Recent advances in genetic transformation of forage and turf grasses

Invited Review


Forage and turf grasses are critical to sustainable agriculture and contribute extensively to the world economy. Tremendous progress has been made in genetic transformation of forage and turf grasses in the past decade. The rapid advancement of cellular and molecular biology and transgenic technology provides novel methods to accelerate and complement conventional breeding efforts. This review summarizes the latest developments in genetic transformation methods and the applications of molecular techniques for the improvement of forage and turf grasses.

Key words

Forage grass genetic transformation molecular breeding transgenic plants turf grass 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abebe, T.; Guenzi, A. C.; Martin, B.; Cushman, J. C. Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol. 131:1748–1755; 2003.PubMedCrossRefGoogle Scholar
  2. Abelson, P. H. A potential phosphate crisis. Science 283:2015; 1999.PubMedCrossRefGoogle Scholar
  3. Aguado-Santacruz, G. A.; Rascon-Cruz, Q.; Cabrera-Ponce, J. L.; Martinez-Hernandez, A.; Olalde-Portugal, V.; Herrera-Estrella, L. Transgenic plants of blue grama grass, Bouteloua gracilis (H.B.K.) Lag. ex Steud., from microprojectile bombardment of highly chlorophyllous embryogenic cells. Theor. Appl. Genet. 104:763–771; 2002.PubMedCrossRefGoogle Scholar
  4. Aldemita, R. R.; Hodges, T. K. Agrobacterium tumefaciens-mediated transformation of japonica and indica rice varieties. Plant 199:612–617; 1996.CrossRefGoogle Scholar
  5. Altpeter, F.; Fang, Y. D.; Xu, J. P.; Ma, X. R. Comparison of transgene expression stability after Agrobacterium-mediated or biolists gene transfer into perennial ryegrass (Lolium perenne L.). In: Hopkins, A.; Wang, Z. Y.; Mian, R.; Sledge, M.; Barker, R. E., eds. Molecular breeding of forage and turf. Dordrecht: Kluwer Academic Publishers; 2004:255–260.CrossRefGoogle Scholar
  6. Altpeter, F.; Xu, J. P. Rapid production of transgenic turfgrass (Festuca rubra L.) plants. J. Plant Physiol. 157:441–448; 2000.Google Scholar
  7. Altpeter, F.; Xu, J. P.; Ahmed, S. Generation of large numbers of independently transformed fertile perennial ryegrass (Lolium perenne L.) plants of forage- and turf-type cultivars. Mol. Breed. 6:519–528; 2000.CrossRefGoogle Scholar
  8. Apse, M. P.; Aharon, G. S.; Snedden, W. A.; Blumwald, E. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258; 1999.PubMedCrossRefGoogle Scholar
  9. Asano, Y.; Ito, Y.; Fukami, M.; Sugiura, K.; Fujiie, A. Herbicide-resistant transgenic creeping bentgrass plants obtained by electroporation using an altered buffer. Plant Cell Rep. 17:963–967; 1998.CrossRefGoogle Scholar
  10. Asano, Y.; Otsuki, Y.; Ugaki, M. Electroporation-mediated and silicon carbide fiber-mediated DNA delivery in Agrostis alba L. (Redtop). Plant Sci. 79:247–252; 1991.CrossRefGoogle Scholar
  11. Asano, Y.; Ugaki, M. Transgenic plants of Agrostis alba obtained by electroporation-mediated direct gene transfer into protoplasts. Plant Cell Rep. 13:243–246; 1994.CrossRefGoogle Scholar
  12. Bajaj, S.; Ran, Y.; Phillips, J.; Kulrajathevan, G.; Pal, S.; Cohen, D.; Elborough, K.; Puthigae, S. A high throughput Agrobacterium tumefaciens-mediated transformation method for functional genomics of perennial ryegrass (Lolium perenne L.). Plant Cell Rep. (in press); 2006.Google Scholar
  13. Bate, N. J.; Orr, J.; Ni, W.; Meromi, A.; Nadler-Hassar, T.; Doerner, P. W.; Dixon, R. A.; Lamb, C. J.; Elkind, Y. Quantitative relationship between phenylalanine ammonia-lyase levels and phenylpropanoid accumulation in transgenic tobacco identifies a rate-determining step in natural product synthesis. Proc. Natl Acad. Sci. USA 91:7608–7612; 1994.PubMedCrossRefGoogle Scholar
  14. Baucher, M.; Monties, B.; Van Montagu, M.; Boerjan, W. Biosynthesis and genetic engineering of lignin. Crit. Rev. Plant Sci. 17:125–197; 1998.CrossRefGoogle Scholar
  15. Belanger, F. C.; Meagher, T. R.; Day, P. R.; Plumley, K.; Meyer, W. A. Interspecific hybridization between Agrostis stolonifera and related Agrostis species under field conditions. Crop Sci. 43:240–246; 2003.CrossRefGoogle Scholar
  16. Bernard-Vailhe, M. A.; Migne, C.; Cornu, A.; Maillot, M. P.; Crenet, E.; Besle, J. M.; Atanassova, R.; Martz, F.; Legrand, M. Effect of modification of the O-methyltransferase activity on cell wall composition, ultrastructure and degradability of transgenic tobacco. J. Sci. Food Agric. 72:385–391; 1996.CrossRefGoogle Scholar
  17. Bettany, A. J. E.; Dalton, S. J.; Timms, E.; Manderyck, B.; Dhanoa, M. S.; Morris, P. Agrobacterium tumefaciens-mediated transformation Festuca arundinacea (Schreb.) and Lolium multiflorum (Lam.). Plant Cell Rep. 21:437–444; 2003.PubMedGoogle Scholar
  18. Bhalla, P. L.; Swoboda, I.; Singh, M. B.; Antissense-mediated silencing of a gene encoding a major ryegrass pollen allergen. Proc. Natl Acad. Sci. USA 96:11676–11680; 1999.PubMedCrossRefGoogle Scholar
  19. Bieber, T. Fe RI on antigen-presenting cells. Curr. Opin. Immunol. 8:773–777; 1996.PubMedCrossRefGoogle Scholar
  20. Boudet, A. M.; Kajita, S.; Grima-Pettenati, J.; Goffner, D.. Lignins and lignocellulosics: a better control of synthesis for new and improved uses. Trends Plant Sci. 8:576–581; 2003PubMedCrossRefGoogle Scholar
  21. Bradford, K. J.; Van Deynze, A.; Gutterson, N.; Parrott, W.; Strauss, S. H. Regulating transgenic crops sensibly: lessons from plant breeding, biotechnology and genomics. Nat. Biotechnol. 23:439–444; 2005.PubMedCrossRefGoogle Scholar
  22. Brinch-Pedersen, H.; Sorensen, L. D.; Holm, P. B. Engineering crop plants: getting a handle on phosphate. Trends Plant Sci. 7:118–125; 2002.PubMedCrossRefGoogle Scholar
  23. Britton, M. P. Turfgrass diseases. In: Hanson, A. A.; Juska, F. V., eds. Turfgrass science. Madison, WI: American Society of Agronomy; 1969;288–335.Google Scholar
  24. Buxton, D. R.; Redfearn, D. D. Plant limitations to fiber digestion and utilization. J. Nutr. 127:814S-818S; 1997.PubMedGoogle Scholar
  25. Buxton, D. R.; Russell, J. R. Lignin constituents and cell-wall digestibility of grass and legume stems. Crop Sci. 28:553–558; 1988.CrossRefGoogle Scholar
  26. Casler, M. D.; Buxton, D. R.; Vogel, K. P. Genetic modification of lignin concentration affects fitness of perennial herbaceous plants. Theor. Appl. Genet. 104:127–131; 2002.PubMedCrossRefGoogle Scholar
  27. Casler, M. D.; Vogel, K. P. Accomplishments and impact from breeding for increased forage nutritional value. Crop Sci. 39:12–20; 1999.CrossRefGoogle Scholar
  28. Chabannes, M.; Barakate, A.; Lapierre, C.; Marita, J. M.; Ralph, J.; Pean, M.; Danoun, S.; Halpin, C.; Grima Pettenati, J.; Boudet, A. M. Strong decrease in lignin content without significant alteration of plant development is induced by simultaneous down-regulation of cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) in tobacco plants. Plant J. 28:257–270; 2001a.PubMedCrossRefGoogle Scholar
  29. Chabannes, M.; Ruel, K.; Yoshinaga, A.; Chabbert, B.; Jauneau, A.; Joseleau, J. P.; Boudet, A. M. In situ analysis of lignins in transgenic tobacco reveals a differential impact of individual transformations on the spatial patterns of lignin deposition at the cellular and subcellular levels. Plant J. 28:271–282; 2001b.PubMedCrossRefGoogle Scholar
  30. Chai, B.; Maqbool, S. B.; Hajela, R. K.; Green, D.; Vargas, J. M. Jr., Warkentin, D.; Sabzikar, R.; Sticklen, M. B. Cloning of a chitinaselike cDNA (hs2), its transfer to creeping bentgrass (Agrostis palustris Huds.) and development of brown patch (R. solani) disease resistant transgenic lines. Plant Sci. 163:183–193; 2002.CrossRefGoogle Scholar
  31. Chai, M. L.; Senthil, K. K.; Kim, D. H. Transgenic plants of colonial bentgrass from embryogenic callus via Agrobacterium-mediated transformation. Plant Cell Tiss. Organ Cult. 77:165–171; 2004.CrossRefGoogle Scholar
  32. Chakravarthy, S.; Tuori, R. P.; D'Ascenzo, M. D.; Fobert, P. R.; Despres, C.; Martin, G. B. The tomato transcription factor Pti4 regulates defenserelated gene expression via GCC box and non-GCC box cis elements. Plant Cell. 15:3033–3050; 2003.PubMedCrossRefGoogle Scholar
  33. Chatterton, N. J.; Thornley, W. R.; Harrison, P. A.; Bennett, J. H. DP-3 and DP-4 oligosaccharides in temperate and tropical grass foliage grown under cool temperatures. Plant Physiol. Biochem. 29:367–372; 1991.Google Scholar
  34. Chen, L.; Auh, C.; Chen, F.; Cheng, X. F.; Aljoe, H.; Dixon, R. A.; Wang, Z.-Y. Lignin deposition and associated changes in anatomy, enzyme activity, gene expression and ruminal degradability in stems of tall fescue at different developmental stages. J. Agric. Food Chem. 50:5558–5565; 2002.PubMedCrossRefGoogle Scholar
  35. Chen, L.; Auh, C.; Dowling, P.; Bell, J.; Chen, F.; Hopkins, A.; Dixon, R. A.; Wang, Z.-Y. Improved forage digestibility of tall fescue (Festuca arundinacea) by transgenic down-regulation of cinnamyl alcohol dehydrogenase. Plant Biotechnol. J. 1:437–449; 2003.PubMedCrossRefGoogle Scholar
  36. Chen, L.; Auh, C.; Dowling, P.; Bell, J.; Lehmann, D.; Wang, Z.-Y. Transgenic down-regulation of caffeic acid O-methyltransferase (COMT) led to improved digestibility in tall fescue (Festuca arundinacea). Funct. Plant Biol. 31:235–245; 2004.CrossRefGoogle Scholar
  37. Chen, X.; Yang, W. Q.; Sivamani, E.; Bruneau, A. H.; Wang, B. H.; Qu, R. D. Selective elimination of perennial ryegrass by activation of a proherbicide through engineering E. coli argE gene. Mol. Breed. 15:339–347; 2005.CrossRefGoogle Scholar
  38. Cheng, M.; Hu, T. C.; Layton, J.; Liu, C. N.; Fry, J. E. Desiccation of plant tissues post-Agrobacterium infection enhances T-DNA delivery and increases stable transformation efficiency in wheat. In Vitro Cell. Dev. Biol. Plant 39:595–604; 2003.CrossRefGoogle Scholar
  39. Cheng, M.; Lowe, B. A.; Spencer, T. M.; Ye, X. D.; Armstrong, C. L. Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cell. Dev. Biol. Plant 40:31–45; 2004.CrossRefGoogle Scholar
  40. Cheng, X.-F.; Wang, Z.-Y. Overexpression of COL9, a CONSTANS-LIKE gene, delays flowering by reducing CO and FT expression in Arabidopsis thaliana. Plant J. 43:758–768; 2005.PubMedCrossRefGoogle Scholar
  41. Cho, M. J.; Choi, H. W.; Lemaux, P. G. Transformed TO orchardgrass (Dactylis glomerata L.) plants produced from highly regenerative tissues derived from mature seeds. Plant Cell Rep. 20:318–324; 2001.CrossRefGoogle Scholar
  42. Cho, M. J.; Ha, C. D.; Lemaux, P. G. Production of transgenic tall fescue and red fescue plants by particle bombardment of mature seed-derived highly regenerative tissues. Plant Cell Rep. 19:1084–1089; 2000.CrossRefGoogle Scholar
  43. Choi, H. W.; Lemaux, P. G.; Cho, M.-J. Increased chromosomal variation in transgenic versus nontransgenic barley (Hordeum vulgare L.) plants. Crop Sci. 40:524–533; 2000.CrossRefGoogle Scholar
  44. Christou, P. Genetic transformation of crop plants using microprojectile bombardment. Plant J. 2:275–281; 1992.CrossRefGoogle Scholar
  45. Copeland, L. O.; Harding, E. E. Outcrossing in ryegrasses (Lolium spp.) as determined by fluorescence tests. Crop Sci. 10:254–257; 1970.CrossRefGoogle Scholar
  46. Cosgrove, D. J.; Bedinger, P.; Durachko, D. M. Group I allergens of grass pollen as cell wall-loosening agents. Proc. Natl Acad. Sci. USA 94:6559–6564; 1997.PubMedCrossRefGoogle Scholar
  47. Couch, H. B. Diseases of turfgrasses. Malabar, FL: Krieger Publishing Company; 1995.Google Scholar
  48. Dai, S.; Zheng, P.; Marmey, P.; Zhang, S.; Tian, W.; Chen, S.; Beachy, R. N.; Fauquet, C. Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Mol. Breed. 7:25–33; 2001.CrossRefGoogle Scholar
  49. Dai, W. D.; Bonos, S.; Guo, Z.; Meyer, W. A.; Day, P. R.; Belanger, F. C. Expression of pokeweed antiviral proteins in creeping bentgrass. Plant Cell Rep. 21:497–502; 2003.PubMedGoogle Scholar
  50. Dalton, S. J.; Bettany, A. J. E.; Bhat, V.; Gupta, M.G.; Bailey, K.; Timms, E. Morris, P. Genetic transformation of Dichanthium annulatum (Forssk): An apomictic tropical forage grass. Plant Cell Rep. 21:974–980; 2003.PubMedCrossRefGoogle Scholar
  51. Dalton, S. J.; Bettany, A. J. E.; Timms, E.; Morris, P. The effect of selection pressure on transformation frequency and copy number in transgenic plants of tall fescue (Festuca arundinacea Schreb.). Plant Sci. 108:63–70; 1995.CrossRefGoogle Scholar
  52. Dalton, S. J.; Bettany, A. J. E.; Timms, E.; Morris, P. Transgenic plants of Lolium multiforum, Lolium perenne, Festuca arundinacea and Agrostis stolonifera by silicon carbide fibre-mediated of cell suspension cultures. Plant Sci. 132:31–43; 1998.CrossRefGoogle Scholar
  53. Dalton, S. J.; Bettany, A. J. E.; Timms, E.; Morris, P. Co-transformed, diploid Lolium perenne (Perennial ryegrass), Lolium multiflorum (Italian ryegrass) and Lolium temulentum (Darnel) plants produced by microprojectile bombardment. Plant Cell Rep. 18:721–726; 1999.CrossRefGoogle Scholar
  54. Denchev, P. D.; Songstad, D. D.; McDaniel, J. K.; Conger, B. V. Transgenic orchardgrass (Dactylis glomerata) plants by direct embryogenesis from microprojectile bombarded leaf cells. Plant Cell Rep. 16:813–819; 1997.CrossRefGoogle Scholar
  55. Dixon, R. A.; Chen, F.; Guo, D. J.; Parvathi, K. The biosynthesis of monolignols: a ‘metabolic grid’, or independent pathways to guaiacyl and syringyl units?. Phytochemistry 57:1069–1084; 2001.PubMedCrossRefGoogle Scholar
  56. Dong, S.; Qu, R. High efficiency transformation of tall fescue with Agrobacterium tumefaciens. Plant Sci. 168:1453–1458; 2005.CrossRefGoogle Scholar
  57. Dubouzet, J. G.; Sakuma, Y.; Ito, Y.; Kasuga, M.; Dubouzet, E. G.; Miura, S.; Seki, M.; Shinozaki, K.; Yamaguchi-Shinozaki, K. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J. 33:751–763; 2003.PubMedCrossRefGoogle Scholar
  58. Ebskamp, M. J. M.; van der Meer, I. M.; Spronk, B. A.; Weisbeek P. J.; Smeekens, S. C. M. Accumulation of fructose polymers in transgenic tobacco. Bio/Technology 12:272–275; 1994.PubMedCrossRefGoogle Scholar
  59. Fei, S.; Nelson, E. Greenhouse evaluation of fitness-related reproductive traits in Roundup®-tolerant transgenic creeping bentgrass (Agrostis stolonifera L.). In Vitro Cell. Dev. Biol. Plant 40:266–273; 2004.CrossRefGoogle Scholar
  60. Frame, B. R.; Shou, H.; Chikwamba, R. K.; Zhang, Z.; Xiang, C.; Fonger, T. M.; Pegg, S. E. K.; Li, B.; Nettleton, D. S.; Pei, D.; Wang, K.; Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol. 129:13–22; 2002.PubMedCrossRefGoogle Scholar
  61. Freidhoff, L. R.; Ehrlich-Kautzky, E.; Grant, J. H.; Meyers, D. A.; Marsh, D. G. A study of the human immune response to Lolium perenne (rye) pollen and its components, Lol p I and Lol p II (rye I and rye II). I. Prevalence of reactivity to the allergens and correlations among skin test, IgE antibody, and IgG antibody data. J. Allergy Clin. Immunol. 1986: 1190–1201; 1986.CrossRefGoogle Scholar
  62. Freidhoff, L. R.; Ehrlich-Kautzky, E.; Meyers, D. A.; Marsh, D. G. A study of the human immune response to Lolium perenne (rye) pollen and its components, Lol p I and Lol p II (Rye I and Rye II). II. Longitudinal variation of antibody levels in relation to symptomatology and pollen exposure and correction of seasonally elevated antibody levels to basal values. J. Allergy Clin. Immunol. 80:646–655; 1987.PubMedCrossRefGoogle Scholar
  63. Fu, D.; Amand, P. C.; Xiao, Y.; Muthukrishnan, S.; Liang, G. H. Characterization of T-DNA integration in creeping bentgrass. Plant Sci. (in press); 2006.Google Scholar
  64. Fu, D.; Tisserat Ned, A.; Xiao, Y.; Settleb, D.; Muthukrishnanc, S.; Liang, G. H. Overexpression of rice TLPD34 enhances dollar-spot resistance in transgenic bentgrass. Plant Sci. 168:671–680; 2005.CrossRefGoogle Scholar
  65. Fukuda, A.; Nakamura, A.; Tagiri, A.; Tanaka, H.; Miyao, A.; Hirochika, H.; Tanaka, Y. Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice. Plant Cell Physiol. 45:146–159; 2004.PubMedCrossRefGoogle Scholar
  66. Gardner, D. S.; Danneberger, T. K.; Nelson, E. K. Lateral spread of glyphosate-resistant transgenic creeping bentgrass (Agrostis stolonifera) lines in established turfgrass swards. Weed Technol. 18:773–778; 2004.CrossRefGoogle Scholar
  67. Gardner D. S.; Danneberger, T. K.; Nelson, E.; Meyer, W.; Plumley, K. Relative fitness of glyphosate-resistant creeping bentgrass lines in Kentucky bluegrass. HortScience 38:455–459; 2003.Google Scholar
  68. Ge, Y.; Narton, T.; Wang, Z.-Y. Transgenic zoysiagrass (Zoysia japonica) plants obtained by Agrobacterium-mediated transformation. Plant Cell Rep. (in press); 2006.Google Scholar
  69. Gelderman, R. H.; Gerwing, J. R.; Twidwell, E. Point-injected phosphorus effects on established cool-season grass yield and phosphorus content. Agron. J. 94:48–51; 2002.CrossRefGoogle Scholar
  70. Giddings, G. D.; Hamilton, N. R. S.; Hayward, M. D. The release of genetically modified grasses. 1. Pollen dispersal to traps in Lolium perenne. Theor. Appl. Genet. 94:1000–1006; 1997a.CrossRefGoogle Scholar
  71. Giddings, G. D.; Hamilton, N. R. S.; Hayward, M. D. The release of genetically modified grasses. Part 2: The influence of wind direction on pollen dispersal. Theor. Appl. Genet. 94:1007–1014; 1997b.CrossRefGoogle Scholar
  72. Gilmour, S. J.; Sebolt, A. M.; Salazar, M. P.; Everard, J. D.; Thomashow, M. F. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol. 124:1854–1865; 2000.PubMedCrossRefGoogle Scholar
  73. Gocal, G. F. W.; King, R. W.; Blundell, C. A.; Schwartz, O. M.; Andersen, C. H.; Weigel, D. Evolution of floral meristem identity genes. Analysis of Lolium temulentum genes related to APETALA1 and LEAFY of Arabidopsis. Plant Physiol. 125:1788–1801; 2001.PubMedCrossRefGoogle Scholar
  74. Gocal, G. F. W.; Poole, A. T.; Gubler, F.; Watts, R. J.; Blundell, C.; King, R. W. Long-day up-regulation of a GAMYB gene during Lolium temulentum inflorescence formation. Plant Physiol. 119:1271–1278; 1999.PubMedCrossRefGoogle Scholar
  75. Goldman, J. J.; Hanna, W. W.; Fleming, G. H.; Ozias-Akins, P. Ploidy variation among herbicide-resistant bermudagrass plants of cultivar TifEagle transformed with the bar gene. Plant Cell Rep. 22:553–560; 2004.PubMedCrossRefGoogle Scholar
  76. Gondo, T.; Tsuruta, S.-I.; Akashi, R.; Kawamura, O.; Hoffmann F. Green, herbicide-resistant plants by particle inflow gun-mediated gene transfer to diploid bahiagrass (Paspalum notatum). J. Plant Physiol. 162:1367–1375; 2005.PubMedCrossRefGoogle Scholar
  77. Griffiths, D. J. The liability of seed crops of perennial ryegrass (Lolium perenne) to contamination by wind-borne pollen. J. Agric. Sci. 40:19–38; 1951.CrossRefGoogle Scholar
  78. Guo, D. J.; Chen, F.; Inoue, K.; Blount, J. W.; Dixon, R. A. Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa: impacts on lignin structure and implications for the biosynthesis of G and S lignin. Plant Cell 13:73–88; 2001a.PubMedCrossRefGoogle Scholar
  79. Guo, D. J.; Chen, F.; Wheeler, J.; Winder, J.; Selman, S.; Peterson, M.; Dixon, R. A. Improvement of in-rumen digestibility of alfalfa forage by genetic manipulation of lignin O-methyltransferases. Transgenic Res. 10:457–464; 2001b.PubMedCrossRefGoogle Scholar
  80. Guo, Z. F.; Bonos, S.; Meyer, W. A.; Day, P. R.; Belanger, F. C. Transgenic creeping bentgrass with delayed dollar spot symptoms. Mol. Breed. 11:95–101; 2003.CrossRefGoogle Scholar
  81. Gutterson, N.; Reuber, T. L. Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr. Opin. Plant Biol. 7:465–471; 2004.PubMedCrossRefGoogle Scholar
  82. Ha, C. D.; Lemaux, P. G.; Cho, M. J. Stable transformation of a recalcitrant Kentucky bluegrass (Poa pratensis L.) cultivar using mature seed-derived highly regenerative tissues. In Vitro Cell. Dev. Biol. Plant 37:6–11; 2001.CrossRefGoogle Scholar
  83. Ha, S. B.; Wu, F. S.; Thorne, T. K. Transgenic turf-type tall fescue (Festuca arundinacea Schreb.) plants regenerated from protoplasts. Plant Cell Rep. 11:601–604; 1992.CrossRefGoogle Scholar
  84. Haake, V.; Cook, D.; Riechmann, J. L.; Pineda, O.; Thomashow, M. F.; Zhang, J. Z. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol. 130:639–648; 2002.PubMedCrossRefGoogle Scholar
  85. Hamelinck, C. N.; van Hooijdonk, G.; Faaij, A. P. Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28:384–410; 2005.CrossRefGoogle Scholar
  86. Han, N.; Chen, D.; Bian, H.-W.; Deng, M.-J.; Zhu, M.-Y. Production of transgenic creeping bentgrass Agrostis stolonifera var. palustris plants by Agrobacterium tumefaciens-mediated transformation using hygromycin selection. Plant Cell Tiss. Organ Cult. 81:131–138; 2005.CrossRefGoogle Scholar
  87. Hartman, C. L.; Lee, L.; Day, P. R.; Tumer, N. E. Herbicide resistant turfgrass (Agrostis palustris Huds.) by biolistic transformation. Bio/Technology 12:919–923; 1994.CrossRefGoogle Scholar
  88. Hauptmann, R. M.; Ozias-Akins, P.; Vasil, V.; Tabaeizadeh, Z.; Rogers, S. G.; Horsch, R. B.; Vasil, I. K.; Fraley, R. T. Transient expression of electroporated DNA in monocotyledonous and dicotyledonous species. Plant Cell Rep. 6:265–270; 1987.CrossRefGoogle Scholar
  89. Hayes, J. E.; Richardson, A. E.; Simpson, R. J. Phytase and acid phosphatase activities in extracts from roots of temperate pasture grass and legume seedlings. Aust. J. Plant Physiol. 26:801–809; 1999.Google Scholar
  90. Hensgens, L. A. M.; de Bakker, E. P. H. M.; van Os-Ruygrok, E. P.; Rueb, S.; van de Mark, F.; van der Mass, H. M.; van der Veen, S.; Kooman-Gersmann, M.; Hart, L.; Schilperoort R. A. Transient and stable expression of gusA fusions with rice genes in rice, barley and perennial ryegrass. Plant Mol. Biol. 23:643–669; 1993.PubMedCrossRefGoogle Scholar
  91. Hisano, H.; Kanazawa, A.; Kawakami, A.; Yoshida, M.; Shimamoto, Y.; Yamada, T. Transgenic perennial ryegrass plants expressing wheat fructosyltransferase genes accumulate increased amounts of fructan and acquire increased tolerance on a cellular level to freezing. Plant Sci. 167:861–868; 2004.CrossRefGoogle Scholar
  92. Holford, I. C. R. Soil phosphorus: its measurement, and its uptake by plants. Aust. J. Soil Res. 35:227–239; 1997.CrossRefGoogle Scholar
  93. Horn, M. E.; Shillito, R. D.; Conger, B. V.; Harms, C. T. Transgenic plants of orchardgrass (Dactylis glomerata L.) from protoplasts. Plant Cell Rep. 7:469–472; 1988.CrossRefGoogle Scholar
  94. Hu, F.; Zhang, L.; Wang, X.; Ding, J.; Wu, D. Agrobacterium-mediated transformed transgenic triploid bermudagrass (Cynodon dactylon × C. transvaalensis) plants are highly resistant to the glufosinate herbicide Liberty. Plant Cell Tiss. Organ Cult. 83:13–19; 2005a.CrossRefGoogle Scholar
  95. Hu, T.; Metz, S.; Chay, C.; Zhou, H. P.; Biest, N.; Chen, G.; Cheng, M.; Feng, X.; Radionenko, M.; Lu, F.; Fry, J. Agrobacterium-mediated large-scale transformation of wheat (Triticum aestivum L.) using glyphosate selection. Plant Cell Rep. 21:1010–1019; 2003.PubMedCrossRefGoogle Scholar
  96. Hu, W. J.; Harding, S. A.; Lung, J.; Popko, J. L.; Ralph, J.; Stokke, D. D.; Tsai, C. J.; Chiang, V. L. Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat. Biotechnol. 17:808–812; 1999.PubMedCrossRefGoogle Scholar
  97. Hu, Y.; Jia, W.; Wang, J.; Zhang, Y.; Yang, L.; Lin, Z. Transgenic tall fescue containing the Agrobacterium tumefaciens ipt gene shows enhanced cold tolerance. Plant Cell Rep. 23:705–709; 2005b.PubMedCrossRefGoogle Scholar
  98. Huber, M.; Hahn, R.; Hess, D. High transformation frequencies obtained from a commercial wheat (Triticum aestivum L. cultivar ‘Combi’) by microbombardment of immature embryos followed by GFP screening combined with PPT selection. Mol. Breed. 10:19–30; 2002.CrossRefGoogle Scholar
  99. Humphreys, J. M.; Chapple, C. Rewriting the lignin roadmap. Curr. Opin. Plant Biol. 5:224–229; 2002.PubMedCrossRefGoogle Scholar
  100. Inokuma C.; Sugiura, K.; Imaizumi, N.; Cho, C. Transgenic Japanese lawngrass (Zoysia japonica Steud.) plants regenerated from protoplasts. Plant Cell Rep. 17:334–338; 1998.CrossRefGoogle Scholar
  101. Jaglo-Ottosen, K. R.; Gilmour, S. J.; Zarka, D. G.; Schabenberger, O.; Thomashow, M. F. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106; 1998.PubMedCrossRefGoogle Scholar
  102. Jauhar, P. P. Cytogenetics of the Festuca-Lolium complex: relevance to breeding. Berlin: Springer; 1993.Google Scholar
  103. Jensen, C. S.; Salchert, K.; Gao, C.; Andersen, C.; Didion, T.; Nielsen, K. K. Floral inhibition in red fescue (Festuca rubra L.) through expression of a heterologous flowering repressor from Lolium. Mol. Breed. 13:37–48; 2004.CrossRefGoogle Scholar
  104. Jensen, C. S.; Salchert, K.; Nielsen, K. K. A TERMINAL FLOMER1-like gene from perential ryegrass involved in floral transition and axillary meristem identity. Plant Physiol. 125:1517–1528; 2001.PubMedCrossRefGoogle Scholar
  105. Jofuku, K. D.; Boer, B.; Montagu, M. V.; Okamuro, J. K. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6:1211–1225; 1994.PubMedCrossRefGoogle Scholar
  106. Johnson, R. C.; Bradley, V. L.; Knowles, R. P. Genetic contamination by windborne pollen in germplasm-regeneration plots of smooth bromegrass. Plant Genet. Resour. Newslett. 106:30–34; 1996.Google Scholar
  107. Johnson, X.; Lidgett, A.; Chalmers, J.; Guthridge, K.; Jones, E.; Cummings N.; Spangenberg, G. Isolation and characterisation of an invertase cDNA from perennial ryegrass (Lolium perenne). J. Plant Physiol. 160:903–911; 2003.PubMedCrossRefGoogle Scholar
  108. Jouanin, L.; Goujon, T.; deNadai, V.; Martin, M. T.; Mila, I.; Vallet, C.; Pollet, B.; Yoshinaga, A.; Chabbert, B.; PetitConil, M.; Lapierre, C. Lignification in transgenic poplars with extremely reduced caffeic acid O-methyltransferase activity. Plant Physiol. 123:1363–1373; 2000.PubMedCrossRefGoogle Scholar
  109. Jung, H. J. G.; Ni, W. T. Lignification of plant cell walls: Impact of genetic manipulation. Proc. Natl Acad. Sci. USA 95:12742–12743; 1998.PubMedCrossRefGoogle Scholar
  110. Kajita, S.; Katayama, Y.; Omori, S. Alterations in the biosynthesis of lignin in transgenic plants with chimeric genes for 4-coumarate: coenzyme A ligase. Plant Cell Physiol. 37:957–965; 1996.PubMedGoogle Scholar
  111. Kasuga, M.; Liu, Q.; Miura, S.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol. 17:287–291; 1999.PubMedCrossRefGoogle Scholar
  112. King, R. W.; Evans, L. T. Gibberellins and flowering of grasses and cereals: prizing open the lid of the ‘florigen’ black box Annu. Rev. Plant Biol. 54:307–328; 2003.PubMedCrossRefGoogle Scholar
  113. Kortt, A.; Caldwell, J. B.; Lilley, G. G.; Higgins, T. J. V. Amino acid and cDNA sequences of a methionine-rich 2S protein from sunflower seed (Helianthus annuus L.). Eur. J. Biochem. 195:329–334; 1991.PubMedCrossRefGoogle Scholar
  114. Kuai, B.; Dalton, S. J.; Bettany, A. J. E.; Morris, P. Regeneration of fertile transgenic tall fescue plants with a stable highly expressed foreign gene. Plant Cell Tiss. Organ Cult. 58:149–154; 1999.CrossRefGoogle Scholar
  115. Kuai, B.; Morris, P. Screening for stable transformants and stability of beta-glucuronidase gene expression in suspension clutured cells of tail fescue (Festuca arundinacea). Plant Cell Rep. 15:804–808; 1996.CrossRefGoogle Scholar
  116. Lapierre, C.; Pollet, B.; Petit Conil, M.; Toval, G.; Romero, J.; Pilate, G.; Leple, J. C.; Boerjan, W.; Ferret, V.; Nadai, V. D.; Jouanin, L.; de Nadai, V. Structural alterations of lignins in transgenic poplars with depressed cinnamyl alcohol dehydrogenase or caffeic acid O-methyltransferase activity have an opposite impact on the efficiency of industrial kraft pulping. Plant Physiol. 119:153–163; 1999.PubMedCrossRefGoogle Scholar
  117. Lee, D.; Meyer, K.; Chapple, C.; Douglas, C. J. Antisense suppression of 4-coumarate:coenzyme A ligase activity in Arabidopsis leads to altered lignin subunit composition. Plant Cell 9:1985–1998; 1997.PubMedCrossRefGoogle Scholar
  118. Lee, L. Turfgrass biotechnology. Plant Sci. 115:1–8; 1996.CrossRefGoogle Scholar
  119. Lee, L.; Laramore, C. L.; Day, P. R.; Tumer, N. E. Transformation and regeneration of creeping bentgrass (Agrostis palustris Huds.) protoplasts. Crop Sci. 36:401–406; 1996.CrossRefGoogle Scholar
  120. Li, L.; Fei, S.; Qu, R. Agrobacterium-mediated transformation of common bermudagrass (Cynodon dactylon). Plant Cell Tiss. Organ Cult. 83:223–229; 2005.CrossRefGoogle Scholar
  121. Li, L.; Qu, R. Development of highly regenerable callus lines and biolistic transformation of turf-type common bermudagrass [Cynodon dactylon (L.) Pers.]. Plant Cell Rep. 22:403–407; 2004.PubMedCrossRefGoogle Scholar
  122. Li, L. C.; Cosgrove, D. J. Grass group I pollen allergens (beta-expansins) lack proteinase activity and do not cause wall loosening via proteolysis. Eur. J. Biochem. 268:4217–4226; 2001.PubMedCrossRefGoogle Scholar
  123. Li, Q.; Robson, P. R. H.; Bettany, A. J. E.; Donnison, I. S.; Thomas, H.; Scott, I. M. Modification of senescence in ryegrass transformed with IPT under the control of a monocot senescence-enhanced promoter. Plant Cell Rep. 22:816–821; 2004.PubMedCrossRefGoogle Scholar
  124. Liu, C. A.; Zhong, H.; Vargas, J.; Penner, D.; Sticklen, M. Prevention of fungal diseases in transgenic, bialaphos- and glufosinate-resistant creeping bentgrass (Agrostis palustris). Weed Sci. 46:139–146; 1998a.Google Scholar
  125. Liu, Q.; Kasuga, M.; Sakuma, Y.; Abe, H.; Miura, S.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406; 1998b.PubMedCrossRefGoogle Scholar
  126. Lock, T. R.; Kallenbach, R. L.; Blevins, D. G.; Reinbott, T. M.; Bishop-Hurley, G. J.; Crawford, R. J.; Massie, M. D. Adequate soil phosphorus decreases the grass tetany potential of tall fescue pasture. Crop Manag. August:1–8; 2002.Google Scholar
  127. Lubberstedt, T. Objectives and benefit of molecular breeding in forage grasses. In: Humphreys, M. O., ed. Molecular breeding for the genetic improvement of forage crops and turf. Wageningen: Wageningen Academic Publishers; 2005:19–30.Google Scholar
  128. Luo, C.; Brink, D. L.; Blanch, H. W. Identification of potential fermentation inhibitors in conversion of hybrid poplar hydrolyzate to ethanol. Biomass Bioenergy 22:125–138; 2002.CrossRefGoogle Scholar
  129. Luo, H.; Hu, Q.; Nelson, K.; Longo, C.; Kausch, A. P.; Chandlee, J. M.; Wipff, J. K.; Fricker, C. R. Agrobacterium tumefaciens-mediated creeping bentgrass (Agrostis stolonifera L.) transformation using phosphinothricin selection results in a high frequency of single-copy transgene integration. Plant Cell Rep. 22:645–652; 2004.PubMedCrossRefGoogle Scholar
  130. Marita, J. M.; Ralph, J.; Hatfield, R. D.; Chapple, C. NMR characterization of lignins in Arabidopsis altered in the activity of ferulate 5-hydroxylase. Proc. Natl Acad. Sci. USA 96:12325–12332; 1999.CrossRefGoogle Scholar
  131. McNabb, W. C.; Spencer, D.; Higgins, T. J.; Barry, T. N. In vitro rates of rumen proteolysis of ribulose-1,5-bisphosphate carboxylase (Rubisco) from lucerne leaves, and of ovalbumin, vicilin and sunflower albumin 8 storage proteins. J. Sci. Food Agric. 64:53–61. 1994.CrossRefGoogle Scholar
  132. Miller, S. S.; Liu, J.; Allan, D. L.; Menzhuber, C. J.; Fedorova, M.; Vance, C. P. Molecular control of acid phosphatase secretion into the rhizosphere of proteoid roots from phosphorus-stressed white lupin. Plant Physiol. 127:594–606; 2001.PubMedCrossRefGoogle Scholar
  133. Mudge, S. R.; Smith, F. W.; Richardson, A. E. Root-specific and phosphate-regulated expression of phytase under the control of a phosphate transporter promoter enables Arabidopsis to grow on phytate as a sole P. source. Plant Sci. 165:871–878; 2003.CrossRefGoogle Scholar
  134. Ncanana, S.; Brandt, W.; Lindsey, G.; Farrant, J. Development of plant regeneration and transformation protocols for the desiccation-sensitive weeping lovegrass Eragrostis curvula. Plant Cell Rep. 24:335–340; 2005.PubMedCrossRefGoogle Scholar
  135. Ni, W.; Paiva, N. L.; Dixon, R. A. Reduced lignin in transgenic plants containing an engineered caffeic acid O-methyltransferase antisense gene. Transgenic Res. 3:120–126; 1994.CrossRefGoogle Scholar
  136. Nielsen, K. M. Trausgenic organism—time for conceptual diversification? Nat. Biotechnol. 21:227–228; 2003.PubMedCrossRefGoogle Scholar
  137. Novillo, F.; Alonso, J. M.; Ecker, J. R.; Salinas, J. CBF2/DREBIC is a negative regulator of CBF1/DREBIB and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc. Natl Acad. Sci. USA 101:3985–3990; 2004.PubMedCrossRefGoogle Scholar
  138. Nurminiemi, M.; Tufto, J.; Nilsson, N. O.; Rognli, O. A. Spatial models of pollen dispersal in the forage grass meadow fescue. Evol. Ecol. 12:487–502; 1998.CrossRefGoogle Scholar
  139. Ohta, M.; Hayashi, Y.; Nakashima, A.; Hamada, A.; Tanaka, A.; Nakamura, T.; Hayakawa, T. Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett. 532:279–282; 2002.PubMedCrossRefGoogle Scholar
  140. Okamuro, I. K.; Caster, B.; Villarroel, R.; Van Montagu, M.; Jofuku, K. D. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc. Natl Acad. Sci. USA 94:7076–7081; 1997.PubMedCrossRefGoogle Scholar
  141. Onate-Sanchez, L.; Singh, K. B. Identification of Arabidopsis ethylene-responsive element binding factors with distinct induction kinetics after pathogen infection. Plant Physiol. 128:1313–1322; 2002.PubMedCrossRefGoogle Scholar
  142. Ong, E. K.; Griffith, I. J.; Knox, R. B.; Singh, M. B. Cloning of a cDNA encoding a group-V (group-IX) allergen isoform from rye-grass pollen that demonstrates specific antigenic immunoreactivity. Gene 134:235–240; 1993.PubMedCrossRefGoogle Scholar
  143. ORNL (Oak Ridge National Laboratory). Biofuels from switch-grass: greener energy pastures.;1998.Google Scholar
  144. Ørskov, E. R.; Chen, X. B. Assessment of amino acid requirement in ruminants. In: Hoshino, S.; Onodera, R.; Minato, H.; Itabashi, H., eds. The rumen ecosystem. Tokyo: Japan Scientific Societies Press and Springer-Verlag; 1990:161–167.Google Scholar
  145. Penmetsa, R. V.; Ha, S. B. Factors influencing transient gene expression in electroporated tall fescue protoplasts. Plant Sci. 100:171–178; 1994.CrossRefGoogle Scholar
  146. Perez, M.; Ishioka, G. Y.; Walker, L. E.; Chesnut, R. W. cDNA cloning and immunological characterization of the rye grass allergen Lol p I. J. Biol. Chem. 265:16210–16215; 1990.PubMedGoogle Scholar
  147. Perez Vicente, R.; Wen, X. D.; Wang, Z. Y.; Leduc, N.; Sautter, C.; Wehrli, E.; Potrykus, I.; Spangenberg, G. Culture of vegetative and floral meristems in ryegrasses: potential targets for microballistic transformation. J. Plant Physiol. 142:610–617; 1993.Google Scholar
  148. Petrovska, N.; Wu, X.; Donato, R.; Wang, Z.-Y.; Ong, E.-K.; Jones, E.; Forster, J.; Emmerling, M.; Sidoli, A.; O'Hehir, R.; Spangenberg, G. Transgenic ryegrasses (Lolium spp.) with down-regulation of main pollen allergens. Mol. Breed. 14:489–501; 2004.CrossRefGoogle Scholar
  149. Pilate, G.; Guiney, E.; Holt, K.; PetitConil, M.; Leple, J. C.; Pollet, B.; Mila, I.; Webster, E. A.; Marstorp, H. G. Hopkins, D. W.; Jouanin, L.; Boerjan, W.; Schuch, W.; Cornu, D.; Halpin, C. Field and pulping performances of transgenic trees with altered lignification. Nat. Biotechnol. 20:607–612; 2002.PubMedCrossRefGoogle Scholar
  150. Pilon-Smits, E. A. H.; Ebskamp, M. J. M.; Paul, M. J.; Jeuken, M. J. W.; Weisbeek, P. J.; Smeekens, S. C. M. Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol. 107:125–130; 1995.PubMedGoogle Scholar
  151. Piquemal, J.; Chamayou, S.; Nadaud, I.; Beckert, M.; Barriere, Y.; Mila, I.; Lapierre, C.; Rigau, J.; Puigdomenech, P.; Jauneau, A.; Digonnet, C.; Boudet, A. M.; Goffner, D.; Pichon, M. Down-regulation of caffeic acid O-methyltransferase in maize revisited using a transgenic approach. Plant Physiol. 130:1675–1685; 2002.PubMedCrossRefGoogle Scholar
  152. Piquemal, J.; Lapierre, C.; Myton, K.; O'Connell A.; Schuch, W.; Grima Pettenati, J.; Boudet, A. M. Down-regulation of cinnamoyl-CoA reductase induces significant changes of lignin profiles in transgenic tobacco plants. Plant J. 13:71–83; 1998.CrossRefGoogle Scholar
  153. Popelka, J. C.; Altpeter, F. Agrobacterium tumefaciens-mediated genetic transformation of rye (Secale cereale L.). Mol. Breed. 11:203–211; 2003.CrossRefGoogle Scholar
  154. Potrykus, I. Gene transfer to cereals: an assessment. Bio/Technology 8:535–542; 1990.CrossRefGoogle Scholar
  155. Potrykus, I. Gene transfer to plants: assessment of published approaches and results. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42:205–225; 1991.CrossRefGoogle Scholar
  156. Potrykus, I.; Saul, M. W.; Petruska, J.; Paszkowski, J.; Shillito, R. D. Direct gene transfer to cells of a graminaceous monocot. Mol. Gen. Genet. 199:183–188; 1985.CrossRefGoogle Scholar
  157. Putterill, J.; Robson, F.; Lee, K.; Simon, R.; Coupland, G. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80:847–857; 1995.PubMedCrossRefGoogle Scholar
  158. Radojevic, I.; Simpson, R. J.; St John, J. A.; Humphreys, M. O. Chemical composition and in vitro digestibility of lines of Lolium perenne selected for high concentrations of water-soluble carbohydrate. Aust. J. Agric. Res. 45:901–912; 1994.CrossRefGoogle Scholar
  159. Rae, A. L.; Manners, J. M.; Jones, R. J.; McIntyre, C. L.; Lu, D. Y. Antisense suppression of the lignin biosynthetic enzyme, caffeate O-methyltransferase, improves in vitro digestibility of the trophical pasture legume, Stylosanthes humilis. Aust. J. Plant Physiol. 28:289–297; 2001.Google Scholar
  160. Redwine, S. M.; Baird, J. H.; Sticklen, M. Mannitol accumulation in transgenic turfgrass. Abstracts ASA-CSSA-SSA Annual Meeting, 91:138; 1999.Google Scholar
  161. Reis, P. J.; Schinckel, P. G. Some effects of sulfur-containing amino acids on the growth and composition of wool. Aust. J. Biol. Sci. 16:218–230; 1963.Google Scholar
  162. Richards, H. A.; Rudas, V. A.; Sun, H.; McDaniel, J. K.; Tomaszewski, Z.; Conger, B. V. Construction of a GFP-BAR plasmid and its use for switchgrass transformation. Plant Cell Rep. 20:48–54; 2001.CrossRefGoogle Scholar
  163. Richardson, A. E.; Hadobas, P. A.; Hayes, J. E. Acid phosphomonoesterase and phytase activities of wheat (Triticum aestivum L.) roots and utilization of organic phosphorus substrates by seedlings grown in sterile culture. Plant Cell Environ. 23:397–405; 2000.CrossRefGoogle Scholar
  164. Richardson, A. E.; Hadobas, P. A.; Hayes, J. E. Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J. 25:641–649; 2001.PubMedCrossRefGoogle Scholar
  165. Riechmann, J. L.; Heard, J.; Martin, G.; Reuber, L.; Jiang, C.; Keddie, J.; Pilgrim, M.; Broun, P.; Zhang, J. Z.; Ghandehari, D.; Sherman, B. K.; Yu, G. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110; 2000.PubMedCrossRefGoogle Scholar
  166. Rogers, G. E. Improvement of wool production through genetic engineering. Trends Biotechnol. 8:6–11; 1990.PubMedCrossRefGoogle Scholar
  167. Rognli, O. A.; Nilsson, N. O.; Nurminiemi, M. Effects of distance and pollen competition on gene flow in the wind-pollinated grass Festuca pratensis Huds. Heredity 85:550–560; 2000.PubMedCrossRefGoogle Scholar
  168. Rommens, C. M.; Humara, J. M.; Ye, J.; Yan, H.; Richael, C.; Zhang, L.; Perry, R.; Swords, K. Crop improvement through modification of the plant's own genome. Plant Physiol. 135:421–431; 2004.PubMedCrossRefGoogle Scholar
  169. Sakuma, Y.; Liu, Q.; Dubouzet, J. G.; Abe, H.; Shinozaki, K.; Yamaguchi-Shinozaki, K. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression. Biochem. Biophys. Res. Commun. 290:998–1009; 2002.PubMedCrossRefGoogle Scholar
  170. Salehi, H.; Seddighi, Z.; Kravchenko, A. N.; Sticklen, M. B. Expression of the crylAc in ‘Arizona Common’ common bermudagrass via Agrobacterium-mediated transformation and control of black cutworm. J. Am. Society Hort. Sci. 130:619–623; 2005.Google Scholar
  171. Sallaud, C.; Meynard, D.; Boxtel, J. V.; Gay, C.; BAÒs, M.; Brizard, J. P.; Rueb, S.; Delseny, M.; Guiderdoni, E. Highly efficient production and characterization of T-DNA plants for rice (Oryza sativa L.) functional genomics. Theor. Appl. Genet. 106:1396–1408; 2003.PubMedGoogle Scholar
  172. Samach, A.; Onouchi, H.; Gold, S. E.; Ditta, G. S.; Schwarz, S. Z.; Yanofsky, M. F.; Coupland, G. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–1616; 2000.PubMedCrossRefGoogle Scholar
  173. Sato, H.; Takamizo, T. Agrobacterium tumefacines-mediated transformation of forage-type perennial ryegrass (Lolium perenne L.). Grassland Sci. (in press); 2006.Google Scholar
  174. Sanford, J. C. The biolistic process. Trends Biotechnol. 6:299–302; 1988.CrossRefGoogle Scholar
  175. Saul, M. W.; Potrykus, I. Direct gene transfer to protoplasts: fate of the transferred genes. Dev. Genet. 11:176–181; 1990.CrossRefGoogle Scholar
  176. Schultz, E. A.; Haughn, G. W. LEAFY, a homeotic gene that regulates inflorescence development in Arabidopsis. Plant Cell 3:771–781; 1991.PubMedCrossRefGoogle Scholar
  177. Sewalt, V. J. H.; Ni, W.; Blount, J. W.; Juag, H. G.; Howles, P. A.; Masoud, S. A.; Lamb, C.; Dixon, R. A. Reduced lignin content and altered lignin composition in transgenic tobacco down-regulated in expression of phenylalanine ammonia-lyase or cinnamate 4-hydroxylase. Plant Physiol. 115:41–50; 1997a.PubMedGoogle Scholar
  178. Sewalt, V. J. H.; Ni, W. T.; Jung, H. G.; Dixon, R. A. Lignin impact on fiber degradation: Increased enzymatic digestibility of genetically engineered tobacco (Nicotiana tabacum) stems reduced in lignin content. J. Agric. Food Chem. 45:1977–1983; 1997b.CrossRefGoogle Scholar
  179. Shapouri, H.; Duffield, J. A.; Wang, M. The energy balance of corn ethanol: an update. USDA Agricultural Economic Report No. 813; 2002.Google Scholar
  180. Shinozaki, K.; Yamaguchi-Shinozaki, K.; Seki, M. Regulatory network of gene expression in the drought and cold stress responses. Curr. Opin. Plant Biol. 6:410–417; 2003.PubMedCrossRefGoogle Scholar
  181. Simpson, G. G. Evolution of flowering in response to day length: flipping the CONSTANS switch. Bioessay 25:829–832; 2003.CrossRefGoogle Scholar
  182. Smith, R. L.; Grando, M. F.; Li, Y. Y.; Seib, J. C.; Shatters, R. G. Transformation of bahiagrass (Paspalum notalum Flugge). Plant Cell Rep. 20:1017–1021; 2002.CrossRefGoogle Scholar
  183. Somleva, M. N.; Tomaszewski, Z.; Conger, B. V. Agrobacterium-mediated genetic transformation of switchgrass. Crop Sci. 42:2080–2087; 2002.CrossRefGoogle Scholar
  184. Spangenberg, G.; Wang, Z.-Y. Biolistic transformation of embryogenic cell suspensions. In: Celis, J. E., ed. Cell biology: a laboratory handbook, vol. 4, 2nd edn. New York, NY; Academic Press; 1998:162–168.Google Scholar
  185. Spangenberg, G.; Wang, Z.-Y.; Nagel, J.; Potrykus, I. Protoplast culture and generation of transgenic plants in red fescue (Festuca rubra L.). Plant Sci. 97:83–94; 1994.CrossRefGoogle Scholar
  186. Spangenberg, G.; Wang, Z.-Y.; Potrykus, I. Biotechnology in forage and turf grass improvement. Berlin: Springer, 1998.Google Scholar
  187. Spangenberg, G.; Wang, Z.-Y.; Valles, M. P.; Potrykus, I. Genetic transformation in Festuca arundinacea Schreb. (tall fescue) and Festuca pratensis Huds. (meadow fescue). In: Bajaj, Y. P. S., ed. Biotechnology in agriculture and forestry, vol. 34; Berlin: Springer; 1995a:183–203.Google Scholar
  188. Spangenberg, G.; Wang, Z.-Y.; Wu, X. L.; Nagel, J.; Iglesia, V. A.; Potrykus, I. Transgenic tall fescue (Festuca arundinacea) and red fescue (F. rubra) plants from microprojectile bombardment of embryogenic suspension cells. J. Plant Physiol. 145:693–701; 1995b.Google Scholar
  189. Spangenberg, G.; Wang, Z.-Y.; Wu, X. L.; Nagel, J.; Potrykus, I. Transgenic perennial ryegrass (Lolium perenne) plants from microprojectile bombardment of embryogenic suspension cells. Plant Sci. 108:209–217; 1995c.CrossRefGoogle Scholar
  190. Spangenberg, G.; Wang, Z.-Y.; Ye, X. D.; Wu, X. L.; Potrykus, I. Transgenic ryegrasses (Lolium ssp.). In: Bajaj, Y. P. S., ed. Biotechnology in agriculture and forestry; transgenic crops part I, vol. 46. Berlin: Springer; 2000:172–187.Google Scholar
  191. Stingl, G.; Maurer, D. IgE-mediated allergen presentation via Fc epsilon RI on antigen-presenting cells. Int. Arch. Allergy Immunol. 113:24–29; 1997.PubMedCrossRefGoogle Scholar
  192. Stockinger, E. J.; Gilmour, S. J.; Thomashow, M. F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl Acad. Sci. USA 94:1035–1040; 1997.PubMedCrossRefGoogle Scholar
  193. Suárez-López, P.; Wheatley, K.; Robson, F.; Onouchi, H.; Valverde, F.; Coupland, G. CONSTANS mediates mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410:1116–1120; 2001.PubMedCrossRefGoogle Scholar
  194. Takahashi, W.; Fujimori, M.; Miura, Y.; Komatsu, T.; Nishizawa, Y.; Hibi, T., Takamizo, T. Increased resistance to crown rust disease in transgenic Italian ryegrass (Lolium multiflorum Lam.) expressing the rice chitinase gene. Plant Cell Rep. 23:811–818; 2005.PubMedCrossRefGoogle Scholar
  195. Tamborini, E.; Brandazza, A.; De, L. C.; Musco, G.; Siccardi, A. G.; Arosio, P.; Sidoli, A. Recombinant allergen Lol p II: Expression, purification and characterization. Mol. Immunol. 32:505–513; 1995.PubMedCrossRefGoogle Scholar
  196. Taylor, M. G.; Vasil, I. K. Histology of, and physical factors affecting, transient GUS expression microprojectile bombardment. Plant Cell Rep. 10:120–125; 1991.CrossRefGoogle Scholar
  197. Thomashow, M. F. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:571–599; 1999.PubMedCrossRefGoogle Scholar
  198. Tingay, S.; McElroy, D.; Kalla, R.; Fieg, S.; Wang, M.; Thornton, S.; Brettell, R.; Wang, M. B. Agrobacterium tumefaciens-mediated barley transformation. Plant J. 11:1369–1376; 1997.CrossRefGoogle Scholar
  199. Toyama, K.; Bae, C.-H.; Kang, J.-G.; Lim, Y.-P.; Adachi, T.; Rui, K.-Z.; Song, P.-S.; Lee, H.-Y. Production of herbicide-tolerant zoysiagrass by Agrobacterium-mediated transformation. Mol. Cells 16:19–27; 2003.PubMedGoogle Scholar
  200. van der Maas, H. M.; de Jong, E. R.; Rueb, S.; Hensgens, L. A. M.; Krens, F. A. Stable transformation and long-term expression of the gusA reporter gene in callus lines of perennial ryegrass (Lolium perenne L.). Plant Mol. Biol. 24:401–405; 1994.PubMedCrossRefGoogle Scholar
  201. van der Meer, I. M.; Ebskamp, M. J. M.; Visser, R. G. F.; Weisbeek, P. J.; Smeekens, S. C. M. Fructan as a new carbonhydrate sink in transgenic potato plants. Plant Cell 6:561–570; 1994.CrossRefGoogle Scholar
  202. van der Valk, P.; Proveniers, M. C. G.; Pertiis, J. H.; Lamers, J. T. W. H.; van Dun, C. M. P.; Smeekens, J. C. M. Late heading of perennial ryegrass caused by introducing an Arabidopsis homeobox gene. Plant Breed. 123:531–535; 2004.CrossRefGoogle Scholar
  203. Vance, C. P.; Uhde, S. C.; Allan, D. L. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol. 157:423–447; 2003.CrossRefGoogle Scholar
  204. Vasil, V.; Castillo, A. M.; Fromm, M. E.; Vasil, I. K. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/Technology 10:667–674; 1992.CrossRefGoogle Scholar
  205. Vasil, V.; Hauptmann, R. M.; Morrish, F. M.; Vasil, I. K. Comparative analysis of free DNA delivery and expression into protoplasts of Panicum maximum Jacq. (Guinea grass) by electroporation and polyethylene glycol. Plant Cell Rep. 7:499–503; 1988.CrossRefGoogle Scholar
  206. Vijn, I.; Smeekens, S. Fructan: more than a reserve carbohydrate?. Plant Physiol. 120:351–360; 1999.PubMedCrossRefGoogle Scholar
  207. Vogel, K. P.; Jung, H. J. G. Genetic modification of herbaceous plants for feed and fuel. Crit. Rev. Plant Sci. 20:15–49; 2001.CrossRefGoogle Scholar
  208. Vogel, K. P.; Sleper, D. A. Alteration of plants via genetics and plants breeding. In: Fahey, G. C., Jr., ed. Forage quality, evaluation, and utilization. Madison, WI, ASA-CSSA-SSSA; 1994:891–921.Google Scholar
  209. Wan, Y. C.; Lemaux, P. G. Generation of large numbers of independently transformed fertile barley plants. Plant Physiol. 104:37–48; 1994.PubMedGoogle Scholar
  210. Wang, G. R.; Binding, H.; Posselt, U. K. Fertile transgenic plants from direct gene transfer to protoplasts of Lolium perenne L. and Lolium multiflorum Lam. J. Plant Physiol. 151:83–90; 1997.Google Scholar
  211. Wang, Z.-Y.; Bell, J.; Ge, Y. X.; Lehmann, D. Inheritance of transgenes in transgenic tall fescue (Festuca arundinacea Schreb). In Vitro Cell. Dev. Biol. Plant 39:277–282; 2003a.CrossRefGoogle Scholar
  212. Wang, Z.-Y.; Bell, J.; Hopkins, A. Establishment of a plant regeneration system for wheatgrasses (Thinopyrum Agropyron and Pascopyrum). Plant Cell Tiss. Organ Cult. 73:265–273; 2003b.CrossRefGoogle Scholar
  213. Wang, Z.-Y.; Bell, J.; Lehmann, D. Transgenic Russian wildrye (Psathyrostachys juncea) plants obtained by biolistic transformation of embryogenic suspension cells. Plant Cell Rep. 22:903–909; 2004a.PubMedGoogle Scholar
  214. Wang, Z.-Y.; Ge, Y. Agrobacterium-mediated high efficiency transformation of tall fescue (Festuca arundinacea Schreb.). J. Plant Physiol. 162:103–113; 2005a.PubMedCrossRefGoogle Scholar
  215. Wang, Z.-Y.; Ge, Y.; Rapid and efficient production of transgenic bermudagrass and creeping bentgrass bypassing the callus formation phase. Funct. Plant Biol. 32:769–776; 2005b.CrossRefGoogle Scholar
  216. Wang, Z.-Y.; Ge, Y.; Mian, R.; Baker, J. Development of highly tissue culture responsive lines of Lolium temulentum by anther culture. Plant Sci. 168:203–211; 2005.CrossRefGoogle Scholar
  217. Wang, Z.-Y.; Ge, Y. X.; Scott, M.; Spangenberg, G. Viability and longevity of pollen from transgenic and non-transgenic tall fescue (Fesctuca arundinacea) (Poaceae) plants. Am. J. Bot. 91:523–530; 2004b.Google Scholar
  218. Wang, Z.-Y.; Hopkins, A.; Lawrence, R.; Bell, J.; Scott, M. Field evaluation and risk assessment of transgenic tall fescue (Festuca arundinacea) plants. In: Hopkins, A.; Wang, Z. Y.; Mian, R.; Barker, R. E., eds. Molecular breeding of forage and turf. Dordrecht: Kluwer Academic Publishers; 2004c:367–379.CrossRefGoogle Scholar
  219. Wang, Z.-Y.; Hopkins, A.; Mian, R. Forage and turf grass biotechnology. Crit. Rev. Plant Sci. 20:573–619; 2001a.CrossRefGoogle Scholar
  220. Wang, Z.-Y.; Lawrence, R.; Hopkins, A.; Bell, J.; Scott, M. Pollen-mediated transgene flow in the wind-pollinated grass species tall fescue (Festuca arundinacea Schreb.). Mol. Breed. 14:47–60; 2004d.CrossRefGoogle Scholar
  221. Wang, Z.-Y.; Lehmann, D.; Bell, J.; Hopkins, A. Development of an efficient plant regeneration system for Russian wildrye (Psathyrostachys juncea). Plant Cell Rep. 20:797–801; 2002.CrossRefGoogle Scholar
  222. Wang, Z.-Y.; Scott, M.; Bell, J.; Hopkins, A.; Lehmann, D. Field performance of transgenic tall fescue (Festuca arundinacea Schreb.) plants and their progenies. Theor. Appl. Genet. 107:406–412; 2003c.PubMedCrossRefGoogle Scholar
  223. Wang, Z.-Y.; Takamizo, T.; Iglesias, V. A.; Osusky, M.; Nagel, J.; Potrykus, I.; Spangenberg, G. Transgenic plants of tall fescue (Festuca arundinacea Schreb.) obtained by direct gene transfer to protoplasts. Bio/Technology 10:691–696; 1992.PubMedCrossRefGoogle Scholar
  224. Wang, Z.-Y.; Ye, X. D.; Nagel, J.; Potrykus, I.; Spangenberg, G. Expression of a sulphur-rich sunflower albumin gene in transgenic tall fescue (Festuca arundinacea Schreb.) plants. Plant Cell Rep. 20:213–219; 2001b.CrossRefGoogle Scholar
  225. Wasaki, I.; Omura, M.; Ando, M.; Shinano, T.; Osaki, M.; Tadano, T. Secreting portion of acid phosphatase in roots of lupin (Lupinus albus L.) and a key signal for the secretion from the roots. Soil Sci. Plant Nutr. 45:937–945; 1999.Google Scholar
  226. Watrud, L. S.; Lee, E. H.; Fairbrother, A.; Burdick, C.; Reichman, J. R.; Bollman, M.; Storm, M.; King, G.; Van de Water, P. K. Evidence for landscape-level, pollen-mediated gene flow from genetically modified creeping bentgrass with CP4 EPSPS as a marker. Proc. Natl Acad. Sci. USA 101:14533–14538; 2004.PubMedCrossRefGoogle Scholar
  227. Wei, J. Z.; Chatterton, N. J. Fructan biosynthesis and fructosyltransferase evolution: Expression of the 6-SFT (Sucrose:fructan 6-fructosyl-transferase) gene in crested wheatgrass (Agropyron cristatum). J. Plant Physiol. 158:1203–1213; 2001.CrossRefGoogle Scholar
  228. Wipff, J. K.; Fricker, C. Gene flow from transgenic creeping bentgrass (Agrostis stolonifera L.) in the Willamette valley, Oregon. Int. Turfgrass Soc. Res. J. 9:224–241; 2001.Google Scholar
  229. Wu, X. L.; Ye, X. D.; Wang, Z.-Y.; Potrykus, I.; Spangenberg, G. Gene transfer to ryegrasses: down-regulation of major pollen allergens in transgenic plants. Proceedings of XVIII International Grassland Congress, vol. 1.; 1997:35–36.Google Scholar
  230. Wu, Y. Y.; Chen, Q. J.; Chen, J.; Wang, X. C. Salt-tolerant transgenic perennial ryegrass (Lolium perenne L.) obtained by Agrobacterium tumefaciens-mediated transformation of the vacuolar Na+/H+ antiporter gene. Plant Sci. 169:65–73; 2005.CrossRefGoogle Scholar
  231. Xiao, K.; Harrison, M.; Wang, Z.-Y. Transgenic expression of a novel M. truncatula phytase gene results in improved acquisition of organic phosphorus by Arabidopsis. Planta 222:27–36; 2005.PubMedCrossRefGoogle Scholar
  232. Xiao, K.; Katagi, H.; Harrison, M.; Wang, Z.-Y. Improved phosphorus acquisition and biomass production in Arabidopsis by transgenic expression of a purple acid phosphatase gene from M. truncatula. Plant Sci. (in press); 2006.Google Scholar
  233. Xiao, L.; Ha, S. B. Efficient selection and regeneration of creeping bentgrass transformants following particle bombardment. Plant Cell Rep. 16:874–878; 1997.CrossRefGoogle Scholar
  234. Xu, J. P.; Schubert, J.; Altpeter, F. Dissection of RNA-mediated ryegrass mosaic virus resistance in fertile transgenic perennial ryegrass (Lolium perenne L.). Plant J. 26:265–274; 2001.PubMedCrossRefGoogle Scholar
  235. Ye, X.; Wang, Z.-Y.; Wu, X.; Potrykus, I.; Spangenberg, G. Transgenic Italian ryegrass (Lolium multiflorum) plants from microprojectile bombardment of embryogenic suspension cells. Plant Cell Rep. 16:379–384; 1997.Google Scholar
  236. Ye, X. D.; Wu, X. L.; Zhao, H.; Frehner, M.; Nosberger, J.; Potrykus, I.; Spangenberg, G. Altered fructan accumulation in transgenic Lolium multiflorum plants expressing a Bacillus subtilis sacB gene. Plant Cell Rep. 20:205–212; 2001.CrossRefGoogle Scholar
  237. Yu, T. T.; Skinner, D. Z.; Liang, G. H.; Trick, H. N.; Huang, B.; Muthukrishnan, S. Agrobacterium-mediated transformation of creeping bentgrass using GFP as a reporter gene. Hereditas 133:229–233; 2000.PubMedCrossRefGoogle Scholar
  238. Zhang, G.; Lu, S.; Chen, T. A.; Funk, C. R.; Meyer, W. A. Transformation of triploid bermudagrass (Cynodon dactylon × C. transvaalensis cultivar TifEagle) by means of biolistic bombardment. Plant Cell Rep. 21:860–864; 2003.PubMedGoogle Scholar
  239. Zhang, H.; Blumwald, E. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat. Biotechnol. 19:765; 2001.PubMedCrossRefGoogle Scholar
  240. Zhang, J.-Y.; Broeckling, C. D.; Blancaflor, E. B.; Sledge, M.; Sumner, L. W.; Wang, Z.-Y. Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J. 42:689–707; 2005.PubMedCrossRefGoogle Scholar
  241. Zhao, Z. Y.; Cai, T. S.; Tagliani, L.; Miller, M.; Wang, N.; Pang, H.; Rudert, M.; Schroeder, S.; Hondred, D.; Seltzer, J.; Pierce, D. Agrobacterium-mediated sorghum transformation. Plant Mol. Biol. 44:789–798; 2000.PubMedCrossRefGoogle Scholar
  242. Zhong, H.; Bolyard, M. G.; Srinivasan, C.; Sticklen, M. B. Transgenic plants of turfgrass (Agrostis palustris Huds.) from microprojectile bombardent of embryogenic callus. Plant Cell Rep. 13:1–6; 1994.Google Scholar
  243. Zhong, R. Q.; Morrison, W. H.; Negrel, J.; Ye, Z. H. Dual methylation pathways in lignin biosynthesis. Plant Cell 10:2033–2045; 1998.PubMedCrossRefGoogle Scholar
  244. Zimmermann, P.; Zardi, G.; Lehmann, M.; Amrhein, N.; Frossard, E.; Bucher, M. Engineering the root-soil interface via targeted expression of a synthetic phytase gene in tricholblasts. Plant Biotechnol. J. 1:353–360; 2003.PubMedCrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 2006

Authors and Affiliations

  1. 1.Forage Improvement DivisionThe Samuel Roberts Noble FoundationAramore

Personalised recommendations