Skip to main content
Log in

Maturation of somatic embryos in conifers: Morphogenesis, physiology, biochemistry, and molecular biology

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

In the past 15 years tremendons progress has been made towards the development of systems for the induction and development of somatic embryos of coniferous species. Since the first report in 1985, several species have been induced to produce somatic embryos. This has been rendered possible by the development of rational media and improvement of culture conditions, which have resulted in increased embryo quality and higher conversion frequency. Understanding the physiological and biochemical events occurring during in vivo embryogenesis has been fundamental in the design of new protocols for improving the somatic embryogenic process. Specifically, the inclusions of abscisic acid (ABA) and osmotic agents, such as polyethylene glycol (PEG), have been shown to be necessary for the functional development of somatic embryos. In the past few years, physiological and biochemical investigations have been useful in increasing our knowledge on the mode of action of ABA and PEG during embryo development. In comparison with the flowering plants, our understanding on the molecular mechanisms regulating the embryogenic process in coniferous species is still very limited. The application of new molecular techniques is therefore fundamental towards this end. The emphasis of this review is on recent information dealing with the maturation of conifer somatic embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aiken-Christic, J.; Thorpe, T. A. Clonal propagation: gymnosperms. In: Vasil, I. K., ed. Cell culture and somatic cell genetics of plants, vol. 1, Orlando, FL: Academic Press; 1984:82–93.

    Google Scholar 

  • Ammirato, P. V. Embryogenesis. In: Evans, D. A.; Sharp, W.R.; Ammirato, P. V.; Yamada, Y., eds. Handbook of plant cell culture, vol. 1. Techniques for propagation and breeding. New York: Macmillan; 1983:82–123.

    Google Scholar 

  • Araya, S.; Kalia, R. K.; Araya, I. D. Induction of somatic embryogenesis in Pinus roxburghii Sarg. Plant Cell Rep. 19:775–780; 2000.

    Google Scholar 

  • Ashihara, H.; Loukanina, N.; Stasolla, C.; Thorpe, T. A. Pyrimidine metabolism during somatic embryo development in white spruce (Picea glauca). J. Plant Physiol. 158:613–621; 2001b.

    CAS  Google Scholar 

  • Ashihara, H.; Stasolla, C.; Loukanina, N.; Thorpe, T. A. Purine and pyrimidine metabolism in cultured white spruce (Picea glauca) cells: metabolic fate of 14C-labeled precursors and activities of key enzymes. Physiol. Plant 108:25–33; 2000.

    CAS  Google Scholar 

  • Ashihara, H.; Stasolla, C.; Loukanina, N.; Thorpe, T. A. Purine metabolism during white spruce somatic embryo development: salvage of adenine, adenosine, and inosine. Plant Sci. 160:647–657; 2001a.

    PubMed  CAS  Google Scholar 

  • Attree, S. M.; Budimir, S.; Fowke, L. C. Somatic embryogenesis and plantlet regeneration from cultured shoots and cotyledons of seedlings from stored seeds of black and white spruce (Picea mariana and Picea glauca). Can. J. Bot. 68:30–34; 1990a.

    Article  CAS  Google Scholar 

  • Attree, S. M.; Fowke, L. C. Embryogeny of gymnosperms: advances in synthetic seed technology of conifers. Plant Cell Tiss. Organ Cult. 35:1–35; 1993.

    CAS  Google Scholar 

  • Attree, S. M.; Moore, D.; Sawhey, V. K.; Fowke, L. C., Enhanced maturation and desiccation tolerance of white spruce (Picea glauca [Moench] Voss) somatic embryos: effects of a non- plasmolyzing water stress and abscisic acid. Ann. Bot. 68:519–525; 1991.

    Google Scholar 

  • Attree, S. M.; Pomeroy, M. K.; Fowke, L. C. Manipulation of conditions for the culture of somatic embryos of white spruce for improved triacylglycerol biosynthesis and desiccation tolerance. Planta 187:395–404; 1992.

    CAS  Google Scholar 

  • Attree, S. M.; Pomeroy, M. K.; Fowke, L. C. Development of white spruce (Picea glauca [Moench] Voss) somatic embryos during culture with abscisic acid and osmoticum, and their tolerance to drying and frozen storage. J. Exp. Bot. 46:433–439; 1995.

    CAS  Google Scholar 

  • Attree, S. M.; Tautorus, T. E.; Dunstan, D. I.; Fowke, L. C. Somatic embryo maturation, germination, and soil establishment of plants of black and white spruce (Picea mariana and Picea glauca). Can. J. Bot. 68:2583–2589; 1990b.

    Google Scholar 

  • Becwar, M. R.; Nagmani, R.; Wann, S. R. Initiation of embryogenic cultures and somatic embryo development in loblolly pine (Pinus taeda). Can. J. For. Res. 20:810–817; 1990.

    Google Scholar 

  • Becwar, M. R.; Wann, S. R.; Johnson, M. A.; Verhagen, S. A.; Feirer, R. P.; Nagmani, R. Development and characterization of in vitro embryogenic systems in conifers. In: Ahuja, M. R., ed. Somatic cell genetics of woody plants. Dordrecht, The Netherlands: Kluwer Academic Publishers; 1988:1–18.

    Google Scholar 

  • Bewley, J.; Black, M. Seeds: physiology of development and germination. New York: Plenum Press; 1994.

    Google Scholar 

  • Biddington, N. L.; Robinson, H. T.; Lynn, J. R. ABA promotion of ethylene production in anther culture of Brussel sprouts (Brassica oleracea var. gemmifera) and its relevance to embryogenesis. Physiol. Plant. 88:577–582; 1993.

    CAS  Google Scholar 

  • Black, M. Involvement of ABA in the physiology of developing and mature seeds. In: Davies, W. J.; Jones, H. G., eds. Abscisic acid: physiology and biochemistry, Oxford: BIOS Scientific Publishers; 1991:99–124.

    Google Scholar 

  • Bogre, L.; Stefanov, I.; Abraham, M.; Somogyi, I.; Dudits, D. Differences in response to 2,4-d-dichlorophenoxy acetic acid (2,4-D) treatment between embryogenic and non-embryogenic lines in alfalfa. In: Nijkamp, H. J. J.; Van der Plas, L. H. W.; Van Aartrijk, J., eds. Progress in plant cellular and molecular biology. Boston: Kluwer Academic Publishers; 1990:427–436.

    Google Scholar 

  • Bozhkov, P. V.; von Arnold, S. Polyethylene glycol promotes maturation but inhibits further development of Picea abies somatic embryos. Physiol. Plant. 104:211–224; 1998.

    CAS  Google Scholar 

  • Brown, C. L.; Lawrence, R. H. Culture of pine callus on a defined medium. Forest Sci. 14:62–68; 1968.

    Google Scholar 

  • Brown, D. C. W.; Finstad, K. I.; Watson, E. M. Somatic embryogenesis in herbaceous species. In: Thorpe, T. A., ed. In vitro embryogenesis in plants. Dordrecht, The Netherlands: Kluwer Academic Publishers; 1995:345–417.

    Google Scholar 

  • Butenko, R. G.; Yakovleva, S. M. Controlled organogenesis and regeneration of a whole plant in a culture of non-differentiated plant tissue. Izv. Akad. Nauk. SSSR. Biol. Ser. 2:230–235; 1962.

    Google Scholar 

  • Cairney, J.; Xu, N.; Mackay, J.; Pullman, J. Transcript profiling: a tool to assess the development of conifer embryos. In Vitro Cell. Dev. Biol. Plant 36:155–162; 2000.

    CAS  Google Scholar 

  • Chalupa, W. Somatic embryogenesis and plantlet regeneration from cultured immature and mature embryos of Picea abies (L.) Karst. Commun. Inst. For. Cech. 14:57–63; 1985.

    Google Scholar 

  • Chu, C. C.; Wang, C. C.; Sun, C. S.; Hsuc, A.; Yin, K. C.; Chu, C. Y.; Bi, F. Y. Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Sci. Sinica 18:658–662; 1975.

    Google Scholar 

  • De Vries, S. C.; Booij, H.; Meyerink, P.; Huisman, G.; Wilde, H. D.; Thomas, T. L.; van Kammen, A. Acquisition of embryogenic potential in carrot cell suspension cultures. Planta 176:196–204; 1988.

    Google Scholar 

  • Dhiman, M.; Moitra, S.; Singh, M.NN.; Bhatnagar, S. P. Formation of somatic embryos from leaf callus of Zamia furfuracea L.—a preliminary report. Phytomorphology 48:317–322; 1998.

    Google Scholar 

  • Dong, J.-Z.; Dunstan, D. I. Characterization of three heat-shock-protein genes and their developmental regulation during somatic embryogenesis in white spruce [Picea glauca (Moench) Voss]. Planta 200:85–91; 1996a.

    PubMed  CAS  Google Scholar 

  • Dong, J.-Z.; Dunstan, D. I. Expression of abudant mRNAs during somatic embryogenesis of white spruce [Picea glauca (Moench) Voss). Planta 200:459–466; 1996b.

    Google Scholar 

  • Dong, J.-Z.; Dunstan D. I. Endochitinase and β-1,3-glucanase genes are developmentally regulated during somatic embryogenesis in Picea glauca. Planta 201:189–194; 1997.

    PubMed  CAS  Google Scholar 

  • Dong, J.-Z.; Dunstan, D. I. Molecular biology of somatic embryogenesis in conifers. In: Jain, S.M.; Minocha, S. C., eds. Molecular biology of woody plants, vol. 1. Dordrecht, The Netherlands: Kluwer Academic Publishers; 2000:51–87.

    Google Scholar 

  • Dong, J.-Z.; Perras, M. R.; Abrams, S. R.; Dunstan, D. I. Induced gene expression following ABA uptake in embryogenic suspension cultures of Picea glauca. Plant Physiol. Biochem. 34:579–587; 1996.

    CAS  Google Scholar 

  • Dong, J.-Z.; Perras, M. R.; Abrams, S. R.; Dunstan, D. I. Gene expression patterns, and uptake and fate of fed ABA in white spruce somatic embryo tissue during maturation. J. Exp. Bot. 48:277–287; 1997.

    CAS  Google Scholar 

  • Dronne, S.; Label, P.; Lelu, M. A. Desiccation decreases abscisic acid content in hybrid larch (Larix × leptoeuropeae) somatic embryos. Physiol. Plant. 199:469–476; 1997.

    Google Scholar 

  • Dunstan, D. I.; Bethune, T. D.; Bock, C. A. Somatic embryo maturation from long-term suspension cultures of white spruce (Picea glauca). In Vitro Cell. Dev. Biol. Plant 29:109–112; 1993.

    Google Scholar 

  • Dunstan, D. I.; Bock, C. A.; Abrams, G. D.; Abrams, S. R. Metabolism of (+) and (−) abscisic acid by somatic embryo suspension cultures of white spruce. Phytochemistry 31:1451–1454; 1992.

    CAS  Google Scholar 

  • Dunstan, D. I.; Tautorus, T. E.; Thorpe, T. A. Somatic embryogenesis in woody plants. In: Thorpe, T. A., ed. In vitro embryogenesis in plants. Dordrecht, The Netherlands: Kluwer Academic Publishers; 1995:471–541.

    Google Scholar 

  • Durzan, D. J. Progress and promise in forest genetics. Proceedings of the 50th Anniversary Conference, Paper Science and Technology, The Cutting Edge, May 8–10. Appleton, WI: The Institute of Paper Chemistry; 1980:31–60.

    Google Scholar 

  • Durzan, D. J.; Chalupa, V. Growth and metabolism of cells and tissue of jack pine (Pinus banksiana). III. Growth of cells in liquid suspension cultures in light and darkness. Can. J. Bot. 54:456–467; 1976.

    Google Scholar 

  • Egertsdotter, U.; Mo, L. H.; von Arnold, S. Extracellular proteins in embryogenic suspension cultures of Norway spruce (Picea abies). Physiol. Plant. 88:315–321; 1993.

    CAS  Google Scholar 

  • Egertsdotter, U.; von Arnold, S. Importance of arabinogalactan proteins for the development of somatic embryos of Norway spruce (Picea abies). Physiol. Plant. 93:334–345; 1995.

    CAS  Google Scholar 

  • El Meskaoui, A.; Desjardins, Y.; Tremblay, F. M. Kinetics of ethylene biosynthesis and its effects during maturation of white spruce somatic embryos. Physiol. Plant. 109:333–342; 2000.

    Google Scholar 

  • Feirer, R. P. The biochemistry of conifer embryo development: amino acids, polyamines and storage proteins In: Jain, S. M.; Gupta, P. K.; Newton, R. J., eds. Somatic embryogenesis in woody plants, vol. 1. Dordrecht, The Netherlands: Kluwer Academic Publishers; 1995:317–336.

    Google Scholar 

  • Find, J. I. Changes in endogenous ABA levels in developing somatic embryos of Norway spruce (Picea abies (L.) Karst.) in relation to maturation medium, desiccation and germination. Plant Sci. 128:75–83; 1997.

    CAS  Google Scholar 

  • Flinn, B. S.; Roberts, D. R.; Taylor, I. E. P. Evaluation of somatic embryos of interior spruce. Characterization and developmental regulation of storage proteins. Physiol. Plant. 82:624–632; 1991.

    CAS  Google Scholar 

  • Gaspar, T.; Kevers, C.; Greppin, H.; Reid, D. M.; Thorpe, T. A. Plant hormones and plant growth regulators in plant tissue culture. In Vitro Cell. Dev. Biol. Plant 32:272–289; 1996.

    CAS  Google Scholar 

  • Gamborg, O. L.; Miller, R. A.; Ojima, K. Nutrient requirements for suspension cultures of soybean root cells. Exp. Cell Res. 50:151–156; 1968.

    PubMed  CAS  Google Scholar 

  • Goffner, D.; This, P.; Delseny, M. Effects of abscisic acid and osmotica on helianthinin gene expression in sunflower cotyledons in vitro. Plant Sci. 66:211–219; 1990.

    CAS  Google Scholar 

  • Guevin, T. G.; Kirby, E. G. Induction of embryogenesis in cultured mature zygotic embryos of Abies fraseri (Pursh) Poir. Plant Cell Tiss. Organ Cult. 49:219–222; 1997.

    CAS  Google Scholar 

  • Guevin, T. G.; Micah, V.; Kirby, E. G. Somatic embryogenesis in cultured mature zygotic embryos of Abies balsamea. Plant Cell Tiss. Organ Cult. 34:205–208; 1994.

    Google Scholar 

  • Gupta, P. K.; Durzan, D. J. Shoot multiplication from mature leaves of Douglas-fir (Pseudotsuga menziesii) and sugar pine (Pinus lambertiana). Plant Cell Rep. 4:177–180; 1985.

    CAS  Google Scholar 

  • Gupta, P. K.; Durzan, D.J. Biotechnology of somatic polyembryogenesis and plantlet regeneration in loblolly pine. Bio/Technology 5:147–151; 1987.

    Google Scholar 

  • Gupta, P. K.; Grob, J. A. Somatic embryogenesis in conifers. In: Jain, S.; Gupta, P. K.; Newton, R. J., eds. Somatic embryogenesis in woody plants. Vol. 1. Dordrecht, The Netherlands; Kluwer Academic Publishers; 1995:81–98.

    Google Scholar 

  • Gupta, P. K.; Pullman, G. S. Method for reproducting coniferous plants by somatic embryogenesis. US Patent no.4.957.866; 1990.

  • Gupta, P. K., Pullman, G. S. Method for reproducings coniferous plants by somatic embryogenesis using abscisic acid and osmotic potential variation. US Patent no. 5.036,007; 1991.

  • Hakman, I.; Fowke, L. C.; von Arnold, S.; Eriksson, T. The development of somatic embryos in tissue cultures initiated from immature embryos of Picea abies (Norway spruces). Plant Sci. 38:53–59; 1985.

    Google Scholar 

  • Hakman, I., Rennie, P.; Fowke, L. C. A light and electron microscopy study of Picea glauca (white spruce) somatic embryos. Protoplasma 140:100–109; 1987.

    Google Scholar 

  • Hakman, I.; Stabel, P.; Engstrom, P.; Eriksson, T. Storage protein accumulation during zygotic and somatic embryos development in Picea abies (Norway spruce). Physiol. Plant. 80:441–445: 1990.

    CAS  Google Scholar 

  • Harry, I. S.; Thorpe, T. A. Somatic embryogenesis and plantlet regeneration from mature zygotic embryos of red spruce. Bot. Gaz. 152:446–452; 1991.

    CAS  Google Scholar 

  • Hay, E. I.; Charest, P. J. Somatic embryo germination and desiccation tolerance in conifers. In: Mohan Jain, S.; Gupta, P. K.; Newton, R. J., eds. Somatic embryogenesis in woody plants, vol. 4. Dordrecht, The Netherlands: Kluwer Academic Publishers; 1999:61–69.

    Google Scholar 

  • Hetherington, A. M.; Quatrano, R. S. Mechanisms of action of abscisic acid at a cellular level. New Phytol. 119:9–32; 1991.

    CAS  Google Scholar 

  • Jain, S. M.; Dong, N.; Newton, R. J. Somatic embryogenesis in slash pine (Pinus elliottii) from immature embryos cultured in vitro. Plant Sci. 65:233–241:1989.

    Google Scholar 

  • Jalonen, P.; von Arnold, S.; Characterization of embryogenic cell lines of Picea abies in relation to their competence for maturation. Plant Cell Rep. 10:384–387; 1991.

    Google Scholar 

  • Joy IV, R. W. Nitrogen metabolism during somatic embryogenesis in Picea glauca and Daucus carota: a NMR study. PhD dissertations. The University of Calgary, Calgary: 1992.

    Google Scholar 

  • Joy IV, R. W.; Kumar, P. P.; Thorpe, T. A. Long-term storage of somatic embryogenic white spruce tissue at ambient temperature. Plant Cell Tiss. Organ Cult. 25:53–60; 1991a.

    Google Scholar 

  • Joy IV, R. W.; Vogel, H. J.; Thorpe, T. A. Inorganic nitrogen metabolism in embryogenic white spruce cultures. A nitrogen 14–15 NMR study. J. Plant Physiol. 151:306–315; 1997.

    CAS  Google Scholar 

  • Joy IV, R. W.; Yeung, E. C.; Kong, L.; Thorpe, T. A. Development of white spruce somatic embryos: I. Storage product deposition. In Vitro Cell. Dev. Biol. Plant 27:32–41; 1991b.

    Google Scholar 

  • Kartha, K. K.; Fowke, L. C.; Leung, N. L.; Caswell, K. L.; Hakman, I. Induction of somatic embryos and plantlets from cryopreserved cell cultures of white spruce (Picea glauca). J. Plant Physiol. 132:529–539; 1988.

    CAS  Google Scholar 

  • Kermode, A. R. Regulatory mechanisms involved in the transition from seed development to germination. CRC Crit. Rev. Plant Sci. 9:155–195; 1990.

    CAS  Google Scholar 

  • Kiysoue, T.; Yamaguchi-Shinozaki, K.; Shinozaki, K.; Higashi, K.; Satoh, S.; Kamada, H.; Harada, H. Isolation and characterization of a cDNA that encodes ECP31, an embryogenic-cell protein from carrot. Plant Mol. Biol. 19:239–249; 1992.

    Google Scholar 

  • Klimaszewska, K.; Bernier-Cardou, M.; Cyr, D. R.; Sutton, B. C. S. Influence of gelling agents on culture medium gel strength, water availability, tissue water potential, and maturation response in embryogenic cultures of Pinus strobus L. In Vitro Cell. Dev. Biol. Plant 36:279–286:2000.

    CAS  Google Scholar 

  • Klimaszewska, K.; Devantier, Y.; Lachance, D.; Lelu, M. A.; Charest, P. J. Larix laricina (tamarack): somatic embryogenesis and genetic transformation. Can. J. For. Res. 27:538–555; 1997.

    Google Scholar 

  • Klimaszewska, K.; Smith, D. R. Maturation of somatic embryos of Pinus strobus is promoted by a high concentration of gellan gum. Physiol. Plant. 100:949–957; 1997.

    CAS  Google Scholar 

  • Kong, L. Factors affecting white spruce somatic embryogenesis and embryo conversion. PhD dissertations, University of Calgary, Calgary; 1994.

    Google Scholar 

  • Kong, L.; Attree, S. M.; Evans, D. E.; Binarova, P.; Yeung, E. C.; Fowke, L. C.. Somatic embryogenesis in white spruce: studies of embryo development and cell biology. In: Jain, S. M.; Gupta, P. K.; Newton, R. J., eds., Somatic embryogenesis in woody plants, vol. 4. Dordrecht, The Netherlands; Kluwer Academic Publishers; 1991;1–28.

    Google Scholar 

  • Kong, L.; Attree, S. M.; Fowke, L. C. Changes in endogeneous hormone levels in developing seeds, zygotic embryos, and megagametophyte in Picea glauca (Moench) Voss. Physiol. Plant. 101:23–30; 1997.

    CAS  Google Scholar 

  • Kong, L.; Attree, S. M.; Fowke, L. C. Effects of polyethylene glycol and methylglyoxal bis (guanylhydrazone) on endogenous polyamine levels and somatic embryo maturation in white spruce (Picea glauca). Plant Sci. 133:211–220; 1998.

    CAS  Google Scholar 

  • Kong, L.; Yeung, E. C. Development of white spruce somatic embryos: II. Continual shoot meristem development during germination. In Vitro Cell. Dev. Biol. Plant. 28: 125–131; 1992.

    Google Scholar 

  • Kong, L.; Yeung, E. C. Effects of ethylene and ethylene inhibitors on white spruce somatic embryo maturation. Plant Sci. 104:71–80; 1994.

    CAS  Google Scholar 

  • Kong, L.; Yeung, E. C. Effects of silver nitrate and polyethylene glycol on white spruce (Picea glauca) somatic embryo development: enhancing cotyledonary embryo formation and endogenous ABA content. Physiol. Plant. 93:298–304; 1995.

    CAS  Google Scholar 

  • KrishnaRaj, S.; Vasil, I. K. Somatic embryogenesis in herbaceous monocots. In: Thorpe, T. A., ed. In vitro embryogenesis in plants. Dordrecht, The Netherlands: Kluwer Academic Publishers; 1995; 417–540.

    Google Scholar 

  • Krogstrup, P. Embryo-like structures from cotyledons and ripe embryos of Norway spruce (Picea abies). Can. J. For. Res. 16:664–668; 1986.

    Google Scholar 

  • Kumar, P. P.; Joy IV, R. W.; Thorpe, T. A. Ethylene and carbon dioxide accumulation and growth of cell suspension cultures of Picea glauca (white spruce). J. Plant Physiol. 135:592–596; 1989.

    Google Scholar 

  • Laine, E.; David, H.; David, A. Callus formation from cotyledon protoplasts of Pinus oocarpa and Pinus patula. Physiol. Plant. 72:374–378; 1988.

    CAS  Google Scholar 

  • Laux, T.; Jurgens, G. Embryogenesis: a new start in life. Plant Cell 9:989–1000; 1993.

    Google Scholar 

  • Leal, I.; Misra, S. Molecular cloning and characterization of a legumin-like storage protein cDNA of Douglas fir seeds. Plant Mol. Biol. 21:709–715; 1993.

    PubMed  CAS  Google Scholar 

  • Lelu, M. A.; Bastien, C.; Drugeault, A.; Gouez, M. L.; Klimaszewska, K. Somatic embryogenesis and plantlet development in Pinus sylvestris and Pinus pinaster on medium with or without growth regulators. Physiol. Plant. 105:719–728; 1999.

    CAS  Google Scholar 

  • Lelu, M. A.; Bastien, C.; Klimaszewska, K.; Charest, P. J. An improved method for somatic plantlet production in hybrid larch (Larix x leptoeuropaea): Part 2. Control of germination and plantlet development. Plant Cell Tiss. Organ Cult. 36:117–127: 1994.

    CAS  Google Scholar 

  • Lelu, M. A.; Bornman, C. H. Induction of somatic embryogenesis in excised cotyledons of Picea abies and Picea mariana. Plant Physiol. Biochem. 28:785–791; 1990.

    CAS  Google Scholar 

  • Lelu, M. A.; Boulay, M. P.; Bornman, C. H. Somatic embryogenesis in cotyledons of Picea abies is enhanced by an adventitious budinducing treatment. New For 4:125–135;1990.

    Google Scholar 

  • Lenhard, M.; Laux, T. Shoot meristem formation and maintenance. Curr. Opin. Plant Biol. 2:44–50; 1999.

    PubMed  CAS  Google Scholar 

  • Li, X. Y.; Huang, F. H.; Grur, E.E. Polyethylene glycol-promoted development of somatic embryos in loblolly pine (Pinus taeda L.) In Vitro Cell. Dev. Biol. Plant. 33:184–189; 1997.

    CAS  Google Scholar 

  • Linsmaier, E. M.; Skoogs, F. Organic growth factor requirements of tobacco tissue cultures. Physiol. Plant. 18:100–103; 1975.

    Google Scholar 

  • Litvay, J. D.; Johnson, M. A.; Verma, D.; Einspahr, D.; Weyrauch, K. Conifer suspension culture medium development using analytical data from developing seeds. Appleton, WI: Institute Paper Chem. Tech. Paper Series 155; 1981.

    Google Scholar 

  • Lloyd, G.; McCown, B. Commercially-feasible micropropagation of mountain laurel Kalmia latifolia, by use of shoot-tip culture. Proc. Int. Plant Propagator's Soc. 30:421–432; 1981.

    Google Scholar 

  • Long, J. A.; Barton, M. K. The development of apical embryonic pattern in Arabidopsis. Development 125:3027–3035; 1998.

    PubMed  CAS  Google Scholar 

  • McCabe, P. F.; Valentine, T. A.; Forsberg, L. S.; Pennel, R. I. Soluble signals from cells identified at the cell wall establish a developmental pathway in carrot. Plant Cell 9:2235–2241; 1997.

    Google Scholar 

  • Minocha, R.; Smith, D. R.; Reeves, C.; Steele, K. D.; Minocha, C. S. Polyamine levels during the development of zygotic and somatic embryos of Pinus radiata. Physiol. Plant. 105:155–164; 1999.

    CAS  Google Scholar 

  • Misra, S.; Attree, S. M.; Leal, L.; Fowke, L. C. Effect of abscisic acid, osmoticum, and desiceation on synthesis of storage proteins during the development of white spruce somatic embryos. Ann. Bot. 71:11–22; 1993.

    CAS  Google Scholar 

  • Misra, S.; Green, M. J. Developmental gene expression in conifer embryogenesis and germination. II. Crystalloid protein synthesis in the developing embryo and megagametophyte of white spruce (Picea glauca [Moench] Voss). Plant Sci. 78:61–71; 1991.

    CAS  Google Scholar 

  • Mo, L. H.; Egertsdotter, U.; von Arnold, S.; Secretion of specific extracellular proteins by somatic embryos of Picea abies is dependent on embryo morphology. Ann. Bot. 77:143–152; 1996.

    CAS  Google Scholar 

  • Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    CAS  Google Scholar 

  • Nagmani, R.; Beewar, M. R.; Wann, S. R. Single cell origin and development of somatic embryos of Picea abies (L.) Karst. (Norway spruce) and P. glauca (Moench) Voss (white spruce). Plant Cell Rep. 6:157–159; 1987.

    Google Scholar 

  • Nagmani, R.; Diner, A. M.; Garton, S.; Zipf, A. E. Anatomical comparison of somatic and zygotic embryogeny in conifers. In: Jain, S.; Gupta, P. K.; Newton, R. J., eds. Somatic embryogenesis in woody plants, vol. 1 Dordrecht. The Netherlands: Kluwer Academic Publishers; 1995:23–48.

    Google Scholar 

  • Newton, C. H.; Flinn, B. S.; Sutton, B. C. S. Viclin-like seed storage proteins in the gymnosperm interior spruce (Picea glauca/engelmanii). Plant Mol. Biol. 20:315–322; 1992.

    PubMed  CAS  Google Scholar 

  • Pullman, G. S.; Cairney, J.; Xu, N.; Feng, X. Gene expression differences between zygotic and somatic embryos monitored by differential display and cDNA array: a potential tool to improve loblolly pine somatic embryo quality. In: Altman, A.; Ziv, M.; Izhar, S., eds. Plant biotechnology and in vitro biology in the 21st century. Derdrecht, The Netherlands: Kluwer Academic Publishers: 1999:81–84.

    Google Scholar 

  • Radojevic, L.; Alvarez, C.; Fraga, M. F.; Rodriguez, R. Somatic embryogenesis and tissue establishment from mature Pinus nigra Arn. ssp. Salzmannii embryos. In Vitro Cell. Dev. Biol. Plant 35:206–209; 1999.

    Google Scholar 

  • Reinert, J. Morphogenese und ihre Kontrolle an Gewebekulturen aus Carotten. Naturwissenschaft 45:344–345; 1958.

    CAS  Google Scholar 

  • Riov, J.; Degan, E.; Goren, R.; Yang, S. F. Characterization of abscisic acidinduced ethylene production in citrus leaf and tomato fruit tissues. Plant Physiol. 92:48–53; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, D. R.; Flinn, B. S.; Webb, D. T.; Webster, F. B.; Sutton, B. C. S. Characterization of immature embryos of interior spruce by SDS-PAGE and microscopy in relation to their competence for somatic embryogenesis. Plant Cell Rep. 8:285–288; 1989.

    CAS  Google Scholar 

  • Roberts, D. R.; Sutton, B. C. S.; Flinn, B. S. Synchronous and high frequency germination of interior spruce somatic embryos following partial drying at high relative humidity. Can. J. Bot. 68:1086–1090; 1990.

    Google Scholar 

  • Ross, C. W. Biosynthesis of nucleotides. In: Stump, P. K.; Conn, E. E., eds. The biochemistry of plants, vol. 6. New York: Academic Press: 1981:169–205.

    Google Scholar 

  • Ruaud, J. N.; Bercetche, J.; Paques, M. First evidence of somatic embryogenesis from needles of 1 year old Picea abies. Plant Cell Rep. 11:563–566; 1992.

    Google Scholar 

  • Salajova, T.; Jasik, J.; Kormutak, A.; Salaj, J.; Hakman, I. Embryogenic culture initiation and somatic embryo development in hybrid firs (Abies alba x Abies cephalonica, and Abies alba x Abies numidica). Plant Cell Rep. 15:527–530; 1996.

    CAS  Google Scholar 

  • Salajova, T.; Salaj, J.; Kormutak, A. Initiation of embryogenic tissues and plantlet regeneration from somatic embryos of Pinus nigra Arn. Plant Sci. 145:33–35; 1999.

    CAS  Google Scholar 

  • Santanen, A.; Simola, L. K. Changes in polyamine metabolism during somatic embryogenesis of Picea abies. J. Plant Physiol. 140:475–480; 1992.

    CAS  Google Scholar 

  • Schenk, R. U.; Hildebrandt, A. C. Medium techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can. J. Bot. 50:199–203; 1972.

    CAS  Google Scholar 

  • Schopf, J. M. The embryology of Larix. Illinois Biol. Monogr. 19:1–97; 1943.

    Google Scholar 

  • Simola, L. K.; Santanen, A. Improvement of nutrient medium for growth and embryogenesis of megagametophyte and embryo callus lines of Picea abies. Physiol. Plant. 80:27–35; 1990.

    CAS  Google Scholar 

  • Stasolla, C.; Loukanina, N.; Ashihara, H.; Yeung, E. C.; Thorpe, T. A. Purine and pyrimidine metabolism during the partial drying treatment of white spruce (Picea glauca) somatic embryos. Physiol. Plant. 111:93–101; 2001a.

    CAS  Google Scholar 

  • Stasolla, C.; Loukanina, N.; Ashihara, H.; Yeung, E. C.; Thorpe, T. A. Ascorbic acid changes the pattern of purine metabolism during germination of white spruce somatic embryos. Tree Physiol. 21:359–367; 2001b.

    PubMed  CAS  Google Scholar 

  • Stasolla, C.; Loukanina, N.; Ashihara, H.; Yeung, E. C.; Thorpe, T. A. Changes in pyrimidine nucleotide biosynthesis during germination of white spruce (Picea glauca) somatic embryos. In Vitro Cell. Dev. Biol. Plant 37:285–292; 2001c.

    CAS  Google Scholar 

  • Stasolla, C.; Loukanina, N.; Ashihara, H.; Yeung, E. C.; Thorpe, T. A. Pyrimidine nucleotide and nucleic acid synthesis in embryos and megagametophytes of white spruce (Picea glauca) during germination. Physiol. Plant. (in press); 2002.

  • Stasolla, C.; Yeung, E. C.; Ascorbic acid improves the conversion of white spruce somatic embryos. In Vitro Cell. Dev. Biol. Plant 35:316–319; 1999.

    CAS  Google Scholar 

  • Stasolla, C.; Yeung, E. C. Ascorbic acid metabolism during white spruce somatic embryo maturation and germination. Physiol. Plant. 111:196–205; 2001.

    CAS  Google Scholar 

  • Steward, F.; Mapes, M.; Mears, K. Growth and organized development of cultured cells. II. Organization in cultures grown from freely suspended cells. Am. J. Bot. 45:705–708; 1958.

    Google Scholar 

  • Sundas-Larsson, A.; Svenson, M.; Liao, M.; Engstrom, P. A homeobox gene with potential developmental control function in the meristem of the conifer Picea abies. Proc. Natl Acad. Sci. USA 95:15118–15122; 1998.

    PubMed  CAS  Google Scholar 

  • Tan, Z.-Y.; Thimman, K. V. The role of carbon dioxide and abscisic acid in the production of ethylene. Physiol. Plant 75:13–19; 1989.

    CAS  Google Scholar 

  • Tautorus, T. E.; Fowke, L. C.; Dunstan, D. I. Somatic embryogenesis in conifers. Can. J. Bot. 69:1873–1899; 1991.

    Google Scholar 

  • Thorpe, T. A. Callus organization and de novo formation of shoots, roots, and embryos in vitro. In: Tomes, D. T.; Ellis, B. E.; Harney, P. M.; Kasha, K. J.; Peterson, R. L., eds. Techniques and applications of plant cell and tissue culture to agriculture and industry. Ontario: University of Guelph; 1982:115–138.

    Google Scholar 

  • Thorpe, T. A.; Stasolla, C. Somatic embryogenesis. In: Bhojwani, S. S.; Soh, W. H., eds. Current trends in the embryology of angiosperms. Dordrecht, The Netherlands; Kluwer Academic Publishers; 2001; 279–336.

    Google Scholar 

  • von Aderkas, P.; Thompson, R. G.; Zaki, M.; Benkrima, L. Somatic embryogenesis of western larch (Larix occidentalis). In: Bajaj, Y. P. S., ed. Biotechnology in agriculture and forestry. vol. 30. Somatic embryogenesis and synthetic seeds. Berlin: Springer-Verlag; 1995;378–387.

    Google Scholar 

  • von Arnold, S.; Eriksson, T. In vitro studies on adventitious shoot formation in Pinus contorta. Can. J. Bot. 59:870–874; 1981.

    Google Scholar 

  • Webster, F. B.; Roberts, D. R.; McInnis, S. M.; Sutton, B. C.S. Propagation of interior spruce by somatic embryogenesis. Can. J. For. Res. 20:1759–1765; 1990.

    Google Scholar 

  • Westcott, R. J. Embryogenesis from non-juvenile Norway spruce (Picea abies). Abstr. In Vitro II 28:101A; 1992.

    Google Scholar 

  • White, P. R. A handbook of plant tissue culture. Lancaster, PA: Jacques Catell Press; 1943.

    Google Scholar 

  • Wilson, S. M.; Thorpe, T. A. Somatic embryogenesis in Picea glauca (white spruce), P. engelmannii (Engelman spruce) and P. engelmannii complex (interior spruce). In: Jain, S.; Gupta, P. K.; Newton, R. J., eds. Somatic embryogenesis in woody plants, vol. 1. Dordrecht, The Netherlands: Kluwer Academic Publishers; 1995:37–54.

    Google Scholar 

  • Xu, N.; Coulter, K. M.; Bewely, J. D.: Abscisic acid and osmoticum prevent germination of developing alfalfa embryos, but only osmoticum maintains the synthesis of developmental proteins. Planta 194:382–390; 1990.

    Google Scholar 

  • Yeung, E. C. Structural and developmental patterns in somatic embryogenesis. In: Thorpe, T. A., ed. In vitro embryogenesis in plants. Dordrecht. The Netherlands: Kluwer Academic Publishers; 1995:205–249.

    Google Scholar 

  • Yeung, E. C.; Brown, D. C. W. The osmotic environment of developing embryos of Phaseolus vulgaris. Z. Pflanzenphysiol. 106:149–156; 1982.

    Google Scholar 

  • Yeung, E. C.; Stasolla, C.; Kong, L. Apical meristem formation during zygotic embryo development of white spruce. Can. J. Bot. 76:751–761; 1998.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor A. Thorpe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stasolla, C., Kong, L., Yeung, E.C. et al. Maturation of somatic embryos in conifers: Morphogenesis, physiology, biochemistry, and molecular biology. In Vitro Cell.Dev.Biol.-Plant 38, 93–105 (2002). https://doi.org/10.1079/IVP2001262

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2001262

Key words

Navigation