In Vitro Cellular & Developmental Biology - Plant

, Volume 41, Issue 6, pp 725–730 | Cite as

Stable genetic transformation of embryogenic cultures of Abies nordmanniana (nordmann fir) and regeneration of transgenic plants

  • Jens I. Find
  • Julia A. Charity
  • Lynette J. Grace
  • Michel M. M. H. Kristensen
  • Peter Krogstrup
  • Christian Walter
Article

Summary

Stable genetic transformation of embryogenic cultures of Abies nordmanniana (Nordmann fir or Caucasian fir) was achieved using the Biolistic® transformation technology, followed by regeneration of transgenic plants. Selection of the transgenic tissue was based on the antibiotic resistance induced by the neomycin phosphotransferase II gene (npt II), in combination with the antibiotic geneticin. Six transclones were recovered from a total of 215 bombardments. Expression of the β-glucuronidase gene (uidA) was confirmed by histochemical analysis, and expression of npt II was verified by quantification of NPTII protein by enzyme linked immunosorbent assay (ELISA). Both genes were still expressed in the embryogenic tissue after 5 yr of in vitro culture and in mature somatic embryos and plants produced from these cultures. The integration of npt II was confirmed by Southern hybridization in embryogenic tissue after 5 yr of culture. After 5 yr of growth, uidA was still expressed in needles from the transformed trees.

Key words

Nordmann fir Abies nordmanniana Biolistic® transformation genetic engineering gene expression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bishop-Hurley, S. L.; Zabkievicz, R. J.; Grace, L. J.; Gardner, R. C.; Walter, C. Conifer genetic engineering: transgenic Pinus radiata (D Don) and Picea abies (Karst) plants are resistant to the herbicide Buster. Plant Cell Rep. 20:235–243; 2001.CrossRefGoogle Scholar
  2. Charest, P. J.; Devantier, Y.; Lachance, D. Stable transformation of Picea mariana (Black spruce) via microprojectile bombardment. In Vitro Cell. Dev. Biol. Plant 32:91–99; 1996.CrossRefGoogle Scholar
  3. Charity, J. A.; Holland, L.; Grace, L. J.; Walter, C. Consistent and stable expression of the npt II, uidA and bar genes in transgenic Pinus radiata after Agrobacterium tumefaciens-mediated transformation using nurse cultures. Plant Cell Rep. 23:606–616; 2005.PubMedCrossRefGoogle Scholar
  4. Doyle, J.; Doyle, J. Isolation of Plant DNA from fresh tissue, Focus 12:13–15; 1987.Google Scholar
  5. Ellis, D. D.; McCabe, D. E.; McInnis, S.; Ramachandran, R.; Russell, D. R.; Wallace, K. M.; Martinell, B. J.; Roberts, D. R.; Raffa, K. F.; McCown, B. H. Stable transformation of Picea glauca by particle acceleration. Bio/Technology 11:84–89; 1993.CrossRefGoogle Scholar
  6. Find, J.I. Culturing conifer embryonic cell mass in culture medium containing an anti-auxin improves maturation of conifer somatic embryos and plant propagation of coniferous tree, Patent no. WO200120972-A; 2001.Google Scholar
  7. Find, J. I.; Grace, L.; Krogstrup, P. Effects of anti-auxins on maturation of embryogenic tissue cultures of Nordmann fir (Abies nordmanniana). Physiol. Plant. 116:231–237; 2002.PubMedCrossRefGoogle Scholar
  8. Huang, Y.; Diner, A. M.; Karnosky, D. F. Agrobacterium rhizogenes-mediated genetic transformation and regeneration of a conifer: Larix decidua. In Vitro Cell Dev. Biol. Plant 27:201–207; 1991.Google Scholar
  9. Kay, R.; Chan, A.; Daly, M.; McPherson, J. Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science 236:1299–1302; 1987.CrossRefPubMedGoogle Scholar
  10. Klimaszewska, K.; Lachance, D.; Bernier-Cardou, M.; Rutlege, R. G. Transgene integration patterns and expression levels in transgenic lines of Picea mariana, P. glauca and P. abies. Plant Cell Rep. 21:1080–1087; 2003.PubMedCrossRefGoogle Scholar
  11. Klimaszewska, K.; Lachance, D.; Pelletier, G.; Lelu, A. M.; Seguin, A. Regeneration of transgenic Picea glauca, P. mariana and P. abies after cocultivation of embryogenic tissue with Agrobacterium tumefaciens. In Vitro Cell. Dev. Biol. Plant 37:748–755; 2001.CrossRefGoogle Scholar
  12. Kozak, M. The scanning model for translation: An update. J. Cell Biol. 109:229–241; 1989.CrossRefGoogle Scholar
  13. Levée, V.; Garin, E.; Klimaszewska, K.; Séguin, A. Stable genetic transformation of white pine (Pinus strobus L.) after cocultivation of embryogenic tissues with Agrobacterium tumefaciens. Mol. Breed. 5:429–440; 1999.CrossRefGoogle Scholar
  14. Levée, V.; Lelu, M.-A.; Jouanin, L.; Cornu, D.; Pilate, C. Agrobacterium tumefaciens-mediated transformation of hybrid larch (Larix kaempferi x L. decidua) and transgenic plant regeneration. Plant Cell Rep. 16:680–685; 1997.CrossRefGoogle Scholar
  15. Pena, L.; Séguin, A. Recent advances in the genetic transformation of trees. Trends Biotechnol. 19:500–506; 2001.PubMedCrossRefGoogle Scholar
  16. Tang, W.; Newton, R. J. Genetic transformation of conifers and its application in forest biotechnology. Plant Cell Rep. 22:1–15; 2003.PubMedCrossRefGoogle Scholar
  17. Wagner, A.; Moody, J.; Grace, L. J.; Walter, C. Transformation of Pinus radiata based on selection with hygromycin B. NZ J. For. Sci. 27(3):280–288; 1997.Google Scholar
  18. Walter, C.; Fenning, T. Deployment of genetically-engineered trees in plantation forestry—an issue of concern? The science and politics of genetically modified tree plantations. In: Walter, C.; Carson, M. J., eds. Plantation forest biotechnology for the 21st century, Kerala, India: Research Signpost; 2004;423–424.Google Scholar
  19. Walter, C.; Grace, L. J.; Donaldson, S. S.; Moody, J.; Gemmell, J. E.; van der Maas, S.; Kvaalen, H.; Lönneborg, A. An efficient Biolistic® transformation protocol for Picea abies (L.) Karst embryogeneic tissue and regeneration of transgenic plants. Can. J. For. Res. 29:1539–1546; 1999.CrossRefGoogle Scholar
  20. Walter, C.; Grace, L. J.; Wagner, A.; Walden, A. R.; White, D. W. R.; Donaldson, S. S.; Hinton, H. H.; Gardner, R. C.; Smith, D. R. Stable transformation and regeneration of transgenic plants of Pinus radiata D. Don. Plant Cell Rep. 17:460–468; 1998.CrossRefGoogle Scholar
  21. Walter, C.; Smith, D. R.; Connett, M. B.; Grace, L. J.; White, D. W. R. A biolistic approach for the transfer and expression of a uidA reporter gene in embryogenic cultures of Pinus radiata. Plant Cell Rep. 14:69–74; 1994.CrossRefGoogle Scholar
  22. Wenck, A. R.; Quinn, M.; Whetten, R. W.; Pullman, G.; Sederoff, R. High efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda). Plant Mol. Biol. 39:407–416; 1999.PubMedCrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 2005

Authors and Affiliations

  • Jens I. Find
    • 1
    • 2
  • Julia A. Charity
    • 1
  • Lynette J. Grace
    • 1
  • Michel M. M. H. Kristensen
    • 2
  • Peter Krogstrup
    • 2
  • Christian Walter
    • 1
  1. 1.New Zealand Forest Research Institute LtdRotoruaNew Zealand
  2. 2.Tissue Culture Laboratory, Botanic Garden and Museum, Natural History Museum of DenmarkUniversity of CopenhagenCopenhagen KDenmark

Personalised recommendations