Biomass production of Cymbopogon citratus (D.C.) stapf., a medicinal plant, in temporary immersion systems

  • Elisa Quiala
  • Raul Barbón
  • Elio Jimenez
  • Manuel De Feria
  • Maité Chávez
  • Alina Capote
  • Naivy Pérez
Article

Summary

In vitro plants of lemon grass were established, starting from shoot apices derived from plants cultivated under field conditions. The effect of the immersion frequency (two, four, and six immersions per day) on the production of biomass in temporary immersion systems (TIS) of 1 liter capacity was studied. The highest multiplication coefficient (12.3) was obtained when six immersions per day were used. The maximum values of fresh weight (FW; 62.2 and 66.2 g) were obtained with a frequency of four and six immersions per day, respectively. However, the values for dry weight (DW; 6.4g) and height (8.97cm) were greater in the treatment with four immersions per day. The TIS used in this work for the production of lemon grass biomass may offer the possibility of manipulating the culture parameters, which can influence the production of biomass and the accumulation of secondary metabolites. We describe for the first time the in vitro production of Cymbopogon citratus biomass in TIS.

Key words

automation lemon grass medicinal plant micropropagation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. De Feria, M.; Jiménez, E.; Barbón, R.; Chávez, M.; Capote, A.; Pérez, N.; Quiala, E. Effect of dissolved oxygen concentration on differentiation of somatic embryos of Coffea arabica cv. Catimor 9722. Plant Cell Tiss. Organ Cult. 72:1–6; 2003.CrossRefGoogle Scholar
  2. Escalona, M.; Lorenzo, B.; González, B.; Daquinta, M.; González, J. L.; Desjardins, Y.; Borroto, C. Pineapple (Ananas comosus L. Merr) micropropagation in temporary immersion. Plant Cell Rep. 18: 743–748; 1999.CrossRefGoogle Scholar
  3. Etienne, H.; Berthouly, M. Temporary immersion systems in plant micropropagation. Plant Cell Tiss. Organ Cult. 69:215–231; 2002.CrossRefGoogle Scholar
  4. Gerth, A.; Jiménez. E.; Gómez. R.: Wilken, D. Production of active substances applying innovative plant biotechnology. 10th IAPTC Congress Abstracts, Orlando, FL: 2002:1152.Google Scholar
  5. Jiménez, E.. Mass propagation of tropical crops in temporary immersion systems In: Hvos-Elf, T.; Preil, W., eds. Liquid culture systems for in vitro plants propagation. Dordrecht, The Netherlands: Kluwer Academic Publishers; 2005:197–211.Google Scholar
  6. Jiménez, E.; Pérez, N.; de Feria, M.; Barbón, R.; Capote A.; Chávez, M.; Quiala, E. Improved production of potato microtubers in a temporary immersion system. Plant Cell Tiss. Organ Cult. 59:19–23; 1999.CrossRefGoogle Scholar
  7. Licea, R. J.; Ferámdez, M.; Alvarado, K.; Gómez, K. Influence of agar concentration on in vitro multiplication of Cymbopogon citratus (D.C.) Stapf. Rev. Biotecnol. Vegetal 1(2):77–81; 1999.Google Scholar
  8. Misawa, M. Plant tissue culture: an alternative for production of useful metabolites. FAO Agric. Serv. Bull. Rome: FAO; 1994; 57pp.Google Scholar
  9. Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.CrossRefGoogle Scholar
  10. Paranagama, P.; Abeysekera, T.; Nugaliyadde, L.; Abeywickrama, K. Effect of the essential oils of Cymbopogon citratus C. nardus and Cinnamomum zeylanicum on pest incidence and grain quality of rough rice (paddy) stored in an enclosed seed box. Food Agric. Environ. 2:134–136; 2003.Google Scholar
  11. Pattnaik, S.; Subramayam, V. R.; Kole, C. R.; Sahoo, S. Antibacterial activity of oils from Cymbopogon inter and intraspecific differences. Microbios 84(241):239–245; 1995.PubMedGoogle Scholar
  12. Quiala, E.; Barbón, R.; Jiménez, E.; de Feria, M.; Capote, A.; Pérez, N.; Chávez, M.; Bidot, I. In vitro stablisment and multiplication cell suspensions of Cymbopogon citratus Stapl. Rev. Biotecnol. Vegetal 2(3):155–161; 2002.Google Scholar
  13. Suacyun, R.; Kinouchi, T.; Arimochi, H.; Vinitketkumnuen, U.; Ohnishi, Y. Inhibitory effects of lemon grass (Cymbopogon citratus Stapf) on formation of azoxymethane-induced DNA adducts and aberrant crypt foci in the rat colon. Carcinogenesis 18(5):949–955; 1997.CrossRefGoogle Scholar
  14. Syed, M.; Khalid, M. R.; Chaudhang, F. M. Essential oil of Gramineae family having antibacterial activity. Part I (Cymbopogon citratus), (C. martinii) and (C. jawarancuso) oils. Pakistan J. Sci. Ind. Res. 33(12):529–531; 1990.Google Scholar
  15. Wilken, D.; Jiménez, E.; Hohe, A.; Jordan, M.; Gómez, R.; Schmeda, G.; Gerth, A. Comparison of secondary metabolite production in cell suspension, callus culture and temporary immersion system. In: Hvos-Elf, T.; Preil, W., eds. Liquid culture systems for in vitro plants propagation. Dordrecht, The Netherlands: Kluwer Academic Publishers; 2005:525–538.CrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 2006

Authors and Affiliations

  • Elisa Quiala
    • 1
  • Raul Barbón
    • 1
  • Elio Jimenez
    • 1
  • Manuel De Feria
    • 1
  • Maité Chávez
    • 1
  • Alina Capote
    • 1
  • Naivy Pérez
    • 1
  1. 1.Instituto de Biotecnología de las PlantasUniversidad Central ‘Marta Abreu’ de Las VillasSanta ClaraCuba

Personalised recommendations