Skip to main content
Log in

Effect of sucrose, inorganic salts, inositol, and thiamine on protease excretion during pineapple culture in temporary immersion bioreactors

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Although pineapple plants have been found to produce proteases ex vitro, most of the biotechnological investigations of this crop have been focused on propagation. The procedure involving the use of temporary immersion bioreactors is one of the most outstanding because of its high multiplication rate. We previously recorded specific protease activity in the culture medium during the pre-elongation step of this protocol. Therefore, we decided to modify the culture medium composition of this phase looking for an increase in protease excretion. Four independent experiments were performed to evaluate the effects of different levels of sucrose (0–350.4 mM), inorganic salts [0–200% Murashige and Skoog (MS) salt strength], inositol (0–2.20 mM), and thiamine (0–1.2μM). The following indicators were recorded: shoot fresh mass per bioreactor; and protein concentration, proteolytic activity, and specific protease activity in culture media. Specific protease activity, the most important indicator recorded, was highest with 262.8 mM sucrose, 100% MS salt strength, 0.3 μM thiamine and no inositol. Results shown here demonstrate that conditions adequate for propagation purposes (87.6 mM sucrose, 100% MS salt strength, 0.55 mM inositol, 0.3 μM thiamine) are not always adequate for protease excretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anson, M. L. The estimation of pepsin, trypsin, papain and cathepsin with hemoglobin. J. Gen. Physiol. 22:79; 1938.

    Article  CAS  Google Scholar 

  • Apte, P.; Kaklij, G.; Heble, M. Proteolytic enzymes bromelains in tissue cultures of Ananas sativus pineapple. Plant Sci. Lett. 14:52–62; 1979.

    Google Scholar 

  • Avilés, X.; Guasch, A.; Vendrell, J. Activation of protein precursors. Res. Bull. 100(210):74–81; 1994 (in Spanish).

    Google Scholar 

  • Bailey, A.; Light, N. Connective tissue In: Bayley, A., ed. Meat and meat products. London: Elsevier Science Publishers Ltd.; 1989:213–214.

    Google Scholar 

  • Balla, T. Phosphatidylinositol 4-kinases. Biochem. Biophys. Acta 1436:69–85; 1998.

    PubMed  CAS  Google Scholar 

  • Barwale, U. B.; Kerns, H. R.; Wildholm, J. M. Plant regeneration from callus cultures of several soybean genotypes via embryogenesis and organogenesis. Planta 167:473–481; 1986.

    Article  CAS  Google Scholar 

  • Batkin, S.; Taussig, S.; Szekerezes, R. Modulation of pulmonary metastases (Lewis lung carcinoma) by bromelain, an extract of the pineapple stem (Ananas comosus). Cancer Inv. 6:241–242; 1988.

    CAS  Google Scholar 

  • Beers, E. P.; Woffenden, B. J.; Zhao, C. Plant proteolytic enzymes: possible roles during programmed cell death. Plant Mol. Biol. 44:399–415; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Chávez, M.; Díaz, J.; Delfin, J.; Pérez, U. Topics of enzymology, vol. II, 1st edn. Havana: ENPES; 1990: 25–30, 41–48, 250–261 (in Spanish).

    Google Scholar 

  • Cournac, L.; Dimon, B.; Carrier, P.; Lohou, A.; Chagvardieff, P. Growth and photosynthetic characteristics of Solanum tuberosum plantlets cultivated in vitro in different conditions of aeration, sucrose supply and CO2 enrichment. Plant Physiol. 97:112–117; 1991.

    PubMed  CAS  Google Scholar 

  • Daqyinta, M.; Benegas, R. Brief review of tissue culture of pineapple. Pineapple Newsl. 3:7–9; 1997.

    Google Scholar 

  • Debergh, P. C.; Zimmerman, R. H. Micropropagation, technology and application. In: Debergh, P. C.; Zimmerman, R. H., eds. Micropropagation. Dordrecht: Kluwer Academic Publishers; 1991:45–69.

    Google Scholar 

  • Desjardins, Y.; Hdider, C.; De Riek, J. Carbon nutrition, in vitro regulation and manipulation of carbon assimilation in micropropagated systems. In: Aitken Christie, J.; Kozai, T.; Smith, M. A. L., eds. Automation and environmental control in plant tissue culture. Dordrecht: Kluwer Academic Publishers; 1996:441–471.

    Google Scholar 

  • Do, C. B.; Cormier, F. Effects of low nitrate and high sugar concentrations on anthocyanin content and composition of grape (Vitis vinifera L.) cell suspension. Plant Cell Rep. 9:500–504; 1991.

    CAS  Google Scholar 

  • Drøbak, B. K.; Watkins, P. A. C. Inositol (1,4,5) trisphosphate production in plant cells: an early response to salinity and hyperosmotic stress. FEBS Lett. 481:240–244; 2000.

    Article  PubMed  Google Scholar 

  • Engwerda, C. R.; Andrew, D.; Ladhams, A.; Mynott, T. L. Bromelain modulates T and B cell immune responses in vitro and in vivo. Cell. Immunol. 210:66–75; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Escalona, M.; Lorenzo, J. C.; González, B.; Daquinta, M.; Borroto, C.; González, J. L.; Desjardins, Y. Pineapple micropropagation in temporary immersion systems. Plant Cell Rep. 18:743–748; 1999.

    Article  CAS  Google Scholar 

  • Fang, Y.; Smith, M. A. L.; Pépin, M. F. Benzyladenine restores anthocyanin pigmentation in suspension cultures of wild Vaccinium pahalae. Plant Cell Tiss. Organ Cult. 54:113–122; 1998.

    Article  CAS  Google Scholar 

  • Flórez, J. Farmacolgía humana, vol. 76. 2nd edn. Madrid: Salvat; 1995:142–146.

    Google Scholar 

  • Gao, W. Y.; Fan, L.; Paek, K. Y. Yellow and red pigment production by cell cultures of Carthamus tinctorius in bioreactor. Plant Cell Tiss. Organ Cult. 60:95–100; 2000.

    Article  CAS  Google Scholar 

  • George, E. F. Plant propagation by tissue culture, 2nd edn. London: Exegetics Ltd. 1993:524 pp.

    Google Scholar 

  • Hanagata, N.; Ito, A.; Fukuju, Y.; Murata, K. Red pigment formation in cultured cells of Carthamus tinctorius L. Biosci. Biotechnol. Biochem. 6:44–47; 1992.

    Article  Google Scholar 

  • Hanagata, N.; Ito, A.: Uehara, H. Behavior of cell aggregate of Carthamus tinctorius L. cultured cells and correlation with red pigment formation. J. Biotechnol. 30:259–269; 1993.

    Article  CAS  Google Scholar 

  • Headon, D.; Walsh, G. The industrial production of enzymes. Biotechnol. Adv. 12:635–646; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Hernández, M.; Carvajal, C.; Santos, R.; Márquez, M.; Blanco, M.; González, J.; Chávez, M. Purification alternatives of obtained bromelain from different sources. Pineapple Newsl. 6:5; 1999.

    Google Scholar 

  • Igbavboa, U.; Sieweke, H. J.; Leistner, E.; Röwer, I.; Hüsemann, W.; Barz, W. Alternative formation of anthraquinones and lipoquinones in heterotropic and photoautotrophic cell suspension cultures of Morinda lucida Benth. Planta 166:537–544; 1985.

    Article  CAS  Google Scholar 

  • Ikeda, M.; Ojima, K.; Ohira, K. Habituation in suspension-cultured soybean cells to thiamine and its precursors. Plant Cell Physiol. 20:733–740; 1979.

    CAS  Google Scholar 

  • Kelly, G. S. Bromelain: a literature review and discussion of its therapeutic applications. Altern. Med. Rev. 1:405–410; 1996.

    Google Scholar 

  • Kleef, R.; Delohery, T.; Boubjerg, D. Selective modulation of cell adhesion molecules on lymphocytes by bromelain protease 5. Pathobiology 64:339–346; 1996.

    PubMed  CAS  Google Scholar 

  • Kotvun, T.; Daie, J. End-product control of carbon metabolism in culturegrown sugar beet plants. Plant Physiol. 108:1647–1656; 1995.

    Google Scholar 

  • La Valle, J.; Krinsky, D.; Hawkins, E. Natural therapeutics pocket guide. Hudson, OH: Lexi-Comp; 2000.

    Google Scholar 

  • Lawrie, R. Meat science. London: Pergamon Press; 1985:195–197.

    Google Scholar 

  • Leipner, J.; Ilen, F.; Saller, R. Therapy with proteolytic enzymes in rheumatic disorders. BioDrugs 15:779–789; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Loewus, F. A.; Murthy, P. N. Myo-inositol metabolism in plants. Plant Sci. 150:1–19; 2000.

    Article  CAS  Google Scholar 

  • Losada, E. Bromelain. In: Importancia de las enzimas en el asma ocupacional. http://www.alergoaragon.org/1999/tercera2.html; 1999 (accessed August 2001).

  • Lotti, T. Controlled clinical studies of bromeline in the treatment of urogenital inflammation. Drugs 46:144–146; 1993.

    PubMed  Google Scholar 

  • Lowry, O.; Rosebrough, N.; Farr, A.; Randall, R. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275; 1951.

    PubMed  CAS  Google Scholar 

  • Massot, B.; Milesi, S.; Gontier, E.; Bourgaud, F.; Guckert, A. Optimized culture conditions for production of furanocoumarins by micropropagated shoots of Ruta graveolens. Plant Cell Tiss. Organ Cult. 62:11–19; 2000.

    Article  CAS  Google Scholar 

  • McArdle, A. False vitamins and vitaminoids. http://www.portalfitness.com/nutrition/vitamine/vitaminoides/htm; 2003 (accessed May 2003) (in Spanish).

  • McBrige, 1999. Bromelain. In: Bromelain—health food for bossy, too (anti-inflammatory). http://www.findarticles.com/1999/tercera2.html; November 1999 (accessed August 2001).

  • Melis, G. Clinical experience with metoxybutropate vs. bromelain in the treatment of female pelvic inflammation. Minerva Ginecol. 42:309–312; 1990.

    PubMed  CAS  Google Scholar 

  • Metzig, C.; Crabowska, E.; Eckert, K.; Rehse, K.; Maurer, H. Bromelain proteases reduce human platelet aggregation in vitro, adhesion to bovine endothelial cells and thrombus formation in rat vessels in vivo. In Vivo 13:7–12; 1999.

    PubMed  CAS  Google Scholar 

  • Meurs, C.; Basra, A. S.; Karssen, C. M.; van Loon, L. C. Role of abscisic acid in the induction of desiccation tolerance in developing seeds of Arabidopsis thaliana. Plant Physiol. 98:1484–1493; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Miernyk, J. A.; Rapp, B. J.; David, R.; Randall, D. D. Higher plant mitochondrial pyruvate dehydrogenase complexes. In: Moore, A. L.; Beechey, J., eds. Plant mitochondria. New York: Plenum Press; 1987:189–197.

    Google Scholar 

  • Miller, A. Improved sausage casing. US patent 3 666 844; 1982.

  • Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    Article  CAS  Google Scholar 

  • Peña, H. A.; Díaz, J. A.; Martínez, T. R. Tropical plant culture, vol. 1. 1st edn. Havana: ICFES; 1998:234 pp (in Spanish).

    Google Scholar 

  • Pérez, A.; Nápoles, L.; Lorenzo, J. C.; Hernández, M. Protease excretion during pineapple micropropagation in temporary immersion bioreactors. In Vitro Cell. Dev. Biol. Plant 39:311–315; 2003.

    Article  CAS  Google Scholar 

  • Pierik, R. L. M. In vitro culture of higher plants, 1st edn. Madrid: Ediciones Mundi-Prensa; 1990;325 pp. (in Spanish).

    Google Scholar 

  • Pospísilová, J.; Catsky, J.; Sesták, Z. Photosynthesis in plants cultivated in vitro. In: Pessaraki, M., ed. New York: Marcel Dekker; 1997:525–540.

    Google Scholar 

  • Ransberger, K.; Stauder, G. Process of using catabolic enzymes for induction of tumor necrosis factor (TNF). US patent 5223406; 1993.

  • Salisbury, F. B.; Ross, C. W. Plant physiology, 4th edn. Belmont, CA: Wadsworth Publishing; 1992:127–148.

    Google Scholar 

  • Sato, K.; Yamazaki, T.; Okuyama, E.; Yoshihira, K.; Shimomura, K. Anthraquinones production by transformed root cultures of Rubia tinctorium: influence of phytohormones and sucrose concentration. Phytochemistry 30:1507–1509; 1991.

    Article  CAS  Google Scholar 

  • Sepehr, F.; Ghorbanli, M. Effects of nutritional factors on the formation of anthraquinones in callus cultures of Rheum ribes. Plant Cell Tiss. Organ Cult. 68:171–175; 2002.

    Article  CAS  Google Scholar 

  • Stevenson, J. M.; Perera, I. Y.; Heilmann, I.; Persson, S.; Boss, W. F. Inositol signaling and plant growth. Trends Plant Sci. 5:252–258; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Targoni, O.; Tary, L.; Lehmann, P. Prevention of murine EAE by oral hydrolytic enzyme treatment. J. Autoimmun. 12:191–198; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Tichá, I.; Cáp, F.; Pacovská, D.; Hofman, P.; Haisel, D.; Capková, V.; Schäfer, C. Culture on sugar medium enhances photosynthetic capacity and light resistance of plantlets grown in vitro. Physiol. Plant. 102:155–162; 1998.

    Article  Google Scholar 

  • Trejo-Tapia, G.; Arias-Castro, C.; Rodríguez-Mendiola, M. Influence of the culture medium constituents and inoculum size on the accumulation of blue pigment and cell growth of Lavandula spica. Plant Cell Tiss. Organ Cult. 72:7–12; 2003.

    Article  CAS  Google Scholar 

  • Verma, P. C.; Singh, D.; Rahman, L. U.; Gupta, M. M.; Banerjee, S.: In vitro-studies in Plumbago zeylanica: rapid micropropagation and establishment of higher plumbagin yielding hairy root cultures. J. Plant Physiol. 159:547–552; 2002.

    Article  CAS  Google Scholar 

  • Xu, J. F.; Ying, P. Q.; Han, A. M.; Su, Z. G. Enhanced salidroside production in liquid-cultivated compact callus aggregates of Rhodiola sachalinensis: manipulation of plant growth regulators and sucrose. Plant Cell Tiss. Organ Cult. 55:53–58; 1998.

    Article  CAS  Google Scholar 

  • Zeevaart, J. A.; Creelmann, R. A. Metabolism and physiology of abscisic acid. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39:439–473; 1988.

    Article  CAS  Google Scholar 

  • Zenk, M. H.; Shulte, U.; El-Shagi, H. Regulation of anthraquinone formation by phenoxyacetic acids in Morinda cell cultures. Naturwissenschaften 71:266; 1984.

    Article  CAS  Google Scholar 

  • Zhang, Y. H.; Wang, H. Q.; Liu, S.; Yu, J. T.; Zhong, J. J. Regulation of apparent viscosity and O2 transfer coefficient by osmotic pressure in cell suspensions of Panax notoginseng. Biotechnol. Lett. 19:943–945; 1997.

    Article  CAS  Google Scholar 

  • Zhu, J. K. Plant salt tolerance. Trends Plant Sci. 6:66–71; 2001.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pérez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez, A., Nápoles, L., Carvajal, C. et al. Effect of sucrose, inorganic salts, inositol, and thiamine on protease excretion during pineapple culture in temporary immersion bioreactors. In Vitro Cell.Dev.Biol.-Plant 40, 311–316 (2004). https://doi.org/10.1079/IVP2004529

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2004529

Key words

Navigation