Skip to main content
Log in

Characterization of a novel cysteine peptidase from tissue culture of garlic (Allium sativum L.)

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

A simple and efficient medium for callus tissue culture from garlic to obtain maximal proteolytic activity is described. Murashige and Skoog basal medium supplemented with 4.44 μM naphthaleneacetic acid (NAA) and 0.54 μM benzyladenine (BA) resulted in the best biomass production and protease expression. The protease activity belongs to the class of cysteine proteases since they are inhibited by E64 and Leupeptin and also they are activated by 2-mercaptoethanol and cysteine. They showed good thermal stability. Three active protease bands were found in zymograms of Allium sativum. The in vitro system revealed a significantly higher protease level than storage and embryo tissues of in vivo bulbs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adam, Z. Chloroplast proteases; possible regulators of gene expression? Biochimie 82:647–654; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Agarwal, K. Therapeutic actions of garlic constiuents. Med. Res. Rev. 16:111–124; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Barandiaran, X.; Martín, N.; Rodriguez-Conde, M. F.; Di Pietro, A.; Martín, J. An efficient method for callus culture and shoot regeneration of garlic (Allium sativum L.) Hortscience 34(2): 348–349: 1999a.

    Google Scholar 

  • Barandiaran, X.; Martín, N.; Rodriguez-Conde, M. F.; Di Pietro, A.; Martín J. Genetic variability in the callogenesis and regeneration of garlic. Plant Cell Rep. 18:434–437; 1999b.

    Article  CAS  Google Scholar 

  • Barone, F. E.; Tansey, M. R. Isolation, purification, identification, synthesis and kinetics of activity of the anticandidal component of Allium sativum, and a hypothesis for its mode of action. Mycologia 69:793–825; 1977.

    PubMed  CAS  Google Scholar 

  • Beers, E.; Woffenden, B.; Zhao, Ch. Plant proteolytic enzymes: possible roles during programmed cell death. Plant Mol. Biol. 44:399–415; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Cavallito, C. J.; Bailey, J. H. Allicin, the antibacterial principle of Allium sativum L. Isolation, physical properties and antibacterial action. J. Am Chem. Soc. 66:1950–1951; 1944.

    Article  CAS  Google Scholar 

  • de Fossard, R. A. Tissue culture for plant propagators. Armidale, Australia: University of New England Pritery: 1976:409.

    Google Scholar 

  • Eilat, S.; Oesraicher, Y.; Rabinkov, A.; Ohad, D.; Mirelman, D.; Bautler, A.; Eldar, M.; Vered, Z. Alteration of lipid profile in hyperlipidemic rabbits by allicin, an active constituent of garlic. Coron. Artery Dis. 6:985–990; 1995.

    PubMed  CAS  Google Scholar 

  • Estelle, M. Proteases and cellular regulation in plants. Curr. Opin. Plant Biol. 4:254–260; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Feldberg, R. S.; Chang, S. C.; Kotik, A. N.; Nadler, M.; Neuwirth, Z. C.; Sundstrom, D.; Thompson, N. H. In vitro mechanism of inhibition of bacterial cell growth by allicin. Antimicrob. Agents Chemother. 32:1763–1768; 1988.

    PubMed  CAS  Google Scholar 

  • García Carreño, F.; Dimes, L.; Haard, N. Substrate gel electrophoresis for composition and molecular weight of proteinases or proteinaceous proteinase inhibitors. Anal. Biochem. 214:65–69; 1993.

    Article  PubMed  Google Scholar 

  • Hershko, A.; Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67:425–479; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Kleiner, D.; Stetler-Stevenson, W. Quantitative zymography: detection of picogram quantities of gelatinases. Anal. Biochem. 218:325–329; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Kochler, S. M.; Ho, T.-H. D. Hormonal regulation, processing and secretion of cysteine proteinases in barley aleurone layers. Plant Cell 2:679–783; 1990.

    Google Scholar 

  • Krupa, J. C.; Mort, S. J. Optimization of detergents for assay of Cathepsins B, L, S and K. Anal. Biochem. 283:99–103; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Lam, E.; del Pozo, O. Caspase like protease involvement in the control of plant cell death. Plant Mol. Biol. 44:417–428; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Lau, B. H. S.; Yamasaki, T.; Gridley, D. S. Garlic compounds modulate macrophage and T-lymphocyte functions. Mol. Biother. 3:103–107; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Lin, Y. W.; Yao, W. H. Protease activities before and after germination of garlic (Allium sativum L.) bulbs. Bot. Bull. Acad. Sin. 36:189–194; 1995.

    CAS  Google Scholar 

  • Lindahl, M.; Spetea, C.; Hundal, T.; Oppenheim, A. B.; Adam, Z.; Andersson, B. The thylakoid FtsH protease plays a role in the light induced turnover of the photosystem II D1 protein. Plant Cell 12:419–431; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Löffler, A. Proteolytic enzymes: sources and applications. Food Technol. 40:63–70; 1986.

    Google Scholar 

  • Lowry, O. H.; Roscbrough, N. J.; Farr, A. L.; Randall, R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275; 1952.

    Google Scholar 

  • Michaud, D. Gel electrophoresis of proteolytic enzymes. Anal. Chim. Acta 372:173–185; 1998.

    Article  CAS  Google Scholar 

  • Mirelman, D.; Monheit, D.; Varon, S. Inhibition of growth of Entamoeba histolytica by allicin, the active principle of garlic extract (Allium sativum). J. Infect. Dis. 156:243–244; 1987.

    PubMed  CAS  Google Scholar 

  • Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    Article  CAS  Google Scholar 

  • Parisi, M.; Fernández, G. Proteolytic activity of garlic calli (Allium sativum). Acta Hortic. 501:185–190; 1999.

    CAS  Google Scholar 

  • Rabinkov, A.; Miron, T.; Konstantinovski, L.; Wilchek, M.; Mirelman, D.; Weiner, L. The mode of action of allicin: trapping of radicals and interaction with thiol containing proteins. Biochem. Biophys. Acta 1379:233–244; 1998.

    PubMed  CAS  Google Scholar 

  • Rawling, N. D.; Barret, A. J. Families of cysteine peptidases. Methods Enzymol. 244:461–486; 1994.

    Article  Google Scholar 

  • Rendu, F.; Daveloose, D.; Deboucy, J. C.; Bordeau, N.; Levy-Toledanos, S.; Jain, M. K.; Apitz-Castro, R. Ajoene, the antiplatelet compound derived from garlic specifically inhibits platelet release reaction by affecting the plasma membrane internal microviscosity. Biochem. Pharmacol. 38:1321–1328; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Rowan, A. D.; Buttle, D. J.; Barret, A. J. The cysteine proteinases of the pincapple plant. Biochem. J. 266:869–875; 1990.

    PubMed  CAS  Google Scholar 

  • Vierstra, R. D. Proteolysis in plants: mechanisms and functions. Plant Mol. Biol. 32:275–302; 1996.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craciela Fernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parisi, M., Moreno, S. & Fernández, C. Characterization of a novel cysteine peptidase from tissue culture of garlic (Allium sativum L.). In Vitro Cell.Dev.Biol.-Plant 38, 608–612 (2002). https://doi.org/10.1079/IVP2002344

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2002344

Key words

Navigation