Skip to main content
Log in

In vitro production of microtubers for conservation of potato germplasm: Effect of genotype, abscisic acid, and sucrose

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

With the objective of using microtubers for conservation of potato germplasm, the main effects of genotype, abscisic acid (ABA), and sucrose level, and of their interactions on biomass production, microtuberization, microtuber dormancy, and dry matter content, were studied. ABA decreased both microtuber production and microtuber dormancy, whereas higher concentrations (60–80 gl−1) of sucrose promoted biomass production, microtuber production as well as microtuber dry matter content. Microtubers stored under diffused light had longer dormancy than those kept continuously in the dark. Interactions among various factors conditioned the main effects for some characters. In vitro performance of the genotypes studied was related to their known performance under in vivo conditions for most of the characters. Microtubers produced on media devoid of ABA and containing high sucrose concentrations and N6-benzyladenine (44.38 μM) could be stored for 12 mo. under diffused light at 6±1°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abdullah, Z. N.; Ahmad, R. Effect of ABA and GA3 on tuberization and some chemical constituents of potato. Plant Cell Physiol. 21:1343–1346; 1980.

    CAS  Google Scholar 

  • Andre, X. X.; van Lammeren, A. M.; Vermeer, E.; Vreugdenhil, D. The role of gibberellin, abscisic acid, and sucrose in the regulation of potato tuber formation in vitro. Plant Physiol. 117:575–584; 1998.

    Article  Google Scholar 

  • Arteca, R. N. Plant growth substances: principles and applications. New York: Chapman and Hall; 1996.

    Google Scholar 

  • Burton, W. G. Post-harvest physiology. In: Burton, W. G., ed. The potato, 3rd edn. Harlow: Longman Scientific & Technical; 1989:423–522.

    Google Scholar 

  • Burton, W. G.; van Es, A.; Hartmans, K. S. The physics and physiology of storage. In: Harris, P. M., ed. The potato crop, 2nd edn London: Chapman and Hall; 1992:608–727.

    Google Scholar 

  • Choi, Y. W.; Cho, J. L.; Kim, L. S. Studies on the in vitro multiplication of potato (Solanum tuberosum L.) microtubers and their practical use. III. Dormancy of microtubers. J. Kor. Soc. Hort. Sci. 35:213–219; 1994.

    Google Scholar 

  • Coleman, W. K.; Coleman, S. E. Modification of potato microtuber dormancy during induction and growth in vitro or ex vitro. Am. J. Potato Res. 77:103–110; 2000.

    CAS  Google Scholar 

  • Coleman, W. K.; Donnelly, D. J.; Coleman, S. E. Potato microtubers as research tools: a review. Am. J. Potato Res. 78:47–55; 2001.

    Article  CAS  Google Scholar 

  • Ewing, E. E. The role of hormones in potato (Solanum tuberosum L.) tuberization. In: Davies, P. J., ed. Plant hormones, physiology, biochemistry and molecular biology. Dordrecht: Kluwer Academic Publishers; 1995:25–41.

    Google Scholar 

  • Fernie, A. R.; Willmitzer, L. Molecular and biochemical triggers of potato tuber development. Plant Physiol. 127:1459–1465; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Gopal, J.; Birhman, R. K.; Khushu, C. L. Inventory of potato germplasm (group Tuberosum) collection. Technical bulletin 36. Shimla, India: CPRI; 1992:47 pp.

    Google Scholar 

  • Gopal, J.; Chamail, A.; Sarkar, D. Slow-growth in vitro conservation of potato germplasm at normal propagation temperature. Potato Res. (in press); 2003.

  • Gopal, J.; Kang, G. S. Three new potato varieties for the plains. Indian Farm. 38:3–4; 1988.

    Google Scholar 

  • Gopal, J.; Minocha, J. L. Effectiveness of in vitro selection for agronomic characters in potato. Euphytica 103:67–74; 1998.

    Article  Google Scholar 

  • Gopal, J.; Minocha, J. L.; Dhaliwal, H. S. Microtuberization in potato (Solanum tuberosum L.). Plant Cell Rep. 17:794–798; 1998a.

    Article  CAS  Google Scholar 

  • Gopal, J.; Minocha, J. L.; Gosal, S. S. Variability in response of potato genotypes to in vitro propagation. J. Indian Potato Assoc. 25:119–124; 1998b.

    Google Scholar 

  • Gopal, J.; Minocha, J. L.; Sidhu, J. S. Comparative performance of potato crops raised from microtubers induced in dark versus microtubers induced in light. Potato Res. 40:407–412; 1997.

    Article  Google Scholar 

  • Hussey, G.; Stacey, N. J. Factors affecting the formation of in vitro tubers of potato (Solanum tuberosum L.). Ann. Bot. 53:565–578; 1984.

    CAS  Google Scholar 

  • Koda, Y.; Okazawa, Y. Influences of environmental, hormonal and nutritional factors on potato tuberization in vitro. Jap. J. Crop Sci. 52:582–591; 1983.

    Google Scholar 

  • Krauss, A. Interaction of nitrogen nutrition, phytohormones, and tuberization. In: Li, P. H., ed. Potato physiology. Orlando, FL Academic Press; 1985:209–230.

    Google Scholar 

  • Krauss, A.; Marschner, H. Influence of nitrogen nutrition, daylength, and temperature on contents of gibberellic and abscisic acid and on tuberization in potato plants. Potato Res. 25:13–21; 1982.

    Article  CAS  Google Scholar 

  • Leclere, Y.; Donnelly, D. J.; Coleman, W. K.; King, R. R. Microtuber dormancy in three potato cultivars. Am. Potato J. 72:215–223; 1995.

    Google Scholar 

  • Marschner, H.; Sattelmacher, B.; Bangerth, F. Growth rate of potato tubers and endogenous contents of indolylacetic acid and abscisic acid. Physiol. Plant. 60:16–20; 1984.

    Article  CAS  Google Scholar 

  • Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    Article  CAS  Google Scholar 

  • Okazawa, Y. Studies on the relation between the tuber formation of potato and its natural gibberellin content. Proc. Crop Sci. Soc. Japan 29:121–124; 1960.

    Google Scholar 

  • Palmer, C. E.; Smith, O. E. Cytokinins and tuber initiation in potato Solanum tuberosum L. Nature 221:279–280; 1969.

    Article  CAS  Google Scholar 

  • Roberts, J. A.; Hooley, R. Plant growth regulators. Glasgow and London: Blackie; 1988.

    Google Scholar 

  • Sorce, C.; Piaggesi, A.; Ceccarelli, N.; Lorenzi, R. Role and metabolism of abscisic acid in potato tuber dormancy and sprouting. J. Plant Physiol. 149:548–552; 1996.

    CAS  Google Scholar 

  • Steel, R. G. D.; Torrie, J. H. Principles and procedures of statistics: a biometrical approach. New York: McGraw Hill; 1980.

    Google Scholar 

  • Suttle, J. C.; Hultstrand, J. F. Role of endogenous abscisic acid in potato microtuber dormancy. Plant Physiol. 105:891–896; 1994.

    PubMed  CAS  Google Scholar 

  • Tabori, K. M.; Dobranszki, J.; Ferenczy, A. Some sprouting characteristics of microtubers. Potato Res. 42:611–617; 1999.

    Article  Google Scholar 

  • Thieme, R. An in vitro potato cultivar collection: microtuberization and storage of microtubers. Plant Genet. Res. Newslett. 88/89:17–19; 1992.

    Google Scholar 

  • Turnbull, N. D.; Hanke, D. E. The control of bud dormancy in potato tubers. Planta 165:359–365; 1985.

    Article  CAS  Google Scholar 

  • van den Berg, J. H.; Vreugdenhil, D.; Ludford, P. M.; Hillman, L. L.; Ewing, E. E. Changes in starch and abscisic acid contents associated with second growth in tubers of potato (Solanum tuberosum L.) one-leaf cuttings. J. Plant Physiol. 139:86–89; 1991.

    Google Scholar 

  • Vreugdenhil, D.; Struik, P. C. An integrated view of the hormonal regulation of tuber formation in potato (Solanum tuberosum). Physiol. Plant. 75:525–531; 1989.

    Article  CAS  Google Scholar 

  • Wang, P.; Hu, C. In vitro mass tuberization and virus free seed potato production in Taiwan. Am. Potato J. 59:33–37; 1982.

    Google Scholar 

  • Wiltshire, J. J. J.; Cobb, A. H. A review of the physiology of potato tuber dormancy. Ann. Appl. Biol. 129:553–569; 1996.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Gopal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gopal, J., Chamail, A. & Sarkar, D. In vitro production of microtubers for conservation of potato germplasm: Effect of genotype, abscisic acid, and sucrose. In Vitro Cell.Dev.Biol.-Plant 40, 485–490 (2004). https://doi.org/10.1079/IVP2004540

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2004540

Key words

Navigation