Skip to main content
Log in

Somatic embryogenesis from mesocotyl and leaf-base segments of Paspalum scrobiculatum L., a minor millet

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Somatic embryos could be induced from embryogenic callus originating from mesocotyl as well as leaf-base segments of Paspalum scrobiculatum on Murashige and Skoog (MS) or Chu et al. (N6) medium supplemented with different concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D; 4.5, 9.0, 18.0, and 22.5 μM). N6 medium was better than MS, for both explants, for high-frequency somatic embryogenesis. Also, mesocotyl tissues were relatively more totipotent than leaf-base segments. The somatic embryos ‘germinated’ and formed plantlets on transfer of embryogenic calluses to hormone-free MS or N6 regeneration medium. Embryogenic cultures could be maintained on low hormone medium which readily regenerated to form plantlets on hormone-free medium. A higher frequency of plantlet formation occurred on MS than on N6 medium. In vitro-formed plantlets were gradually acclimatized in the culture room and on transfer to soil flowered and set seed. Somatic embryogenesis and plantlet regeneration from mesocotyl and leaf-base segments are potentially simpler systems than regeneration from ‘embryonic’ explants such as immature embryos and unemerged inflorescences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Arockiasamy, S.; Prakash, S.; Ignacimuthu, S. High regenerative nature of Paspalum scrobiculatum L. an important millet crop. Curr. Sci. 80:496–498; 2001.

    Google Scholar 

  • Bartôk, T.; Sâgi, F. A new, endosperm-supported callus induction method for wheat (Triticum aestivum L.). Plant Cell Tiss. Organ Cult. 22:37–41; 1990.

    Google Scholar 

  • Bovo, O. A.; Mroginski, L. A. Somatic embryogenesis and plant regeneration from cultured mature and immature embryos of Paspalum notatum (Gramineae). Plant Sci. 65:217–223; 1989.

    Article  CAS  Google Scholar 

  • Chen, Z.; Zhuge, Q.; Sundqvist, C. Oat leaf base: tissue with an efficient regeneration capacity. Plant Cell Rep. 14:54–358; 1995.

    CAS  Google Scholar 

  • Chu, C. C.; Wang, C. C.; Sun, C. S.; Hsu, C.; Yin, K. C.; Chu, C. Y.; Bi, F. Y. Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Sci. Sin. 18:659–668; 1975.

    Google Scholar 

  • Clayton, W. D.; Renvoize, S. A. Genera Gramineae: grasses of the world. Kew Bull. Add. Ser. XII. London: Royal Botanical Garden Kew; 1986.

    Google Scholar 

  • Cobb, B. G.; Vanderzee, D.; Loescher, W. H.; Kennedy, R. A. Evidence for plantlet regeneration via somatic embryogenesis in the grasses Echinochloa muricata and E. crusgalli var. oryzicola. Plant Sci. 40:121–127; 1985.

    Article  Google Scholar 

  • Gless, C.; Lörz, H.; Jähne, G. Transgenic oat plants obtained at high efficiency by microprojectile bombardment of leafbase segments. J. Plant Physiol. 152:151–157; 1998.

    CAS  Google Scholar 

  • Guiderdoni, E.; Demarly, Y. Histology of somatic embryogenesis in cultured leaf segments of sugarcane plantlets. Plant Cell Tiss. Organ Cult. 14:71–88; 1988.

    Article  Google Scholar 

  • Heyser, J. W.; Nabors, M. W. Regeneration of prosomillet from embryogenic calli derived from various plant parts. Crop Sci. 22:1070–1074; 1982.

    Article  Google Scholar 

  • Jarret, L. R.; Liu, Z. W.; Webster, R. W. Genetic diversity among Paspalum spp. as determined by RFLPs. Euphytica 104:119–129; 1998.

    Article  CAS  Google Scholar 

  • Jelaska, S.; Rengel, Z.; Cesar, V. Plant regeneration from mesocotyl callus of Hordeum vulgare L. Plant Cell Rep. 3:125–129; 1984.

    Article  Google Scholar 

  • Koprek, T.; Hänsch, R.; Neerlich, A.; Mendel, R. R.; Schulze, J. Fertile transgenic barley of different cultivars obtained by adjustment of bombardment conditions to tissue culture response. Plant Sci. 119:79–91; 1996.

    Article  CAS  Google Scholar 

  • Lambe, P.; Dinant, M.; Deltour, R. Transgenic pearl millet (Pennisetum glaucum). In: Bajaj, Y. P. S., ed. Biotechnology in agriculture and forestry: transgenic crops I. Heidelberg and Berlin: Springer; 2000:84–108.

    Google Scholar 

  • Machii, H.; Mizuno, H.; Hirabayashi, T.; Li, H.; Hagio, T. Screening wheat genotypes for high callus induction and regeneration capability from anther and immature embryo cultures. Plant Cell Tiss. Organ Cult. 53:67–74; 1998.

    Article  Google Scholar 

  • Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    Article  CAS  Google Scholar 

  • Nayak, P.; Sen, S. K. Plant regeneration through somatic embryogenesis from suspension cultures of a minor millet Paspalum scrobiculatum. Plant Cell Rep. 8:296–299; 1989.

    Article  Google Scholar 

  • Rajyalakshimi, K.; Grover, A.; Maheshwari, N.; Tyagi, A. K.; Maheshwari, S. C. High frequency regeneration of plantlets from the leaf bases via somatic embryogenesis and comparison of polypeptide profiles from morphogenic and non-morphogenic calli in wheat (Triticum aestivum). Physiol. Plant. 82:617–623; 1991.

    Article  Google Scholar 

  • Rangan, T. S. Growth and plantlet regeneration in tissue cultures of some Indian millets: Paspalum scrobiculatum L., Eleucine coracana Gaertn and Pennisetum typhoideum Pers. Z. Pflanzenphysiol. 78:208–216; 1976.

    CAS  Google Scholar 

  • Repellin, A.; Båga, M.; Jauhar, P. P.; Chibbar, R. N. Genetic enrichment of cereal crops via alien gene transfer: new challenges. Plant Cell Tiss. Organ Cult. 64:159–183; 2001.

    Article  CAS  Google Scholar 

  • Samantaray, S.; Rout, G. R.; Das, P. In vitro plant regeneration from leaf base and mesocotyl cultures of Echinochloa colona. Plant Cell Tiss. Organ Cult. 40:37–41; 1995.

    Article  Google Scholar 

  • Samantaray, S.; Rout, G. R.; Das, P. Regeneration of plants via somatic embryogenesis from leaf base and leaf tip segments of Echinochloa colona. Plant Cell Tiss. Organ Cult. 47:119–125; 1997.

    Article  Google Scholar 

  • Shatters, R. G.; Wheeler, R. A.; West, S. H. Somatic embryogenesis and plant regeneration from callus cultures of ‘Tifton 9’ Bahia grass. Crop Sci. 34:1378–1384; 1994.

    Article  Google Scholar 

  • Talwar, M.; Rashid, A. Factors affecting formation of somatic embryos and embryogenic callus from unemerged inflorescences of a graminaceous crop Pennisetum. Ann. Bot. 66:17–21; 1990.

    Google Scholar 

  • Vikrant; Rashid, A. Direct as well as indirect somatic embryogenesis from immature (unemerged) inflorescence of a minor millet Paspalum scrobiculatum L. Euphytica 120:167–172; 2001a.

    Article  CAS  Google Scholar 

  • Vikrant; Rashid, A. Comparative study of somatic embryogenesis from immature and mature embryos and organogenesis from leaf base of Triticale. Plant Cell Tiss. Organ Cult. 67:33–38; 2001b.

    Article  Google Scholar 

  • Vikrant; Rashid, A. Somatic embryogenesis from immature and mature embryos of a minor millet Paspalum scrobiculatum L. Plant Cell Tiss. Organ Cult. 69:71–77; 2002a.

    Article  CAS  Google Scholar 

  • Vikrant; Rashid, A. Induction of multiple-shoots from thidiazuron on culture of mature caryopses of a minor millet Paspalum scrobiculatum L. and its effect on regeneration of embryogenic cultures. Plant Cell Rep. 21:9–13; 2002b.

    Article  CAS  Google Scholar 

  • Wang, D. Y.; Vasil, I. K. Somatic embryogenesis and plant regeneration from inflorescence segments of Pennisetum purpureum Schum. (Napier or elephant grass). Plant Sci. Lett. 25:147–154; 1982.

    Article  Google Scholar 

  • Weatherhead, M. A.; Burdon, J.; Henshaw, G. G. Effects of activated charcoal as an additive plant tissue culture media: part 2. Z. Pflanzenphysiol. 94:399–405; 1979.

    CAS  Google Scholar 

  • Wernicke, W.; Milkovits, L. Developmental gradients in wheat leaves—response of leaf segments in different genotypes cultured in vitro. J. Plant Physiol. 115:49–58; 1984.

    CAS  Google Scholar 

  • Wernicke, W.; Potrykus, I.; Thomas, E. Morphogenesis from cultured leaf tissue of Sorghum bicolor—the morphogenetic pathways. Protoplasma 111:53–62; 1982.

    Article  CAS  Google Scholar 

  • Zhang, L.; Rybezynski, J. J.; Langenberg, W. G.; Mitra, A.; French, R. An efficient wheat transformation procedure: transformed calli with long-term morphogenic potential for plant regeneration. Plant Cell Rep. 19:241–250; 2000.

    Article  CAS  Google Scholar 

  • Zhao, Z.; Cai, T.; Tagliani, L.; Millar, M.; Wang, N.; Pang, H.; Rudert, M.; Schroeder, S.; Hondred, D.; Seltzer, J.; Pierce, D. Agrobacterium mediated Sorghum transformation. Plant Mol. Biol. 44:789–798; 2000.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rashid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vikrant, Rashid, A. Somatic embryogenesis from mesocotyl and leaf-base segments of Paspalum scrobiculatum L., a minor millet. In Vitro Cell.Dev.Biol.-Plant 39, 485–489 (2003). https://doi.org/10.1079/IVP2003457

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2003457

Key words