Skip to main content
Log in

Electroporation of embryogenic protoplasts of sweet orange (Citrus sinensis (L.) Osbeck) and regeneration of transformed plants

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Electroporation conditions were optimized for the transfection of protoplasts isolated from an embryogenic cell line of sweet organe [Citrus sinensis (L.) Osbeck ev. Hamlin]. Electric field strength (375–450 V cm−1) vector DNA concentration (100 μgml−1), carrier DNA concentration (100 μgml−1), electroporation buffer (pH 8), and preelectroporation heat shock of protoplasts (5 min at 45°C) were optimized. The plasmid vector pBI221 containing the β-glucuronidase (GUS) coding sequence under the control of the CaMV 35S promoter was used and GUS activity was measured 24h after electroporation. All variables significantly affected transfection efficiency and when optimal conditions for each were combined. GUS activity was 7714 pmol 4-methylumbelliferone (MU) mg−1 (protein) min−1. Protoplasts were then electroporated in the presence of green fluorescent protein (GFP) expression vectors pARS101 or pARS108. Green fluorescent embryos were selected, plants regenerated, and integration of the transgene was confirmed by Southern blot analysis. Both plasmids were constructed using EGFP, a GFP variant 35 times brighter than wtGFP, having a single, red-shifted excitation peak, and optimized for human codon-usage. pARS101 was constructed by placing EGFP under the control of a 35S–35S promoter containing 33 bp of the untranslated leader sequence from alfalfa mosaic virus. pARS108 was constructed similarly except sequences were added for transport and retention of EGFP in the lumen of the endoplasmic reticulum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abadía-Molina, F.; Torreblanca, J.; García-Herdugo, G.; Moreno, F. J. Inhibition of nucleolar protein nucleolin by electroporation with antinuclcolin antibodies results in an increase of the nucleolar size. Biol. Cell 90:355–361; 1998.

    Article  PubMed  Google Scholar 

  • Abdul-Baki, A. A.; Saunders, J. A.; Matthews, B. F.; Pittarelli, G. W. DNA uptake during electroporation of germinating pollen, grains. Plant Sci. 70:181–190; 1990.

    Article  CAS  Google Scholar 

  • Bellini, C.; Chupeau, M. C.; Guerehe, P.; Vastra, G.; Chupeau, Y. Transformation of Lycopersicon peruvianum and Lycopersicon esculentum mesophyll protoplasts by electroporation. Plant Sci. 65:63–75; 1989.

    Article  CAS  Google Scholar 

  • Bond, J. E.; Roose, M. L. Agrobacterium-mediated transformation of the commercially important citrus cultivar Washington navel orange. Plant Cell Rep. 18:229–234; 1998.

    Article  CAS  Google Scholar 

  • Bradford, M. M. A rapid and sensitive, method for the quantitation of mierogram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–252; 1976.

    Article  PubMed  CAS  Google Scholar 

  • Cervera, M.; Juarez, J.; Navarro, A.; Pina, J. A.; Duran-Vila, N.; Navarro, L.; Peña, L. Genetic transformation and regeneration of mature tissues of woody fruit plants bypassing the juvenile stage. Trans. Res. 7:51–59; 1998.

    Article  CAS  Google Scholar 

  • Chang, D. C. Use of pulsed RF field. In: Chang, D. C.; Chassy, B. M.; Saunders, J. A.; Sowers, A. E., edd Guide to electroporation and electrofusion. San Diego, CA: Academic Press; 1992:303–326.

    Google Scholar 

  • Chang, M. M.; Loescher, W. H., Effects of preconditioning and isolation conditions on potato (Solanum tuberosum. L. cv. Russet Burbank) protoplast yield for shoot regeneration and electroporation. Plant Sci. 73:103–109; 1991.

    Article  Google Scholar 

  • Charest, P. J.; Devantier, Y.; Ward, C.; Jones, C.; Schaffer, U.; Klimaszewska, K. K. Transient expression of foregin chimeric genes in the gymnosperm hybrid larch following electroporation. Can. J. Bot. 69:1731–1736; 1991.

    Google Scholar 

  • Chiu, W. L.; Niwa, Y.; Zeng, W.; Hirano, T.; Kobayashi, H.; Sheen, J. Engineered GFP as a vital reporter in plants. Curr. Biol. 6:325–330; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Cormack, B. P.; Valdivia, R. H.; Falkow, S. FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173:33–38; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Datla, R. S. S.; Bekkaoui, F.; Hammerlindl, J. K.; Pilate, G.; Dunstan, D. I.; Crosby, W. L. Improved high-level constitutive foreign gene expression in plants using an AMV RNA4 untraslated leader sequence. Plant Sci. 94:139–149; 1993.

    Article  CAS  Google Scholar 

  • Dellaporta, S. L.; Wood, J.; Hicks, J. B. A plant DNA minipreparation version II Plant Mol. Biol. Rep. 1:19–21; 1983.

    CAS  Google Scholar 

  • Dhir, S. K.; Dhir, S.; Hepburn, A.; Widholm, J. M. Factors affecting transient gene expression in electroporated Glycine max protoplasts. Plant Cell Rep. 10:106–110; 1991.

    CAS  Google Scholar 

  • Dominguez, A.; Fagoaga, C.; Navarro, L.; Moreno, P.; Pena, L Regeneration of transgenic citrus plants under non selective conditions results in high-frequency recovery of plants with silenced transgenes. Mol. Gen. Genomics 267:544–556; 2002.

    Article  CAS  Google Scholar 

  • Dominguez, A.; Guerri, J.; Cambra, M.; Navarro, L.; Moreno, P.; Pena, L. Efficient production of transgenic eitrus plants expressing the coat protein gene of citrus tristeza virus. Plant Cell Rep. 19:427–433; 2000.

    Article  CAS  Google Scholar 

  • Elliott, A. R.; Campbell, J. A.; Brettell, R. I. S.; Grof, C. P. L. Agrobacterium-mediated transformation of sugarcane using GFP as a sereenable marker. Aust. J. Plant Physiol. 25:739–743; 1998.

    Article  CAS  Google Scholar 

  • Elliott, A. R.; Campbell, J. A.; Dugdale, B.; Brettell, R. I. S.; Grof, C. P. L. Green fluorescent protein facilitates rapid in vivo detection of genetically transformed plant cells Plant Cell Rep. 18:707–714; 1999.

    Article  CAS  Google Scholar 

  • Fleming, G. H.; Olivares-Fuster, O.; Del Bosco, S. F.; Grosser, J. W. An alternative method for the genetic transformation of sweet orange. In Vitro Cell. Dev. Biol. Plant 36:450–455; 2000.

    Article  CAS  Google Scholar 

  • Frearson, E. M.; Power, J. B.; Cocking, E. C. The isolation, culture, and regeneration of Petunia leaf protoplasts. Dev. Biol. 33:130–137; 1973.

    Article  PubMed  CAS  Google Scholar 

  • Ghorbel, R.; Juárez, J.; Navarro, L.; Peña, L. Green fluorescent protein as a screenable marker to increase the efficiency of generating transgenic woody fruit plants. Theor. Appl. Genet. 99:350–358; 1999.

    Article  Google Scholar 

  • Grosser, J. W.; Gmitter, F. G. Jr. Protoplast fusion and citrus improvement. Plant Breeding Rev. 8:339–374; 1990.

    Google Scholar 

  • Grosser, J. W.; Ollitrault, P.; Olivares-Fuster, O.; Somatic hybridization in citrus: an effective tool to facilitate variety improvement. In Vitro Cell. Dev. Biol. Plant 36:434–449; 2000.

    Article  Google Scholar 

  • Guerche, P.; Charbonnier, M.; Jouanin, L.; Tourneur, C.; Paszkowski, J.; Pelletier, G. Dhect gene transfer by electroporation in Brassica napus. Plant Sci. 52:111–116; 1987.

    Article  CAS  Google Scholar 

  • Gutierrez, E.; Luth, D.; Moore, G. A. Factors affecting Agrobacterium-mediated transformation in Citrus and production of sour orange (Citrus aurantium L.) plants expressing the coat protein gene of citrus tristeza virus. Plant Cell Rep. 16:745–753; 1997.

    Article  Google Scholar 

  • Haseloff, J.; Siemering, K. R.; Prasher, D. C.; Hodge, S. Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc. Natl Acad. Sci. USA 94:2122–2127; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Hauptmann, R. M.; Ozias-Akins, P.; Vasil, V.; Tabaeizadeh, Z.; Rogers, S. G.; Horsch, R. B.; Vasil, I. K.; Fraley, R. T. Transient expression of electroporated DNA in monocotyledonous and dicotyledonous species. Plant Cell Rep. 6:265–270; 1987.

    Article  CAS  Google Scholar 

  • Hibi, T.; Kano, H.; Sugiura, M.; Kazami, T.; Kimura, S High efficiency electro-transfection of tobacco mesophyll protoplasts with tobacco mosaic virus RNA. J. Gen. Virol. 67:2037–2042; 1986.

    Article  CAS  Google Scholar 

  • Hidaka, T.; Omura, M. Transformation of Citrus protoplasts by electroporation. J. Jpn Soc. Hort. Sci. 62:371; 1993.

    CAS  Google Scholar 

  • Hidaka, T.; Omura, M.; Ugaki, M.; Tomiyama, M.; Kato, A.; Ohshima, M.; Motoyoshi, F. Agrobacterium-mediated transformation and regeneration of Citrus spp. from suspension cells. Jpn J. Breed. 40:199–207; 1990.

    Google Scholar 

  • Jefferson, R. A.; Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5:387–405; 1987.

    CAS  Google Scholar 

  • Joersbo, M.; Brunstedt, J.; Floto, F. Quantitative relationship between parameters of electroporation. J. Plant Physiol. 137:169–174; 1990.

    Google Scholar 

  • Jones, H.; Ooms, G.; Jones, M. G. K. Transient gene expression in electroporated Solanum protoplasts. Plant Mol. Biol. 13:503–511; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Kaeppler, H. F.; Carlson, A. R.; Menon, G. K. Routine utilization of green fluorescent protein as a visual selectable marker for cereal transformation. In Vitro Cell. Dev. Biol. Plant 37:120–126; 2001.

    Article  CAS  Google Scholar 

  • Kanai, R.; Edwards, G. E. Purification of enzymatically isolated mesophyll protoplasts from C3, C4, and Crassulacean acid metabolism plants using an aqueous dextran-polyethylene glycol two-phase system. Plant Physiol. 52:484–490; 1973.

    Article  PubMed  CAS  Google Scholar 

  • Kancyoshi, J.; Kobayashi, S.; Nakamura, Y.; Shigemoto, N.; Doi, Y. A simple and efficient gene transfer system of trifoliate orange (Poncirus trifoliata Raf.). Plant Cell Rep. 13:541–545; 1994.

    Google Scholar 

  • Keller, W. A.; Melchers, C The effect of high pH and calcium on tobacco leaf protoplast fusion. Z. Naturforsch. 28c:737; 1973.

    Google Scholar 

  • Kobayashi, S.; Ikeda, I.; Uchimiya, H. Conditions for high frequency embryogenesis from orange (Citrus sinensis Osb.) protoplasts. Plant Cell Tiss. Organ Cult. 4:249–259; 1985.

    Article  Google Scholar 

  • Kozak, M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44:283–292; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Maximova, S. N.; Dandekar, A. M.; Guiltinan, M. J. Investigation of Agrobacterium-mediated transformation of apple using green fluorescent protein: high transient expression and low stable transformation suggest that factors other than T-DNA transfer are rate-limiting. Plant Mol. Biol. 37:549–559; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Mendes, B. M. J.; Boscario, R. L.; Mourao, F. D. A.; de Almeida, W. A. B. Agrobacterium-mediated genetic transformation of ‘Hamlin’ sweet orange. Pesquisa Agropecuaria Brasileira 37:955–961; 2002.

    Google Scholar 

  • Moore, G. A.; Jacono, C. C.; Neidigh, J. L.; Lawrence, S. D.; Cline, K. Agrobacterium-mediated transformation of Citrus stem segments and regeneration of transgenic plants. Plant Cell Rep. 11:238–242; 1992.

    Article  CAS  Google Scholar 

  • Murashige, T.; Tucker, D. P. H. Growth factor requirements of citric tissue culture. Proc. 1st Int. Citrus Symp. 3:1155–1161; 1969.

    CAS  Google Scholar 

  • Napier, R. M.; Fowke, L. C.; Hawes, C.; Lewis, M.; Pelham, H. R. B. Immunological evidence that plants use both HDEL and KDEL for targeting proteins to the endoplasmic reticulum. J. Cell Sci. 102:261–271; 1992.

    PubMed  CAS  Google Scholar 

  • Negrutiu, I.; Dewulf, J.; Pietrzak, M.; Botterman, J.; Rietveld, E.; Wurzer-Figurelli, E. M.; Jacobs, D. Y.; Jacobs, M. Hybrid genes in the analysis of transformation conditions: II. Transient expression vs stable transformation—analysis of parameters influencing gene expression levels and transformation efficiency. Physiol. Plant. 79:197–205; 1990.

    Article  CAS  Google Scholar 

  • Niedz, R. P. Culturing embryogenic protoplasts of ‘Hamlin’ sweet orange in calcium alginate beads. Plant Cell Tiss. Organ Cult. 34:19–25; 1993.

    Article  CAS  Google Scholar 

  • Niedz, R. P.; McKendree, W. L. Electroporation of embryogenic protoplasts of sweet orange and regeneration of transgenic plants. In Vitro Cell. Dev. Biol. Plant 34:58-A; 1998.

    Google Scholar 

  • Niedz, R. P.; McKendree, W. L.; Shatters, R. G. Transgenic sweet orange AMV promoter. In Vitro Cell. Dev. Biol. Plant 35:62-A; 1999.

    Google Scholar 

  • Niedz, R. P.; Moshonas, M. G.; Peterson, B.; Shapiro, J. P.; Shaw, P. E. Analysis of sweet organe (Citrus sinensis (L.) Osbeck) callus cultures for volatile compounds by gas chromatography with mass selective detector. Plant Cell Tiss. Organ Cult. 51:181–185; 1997.

    Article  CAS  Google Scholar 

  • Niedz, R. P.; Sussman, M. R.; Satterlee, J. S. Green fluorescent protein: an in vivo reporter of plant gene expression. Plant Cell Rep. 14:503–406; 1995.

    Article  Google Scholar 

  • Nishiguchi, M.; Langridge, W. H. R.; Szalay, A. A.; Zaitlin, M. Electroporation-mediated infection of tobacco leaf protoplasts with tobacco mosaic virus RNA and eneumber mosaic virus RNA. Plant Cell Rep. 5:5760; 1986.

    Article  Google Scholar 

  • Ohgawara, T.; Kobayashi, S.; Ohgawara, E.; Uchimiya, H.; Ishii, S. Somatic hybrid plants obtained by protoplast fusion between Citrus sinensis and Poncirus trifoliata. Theor. Appl. Genet. 71:1–4; 1985.

    Article  Google Scholar 

  • Pang, S.-Z.; DeBoer, D. L.; Wan, Y.; Ye, G.; Layton, J. G.; Neher, M. K.; Armstrong, C. L.; Fry, J. E.; Hinehee, M. A. W.; Fromm, M. E. An improved green fluorescent protein gene as a vital marker in plants. Plant Physiol. 112:893–900; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Paszkowski, J.; Shillito, R. D.; Saul, M.; Mandak, V.; Hohn, T.; Hohn, B.; Potrykus, I. Duect gene transfer to plants. EMBO J 3:2717–2722; 1984.

    PubMed  CAS  Google Scholar 

  • Peña, L.; Cervera, M.; Juarez, J.; Navarro, A.; Pina, J. A.; Duran-Vila, N.; Navarro, L. Agrobacterium-mediated transformation of sweet organge and regeneration of transgenic plants. Plant Cell Rep. 14:616–619; 1995a.

    Article  Google Scholar 

  • Peña, L.; Cervera, M.; Juarez, J.; Navarro, A.; Pina, J. A.; Navarro, L. Genetic transformation of line (Citrus aurantifolia (Swing): factors affecting transformation and regneration. Plant Cell Rep. 16:731–737; 1997.

    Article  Google Scholar 

  • Peña, L.; Cervera, M.; Juarez, J.; Ortega, C.; Navarro, L.; Duran-Vila, N.; Navarro, I. High efficiency Agrobacterium-mediated transformation and regeneration of citrus. Plant Sci. 104:183–191; 1995b.

    Article  Google Scholar 

  • Peña, L.; Martin-Trillo, M.; Juarez, J.; Pina, J. A.; Navarro, L.; Martinez-Zapater, J. M. Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in eitrus reduces their generation time. Nat. Biotechnol. 19:263–267: 2001.

    Article  PubMed  Google Scholar 

  • Rathus, C.; Birch, R. G. Optimization of conditions for electroporation and transient expression of foreign genes in sugarcane protoplasts. Plant Sci. 81:65–74; 1992.

    Article  CAS  Google Scholar 

  • Sambrook, J.; Fritsch, E. F.; Maniatis, T. Môlecular cloning, 2nd end. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1989.

    Google Scholar 

  • Southern, E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis J. Mol. Biol. 98:503–517; 1975.

    Article  PubMed  CAS  Google Scholar 

  • Sowers, A. E. Mechanisms of electroporation and electrofusion. In: Chang, D. C.; Chassy, B. M.; Saunders, J. A.; Sowers, A. E., eds. Guide to electroporation and electrofusion. San Diego, CA: Academic Press; 1992:119–138.

    Google Scholar 

  • Tagu, D.; Bergounioux, C.; Cretin, C.; Perennes, C.; Gadal, P. Direct gene transfer in Petunia hybrida electroporated protoplasts: evidence for co-transfomation with a phosphoenolpyruvate carboxylase cDNA from sorghum leal. Protoplasma 146:101–105; 1988.

    Article  Google Scholar 

  • van der Geest, A. H. M.; Petolino, J. F.; Expression of a modified green fluorescent protein gene in transgenic maize plants and progeny. Plant Cell Rep. 17:760–764; 1998.

    Article  Google Scholar 

  • Vardi, A. Isolation of protoplast in Citrus. Proc. Int. Soc. Citriculture 2:575–578; 1977.

    Google Scholar 

  • Vardi, A.; Bleichman, S.; Aviv, D. Genetic transformation of Citrus protoplasts and regeneration of transgenic plants. Plant Sci. 69:199–206: 1990.

    Article  CAS  Google Scholar 

  • Widholm, L. A.; The use of fluorescein diacetate and phenosafranine for determining viability of cultured plant cells Stain Technol. 47:189–194; 1972.

    PubMed  CAS  Google Scholar 

  • Winfield, S.; Lawton, R.; Daniell, H.; Dhir, S. K. Transformation of sweet potato tissues with green-fluorescent protein gene. In Vitro Cell Dev. Biol. Plant 37:648–653; 2001.

    Article  CAS  Google Scholar 

  • Yu, C. H.; Huang, S.; Chen, C. X.; Deng, Z. N.; Ling, P.; Gmitter, F. G. Factors affecting Agrobacterium-mediated transformation and regeneration of sweet organe and citrange. Plant Cell Tiss. Organ Cult. 71:147–155; 2002.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall P. Niedz.

Additional information

Mention of a trademark, warranty, proprietary product, or vendor does not constitute a guarantee by the US Department of Agriculture and does not imply its approval to the exclusion of other products or veudors that may also be suitable.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niedz, R.P., McKendree, W.L. & Shatters, R.C. Electroporation of embryogenic protoplasts of sweet orange (Citrus sinensis (L.) Osbeck) and regeneration of transformed plants. In Vitro Cell Dev Biol -Plant 39, 586–594 (2003). https://doi.org/10.1079/IVP2003463

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2003463

Key words

Navigation