Govers, A. Inheritance of resistance to cucumber mosaic virus in melons. Phytopathology 65:479–481; 1975.

    Article  Google Scholar 

  70. Kooistra, E. The inheritance of resistance to Cucumis virus 1 in cucumber (Cucumis sativus L.). Euphytica 18:326–332; 1969.

    Article  Google Scholar 

  71. Krause-Sakate, R.; Le Gall, O.; Fakhfakh, H.; Peypelut, M.; Marrakchi, M.; Varveri, C.; Pavan, M. A.; Souche, S.; Lot, H.; Zerbini, F. M.; Candresse, T. Molecular and biological characterization of lettuce mosaic virus (LMV) isolates reveals a distinct and widespread type of resistance-breaking isolate: LMV-most. Phytopathology 92:563–572; 2002.

    Article  CAS  PubMed  Google Scholar 

  72. Lee, J. M.; Oda, M. Grafting of herbaceous vegetable and ornamental crops. Hort. Rev. 28:61–124; 2003.

    Google Scholar 

  73. Lenee, P.; Perez, P.; Gruber, V.; Baudot, G.; Ollivo, C. Polyribozyme capable of conferring on plants resistance to cucumber mosaic virus and resistant plants producing this polyribozyme. US patent 6,265,634; 2001.

  74. Lomonossoff, G. P. Pathogen-derived resistance to plant viruses. Annu. Rev. Phytopathol. 33:323–343; 1995.

    Article  CAS  PubMed  Google Scholar 

  75. Luis-Arteaga, M.; Alvarez, J. M.; Alonso-Prados, J. L.; Bernal, J. J.; Garcia-Arenal, F.; Lavina, A.; Batlle, A.; Moriones, E. Occurrence, distribution, and relative incidence of mosaic viruses infecting field-grown melon in Spain. Plant Dis. 82:979–982; 1998.

    Article  Google Scholar 

  76. Matzke, M. A.; Matzke, A. J.; Pruss, G. J.; Vance, V. B. RNA-based silencing strategies in plants. Curr. Opin. Genet. Dev. 11:221–227; 2001.

    PubMed  Article  CAS  Google Scholar 

  77. Mitter, N.; Sulistyowati, E.; Dietzgen, R. G. Cucumber mosaic virus infection transiently breaks dsRNA-induced transgenic immunity to potato virus Y in tobacco. Mol. Plant Microbe Interact. 16:936–944; 2003.

    PubMed  Article  CAS  Google Scholar 

  78. Munger, H. M. Breeding for viral disease resistance in cucurbits. In: Kyle, M. M., ed. Resistance to viral diseases of vegetables: genetics and breeding. Portland, OR: Timber Press; 1993:44–60.

    Google Scholar 

  79. Nishibayashi, S.; Hayakawa, T.; Nakajima, T.; Suzuki, M.; Kaneko, H. CMV protection in transgenic cucumber plants with an introduced CMV-O cp gene. Theor. Appl. Genet. 93:672–678; 1996.

    Article  CAS  Google Scholar 

  80. Palukaitis, P.; Zaitlin, M. Replicase-mediated resistance to plant virus disease. Adv. Virus Res. 48:349–377; 1997.

    PubMed  CAS  Article  Google Scholar 

  81. Pang, S. Z.; Jan, F. J.; Tricoli, D. M.; Russell, P. F.; Carney, K. J.; Hu, J. S.; Fuchs, M.; Quemada, H. D.; Gonsalves, D. Resistance to squash mosaic comovirus in transgenic squash plants expressing its coat protein genes. Mol. Breeding 6:87–93; 2000.

    Article  CAS  Google Scholar 

  82. Paris, H. S. History of the cultivar-groups of Cucurbita pepo. Hort. Rev. 25:71–170; 2000.

    Google Scholar 

  83. Paris, H. S.; Cohen, S. Oligogenic inheritance for resistance to zucchini yellow mosaic virus in Cucurbita pepo. Ann. Appl. Biol. 136:209–214; 2000.

    Article  Google Scholar 

  84. Powell-Abel, P.; Nelson, R. S.; Hoffmann, N.; Roger, S. G.; Fraley, R. T.; Beachy, R. N. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232:738–743; 1986.

    Article  Google Scholar 

  85. Provvidenti, R. Resistance to viral diseases of cucurbits. In: Kyle, M. M., ed. Resistance to viral diseases of vegetables. Portland, OR: Timber Press; 1993:8–43.

    Google Scholar 

  86. Puchta, H. Marker-free transgenic plants. Plant Cell Tiss. Organ Cult. 74:23–134; 2003.

    Article  Google Scholar 

  87. Quemada, H. D. The use of coat protein technology to develop virus-resistant cucurbits. In: Ives, C. L.; Bedford, B. M., eds. Agricultural biotechnology in internation development. Wallingford: CAB International; 1998:147–160.

    Google Scholar 

  88. Querci, M.; Baulcombe, D. C.; Goldbach, R. W.; Salazar, L. F. Analysis of the resistance-breaking determinants of potato virus X (PVX) strain hb on different potato genotypes expressing extreme resistance to PVX. Phytopathology 85:1003–1010; 1995.

    Article  Google Scholar 

  89. Reed, J.; Privalle, L.; Powell, M. L.; Meghji, M.; Dawson, J.; Dunder, E.; Suttie, J.; Wenck, A.; Launis, K.; Kramer, C.; Chang, Y. F.; Hansen, G.; Wright, M.; Chang, Y. P. Phosphomannose isomerase: an efficient selectable marker for plant transformation. In Vitro Cell. Dev. Biol. Plant 37:127–132; 2001.

    CAS  Google Scholar 

  90. Risser, G.; Pitrat, M.; Rode, J. C. Etude de la resistance du melon (Cucumis melo L.) au virus de la mossique du concombre. Ann. Amelior. Plantes 27:509–522; 1977.

    Google Scholar 

  91. Rowell, B.; Nesmith, W.; Snyder, J. C. Yields and disease resistance of fall-harvested transgenic and conventional summer squash in Kentucky. HortTechnology 9:282–288; 1999.

    Google Scholar 

  92. Saramento, G. G.; Alpert, K.; Tang, F. A.; Punja, Z. K. Factors influencing Agrobacterium tumefaciens mediated transformation and expression of kanamycin resistance in pickling cucumber. Plant Cell Tiss. Organ Cult. 31:185–193; 1992.

    Google Scholar 

  93. Savenkov, E. I.; Valkonen, J. P. Coat protein gene-mediated resistance to potato virus A in transgenic plants is suppressed following infection with another potyvirus. J. Gen. Virol. 82:2275–2278; 2001.

    PubMed  CAS  Google Scholar 

  94. Schultheis, J. R.; Walters, S. A. Yield and virus resistance of summer squash cultivars and breeding lines in North Carolina. HortTechnology 8:31–39; 1998.

    Google Scholar 

  95. Slightom, J. L. Custom nolymerase-chain-reaction engineering of a plant expression vector. Gene 100:251–255; 1991.

    PubMed  Article  CAS  Google Scholar 

  96. Snyder, R. G.; Killebrew, f.; Fox, J. A. Evaluation of precocious yellow gene squash for tolerance to watermelon mosaic virus. HortTechnology 3:421–423; 1993.

    Google Scholar 

  97. Spencer, L. J.; Snow, A. A. Fecundity of transgenic wild-crop hybrids of Cucurbita pepo (Cucurbitaceae): implications for crop-to-wild gene flow. Heredity 86:694–702; 2001.

    PubMed  Article  CAS  Google Scholar 

  98. Staub, J. E.; Grumet, R. Selection for multiple disease resistance reduces cucumber yield potential. Euphytica 67:205–213; 1993.

    Article  Google Scholar 

  99. Tabei, Y.; Kitade, S.; Nishizawa, Y.; Kikuchi, N.; Kayano, T.; Hibi, T.; Akutsu, K. Transgenic cucumber plants harboring a rice chitinase gene exhibit enhanced resistance to gray mold (Botrytis cinerea). Plant Cell Rep. 17:159–164; 1998.

    Article  CAS  Google Scholar 

  100. Tepfer, M. Risk assessment of virus-resistant transgenic plants. Annu. Rev. Phytopathol. 40:467–491; 2002.

    PubMed  Article  CAS  Google Scholar 

  101. Tricoli, D. M.; Carney, K. J.; Russell, P. F. Transgenic plants exhibiting heterologous virus resistance. US patent 6,015,942; 2000.

  102. Tricoli, D. M.; Carney, K. J.; Russell, P. F.; McMaster, J. R.; Groff, D. W.; Hadden, K. C.; Himmel, P. T.; Hubbard, J. P.; Boeshore, M. L.; Quemada, H. D. Field evaluation of transgenic squash containing single or multiple virus coat protein gene constructs for resistance to cucumber mosaic virus. Biotechnology 13:1458–1465; 1995.

    Article  CAS  Google Scholar 

  103. Tricoli, D. M.; Carney, K. J.; Russell, P. F.; Quemada, H. D.; McMaster, R.J.; Reynolds, J. F.; Deng, R. Z. Transgenic plants expressing DNA constructs containing a plurality of genes to impart virus resistance. US patent 6,337,431; 2002.

  104. Trulson, A. J.; Simpson, R. B.; Shahin, E. A. Transformation of cucumber (Cucumis sativus L.) plants with Agrobacterium rhizogenes. Theor. Appl. Genet. 73:11–15; 1986.

    Article  CAS  Google Scholar 

  105. Walters, S. A.; Kindhart, J. D.; Hobbs, H. A.; Eastbourne, D. A. Viruses associated with cucurbit production in southern Illinois. HortScience 38:65–66; 2003.

    Google Scholar 

  106. Wang, Y. Z.; Gaba, V.; Yang, J.; Palukaitis, P.; Gal-On, A. Characterization of synergy between cucumber mosaic virus and potyviruses in cucurbit hosts. Phytopathology 92:51–58; 2002.

    Article  PubMed  Google Scholar 

  107. Wang, Y.; Lee, K. C.; Gaba, V.; Wong, S. M.; Palukaitis, P.; Gal-On, A. Breakage of resistance to cucumber mosaic virus by co-infection with zucchini yellow mosaic virus: enhancement of CMV accumulation independent of symptom expression. Arch. Virol. 249:379–396; 2004.

    Article  CAS  Google Scholar 

  108. Waterhouse, P. M.; Wang, M. B.; Lough, T. Gene silencing as an adaptive defence against viruses. Nature 411:834–842; 2001.

    PubMed  Article  CAS  Google Scholar 

  109. Zhong, H.; Boudreau, E.; Rouse, S.; Dunder, E.; Gu, W.; Chang, Y. F. Methods for stable transformation of plants. US patent application no. 20020073445; 2002.

  110. Zitter, T. A.; Hopkins, D. L.; Thomas, C. E. Compendium of cucurbit disease. St Paul, MN: APS Press; 1996.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Victor Gaba.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gaba, V., Zelcer, A. & Gal-on, A. Cucurbit biotechnology-the importance of virus resistance. In Vitro Cell.Dev.Biol.-Plant 40, 346–358 (2004). https://doi.org/10.1079/IVP2004554

Download citation

Key words

  • melon
  • squash
  • cucumber
  • watermelon
  • field tests
  • transgenic virus resistance mechanisms