Skip to main content

Tissue culture and Agrobacterium-mediated transformation of hemp (Cannabis sativa L.)

Summary

Hemp (Cannabis sativa L.) is cultivated in many parts of the world for ils fiber, oil, and seed. The development of new hemp cultivars with improved traits could be facilitated through the application of biotechnological strategies. The purpose of this study was to investigate the propagation of hemp in tissue culture and to establish a protocol for Agrobacterium-mediated transformation for foreign gene introduction. Stem and leaf segments from seedlings of four hemp varieties were placed on Murashige and Skoog medium with Gamborg B5 vitamins (MB) supplemented with 5 μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 1 μM kinetin, 3% sucrose, and 8 gl−1 agar. Large masses of callus were produced within 4 wk for all cultivars. Suspension cultures were established in MB medium containing 2.5 μM 2,4-D. To promote embryogenesis or organogenesis, explants, callus, and suspension cultures derived from a range of explant sources and seedling ages were exposed to variations in the culture medium and changes to the culture environment. None of the treatments tested were successful in promoting plantlet regeneration. Suspension cells were transformed with Agrobacterium tumefaciens strain EHA101 carrying the binary vector pNOV3635 with a gene encoding phosphomannose isomerase (PMI). Transformed callus was selected on medium containing 1–2% mannose. A chlorophenol red assay was used to confirm that the PMI gene was expressed. Polymerase chain reaction and Southern hybridization detected the presence of the PMI gene. Copy number in different lines ranged from one to four.

This is a preview of subscription content, access via your institution.

References

  • Braemer, R.; Paris, M. Biotransformation of cannabinoids by a cell suspension culture of Cannabis saliva L. Plant Cell Rep. 6:150–152; 1987.

    CAS  Google Scholar 

  • Clarke, R. C. Botany of the genus Cannabis. In: Ranalli, P., ed. Advances in hemp research, New York: Hawarth Press: 1999:1–18.

    Google Scholar 

  • Fisse, J.; Braut, F.; Cosson, L.; Paris, M. Étude in vitro des capacités organogénétiques de tissus de Cannabis sativa L.: effet de différentes substances de croissance. Pl. Méd. Phytoth. 15:217–223; 1981.

    CAS  Google Scholar 

  • Forapani, S.; Carboni, A.; Paoletti, C.; Moliterni, V. M. C.; Ranalli, P.; Mandolino, G. Comparison of hemp varieties using random amplified polymorphic DNA markers. Crop Sci. 41:1682–1689; 2001.

    CAS  Article  Google Scholar 

  • Gamborg, O. L.; Miller, R. A.; Ojima, K. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50:151–158; 1968.

    PubMed  Article  CAS  Google Scholar 

  • Hartsel, S. C.; Loh, W.H.-T.; Robertson, L. W. Biotransformation of cannabidiol to cannabielsoin by suspension cultures of Cannabis sativa and Saccharum officinarum. Planta Med. 48:17–19; 1983.

    CAS  PubMed  Google Scholar 

  • Heitrich, A.; Binder, M. Identification of (3R, 4R)-Δ1(6)-tetrahydrocannabinol as an isolation artefact of cannabinoid acids formed by callus cultures of Cannabis sativa L. Experientia 38:898–899; 1982.

    Article  CAS  Google Scholar 

  • Hemphill, J. K.; Turner, J. C.; Mahlberg, P. G. Studies on growth and cannabinoid composition of callus derived from different strains of Cannabis sativa. Lloydia 41:453–462; 1978.

    CAS  Google Scholar 

  • Hood, E. E.; Helmer, G. L.; Fraley, R. T.; Chilton, M.-D. The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J. Bacteriol. 168:1291–1301; 1986.

    PubMed  CAS  Google Scholar 

  • Itokawa, H.; Takeya, K.; Mihashi, S. Biotransformation of cannabinoid precursors and related alcohols by suspension cultures of callus induced from Cannabis sativa L. Chem. Pharm. Bull. 25:1941–1946; 1977.

    PubMed  CAS  Google Scholar 

  • Jekkel, Z. S.; Hesky, L. E.; Ali, A. H. Effect of different cryoprotectants and transfer temperatures on the survival rate of hemp (Cannabis sativa L.) cell suspension in deep freezing. Acta Biol. Hung. 40:127–136; 1989.

    PubMed  CAS  Google Scholar 

  • Joersbo, M. Advances in the selection of transgenic plants using non-antibiotic marker genes. Physiol. Plant. 111:69–272; 2001.

    Article  Google Scholar 

  • Joersbo, M.; Donaldson, I.; Kreiberg, J.; Petersen, S. G.; Brunstedt, J.; Okkels, F. T. Analysis of mannose selection used for transformation of sugar beet. Mol. Breed. 4:111–117; 1998.

    Article  CAS  Google Scholar 

  • Johnson, P. Industrial hemp: a critical review of claimed potentials for Cannabis sativa. Tappi J. 82:113–123; 1999.

    CAS  Google Scholar 

  • Koetsier, P. A.; Schorr, J.; Doerfler, W. A rapid optimized protocol for downward alkaline Southern blotting of DNA. BioTechniques 15:260–262; 1993.

    PubMed  CAS  Google Scholar 

  • Kramer, C.; DiMaio, J.; Carswell, G. K.; Shillito, R. D. Selection of transformed protoplast-derived Zea mays colonies with phosphinothricin and a novel assay using the pH indicator chlorophenol red. Planta 190:454–458; 1993.

    Article  CAS  Google Scholar 

  • Loh, W.H.-T.; Hartsel, S. C.; Robertson, L. W. Tissue culture of Cannabis sativa L. and in vitro biotransformation of phenolics. Z. Pflanzenphysiol. 111:S.395–400; 1983.

    CAS  Google Scholar 

  • Lucca, P.; Ye, X.; Potrykus, I. Effective selection and regeneration of transgenic rice plants with mannose as selective agent. Mol. Breed. 7:43–49; 2001.

    Article  CAS  Google Scholar 

  • MacKinnon, L.; McDougall, G.; Aziz, N.; Millam, S. Progress towards transformation of fibre hemp. Scottish Crop Research Institute Annual Report 2000/2001. Invergowrie, Dundee: Scottish Crop Research Institute; 2000:84–86.

    Google Scholar 

  • Mandolino, G.; Ranalli, P. Advances in biotechnological approaches for hemp breeding and industry. In: Ranalli, P., ed. Advances in hemp research, New York: Haworth Press; 1999:185–208.

    Google Scholar 

  • Miles, J. S.; Guest, J. R. Nucleotide sequence and transcriptional start point of the phosphomannose isomerase gene (man A) of Escherichia coli. Gene 32:41–48; 1984.

    PubMed  Article  CAS  Google Scholar 

  • Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    Article  CAS  Google Scholar 

  • Negrotto, D.; Jolley, M.; Beer, S.; Wenck, A. R.; Hansen, G. The use of phosphomannose-isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation. Plant Cell Rep. 19:798–803; 2000.

    Article  CAS  Google Scholar 

  • Reed, J.; Privalle, L.; Powell, M. L.; Meghji, M.; Dawson, J.; Dunder, E.; Suttie, J.; Wenck, A.; Launis, K.; Kramer, C.; Chang, Y.-F.; Hansen, G.; Wright, M. Phosphomannose isomerase: an efficient selectable marker for plant transformation. In Vitro Cell. Dev. Biol. Plant 37:127–132; 2001.

    CAS  Google Scholar 

  • Richez-Dumanois, C.; Braut-Boucher, F.; Cosson L.; Paris, M. Multiplication végétative in vitro du chanvre (Cannabis sativa L.). Application à la conservation des clones sélectionnés. Agronomie 6:487–495; 1986.

    Google Scholar 

  • Sambrook, J.; Fritsch, E. E.; Maniatis, T. Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1989.

    Google Scholar 

  • Schluter, C.; Punja, Z. K. Genetic diversity among natural and cultivated field populations and seed lots of American ginseng (Panax quinquefolius L.) in Canada. Int. J. Plant Sci. 163:427–439; 2002.

    Article  Google Scholar 

  • Turner, C. E.; Elsohly, M. A.; Boeren, E. G. Constituents of Cannabis sativa L. XVII. A review of the natural constituents. J. Nat. Prod. 43:169–237; 1980.

    PubMed  Article  CAS  Google Scholar 

  • Veliky, I. A.; Genest, K. Growth and metabolites of Cannabis sativa cell suspension cultures. Lloydia 35:450–456; 1972.

    PubMed  CAS  Google Scholar 

  • Wright, M.; Dawson, J.; Dunder, E.; Suttie, J.; Reed, J.; Kramer, C.; Chang, Y.; Novitzky, R.; Wang, H.; Artim-Moore, L. Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker. Plant Cell Rep. 20:429–436; 2001.

    Article  CAS  Google Scholar 

  • Zhang, P.; Potrykus, I.; Puonti-Kaerlas, J. Efficient production of transgenic cassava using negative and positive selection. Trans. Res. 9:405–415; 2000.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. K. Punja.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Feeney, M., Punja, Z.K. Tissue culture and Agrobacterium-mediated transformation of hemp (Cannabis sativa L.). In Vitro Cell Dev Biol -Plant 39, 578–585 (2003). https://doi.org/10.1079/IVP2003454

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2003454

Key words

  • callus
  • suspension culture
  • Agrobacterium tumefaciens
  • mannose selection
  • phosphomannose isomerase
  • regeneration
  • transgenic hemp