Advertisement

Biotechnology in ornamental horticulture

  • Stephen F. ChandlerEmail author
  • Chin-Yi Lu
Article

Summary

Genetic engineering techniques have so far had limited impact in the field of ornamental horticulture. As outlined in this review, transformation systems and potential genes of interest are available. As the development of new, novel varieties is an important driving force in the industry, there are, therefore, good prospects for the development of genetically modified ornamental variaties. The few products in the market to date may simply be a reflection of the relatively small scale of the industry compared to the major food crops, and the wide diversity of species within it. Commercial issues attendant to the use of gene technology in ornamental plants need careful consideration. These include careful choice of crop and background variety, the international regulatory process and freedom to operate.

Key words

commercialization genetic engineering transformation transgenic flowers 

References

  1. Ahn, B. J.; Hwang, K. H.; Min, B. H.; Joung, H. Y. Transformation of carnations with flavonoid biosynthesis related genes. In Vitro 39:45-A; 2003.Google Scholar
  2. Ahn, B. J.; Joung, Y. H.; Kamo, K. Transgenic plants of Easter lily (Lilium longiflorum) with phosphinothricin resistance. J. Plant Biotech. 6:9–13; 2004a.Google Scholar
  3. Ahn, B. J.; Shin, H. Y.; Hwang, K. H.; Min, B. H.; Joung, H. Y. Transformation of carnations with jasmonate methyl transferase gene for fusarium tolerance. In Vitro Cell. Dev. Biol. 40:45-A; 2004b.Google Scholar
  4. Aida, R.; Hirose, Y.; Kishimoto, S.; Shibata, M. Agrobacterium tumefaciens-mediated transformation of Cyclamen persicum Mill. Plant Sci. 148:1–7; 1999.CrossRefGoogle Scholar
  5. Aida, R.; Kishimoto, S.; Tanaka, Y.; Shibata, M. Modification of flower color in torenia (Torenia fournieri Lind.) by genetic transformation. Plant Sci. 153:33–42; 2000.CrossRefGoogle Scholar
  6. Aida, R.; Shibata, M. Transformation of Kalanchoe blossfeldiana mediated by Agrobacterium tumefaciens and transgene silencing. Plant Sci. 121:175–185; 1996.CrossRefGoogle Scholar
  7. Aida, R.; Yoshida, T.; Ichimura, K.; Goto, R.; Shibata, M. Extension of flower longevity in transgenic torenia plants incorporating ACC oxidase transgene. Plant Sci. 138:91–101; 1998.CrossRefGoogle Scholar
  8. Akutsu, M.; Ishizaki, T.; Sato, H. Transformation of the monocotyledonous Alstroemeria by Agrobacterium tumefaciens. Plant Cell Rep. 22:561–568; 2004.PubMedCrossRefGoogle Scholar
  9. Aswath, C. R.; Mo, S. Y.; Kim, S-H.; Kim, D. H. IbMADS4 regulates the vegetative shoot development in transgenic chrysanthemum (Dendranthema grandiflora (Ramat.) Kitamura). Plant Sci. 166:847–854; 2004.CrossRefGoogle Scholar
  10. Baker, C.; Zhang, H.; Hall, G.; Scrocki, D.; Medina, A.; Dobres, M. S. The use of the GAI and CO genes to create novel ornamental plants. In Vitro Cell. Dev. Biol. 38:105-A; 2002.Google Scholar
  11. Bechtold, N.; Ellis, J.; Pelletier, G. In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C.R. Acad. Sci. 316:1194–1199; 1993.Google Scholar
  12. Belarmino, M. M.; Mii, M. Agrobacterium-mediated genetic transformation of a phalaenopsis orchid. Plant Cell Rep. 19:435–442; 2000.CrossRefGoogle Scholar
  13. Berthomieu, P.; Jouanin, L. Transformation of rapid cycling cabbage (Brassica oleracea var. Capitata) with Agrobacterium rhizogenes. Plant Cell Rep. 11:334–338; 1992.CrossRefGoogle Scholar
  14. Bi, Y.-M.; Cammue, B. P. A.; Goodwin, P. H.; KrishnaRaj, S.; Saxena, P. K. Resistance to Botrytis cinerea in scented geranium transformed with a gene encoding the antimicrobial protein Ace-AMP1. Plant Cell Rep. 18:835–840; 1999.CrossRefGoogle Scholar
  15. Boase, M. R.; Bradley, J. M.; Borst, N. K. Genetic transformation mediated by Agrobacterium tumefaciens of florist’s chrysanthemum (Dendranthema × grandiflorum) cultivar ‘Peach Margaret’. In Vitro Cell. Dev. Biol. Plant 34:46–51; 1998a.Google Scholar
  16. Boase, M. R.; Bradley, J. M.; Borst, N. K. A improved method for transformation of regal pelargonium (Pelargonium domesticum Dubonnet) by Agrobacterium tumefaciens. Plant Sci. 139:59–69; 1998b.CrossRefGoogle Scholar
  17. Boase, M. R.; Deroles, S. C.; Winefield, C. S.; Butcher, S. M.; Borst, N. K.; Butler, R. C. Genetic transformation of regal pelargonium (Pelargonium × domesticum ‘Dubonnet’) by Agrobacterium tumefaciens. Plant Sci. 121:47–61; 1996.CrossRefGoogle Scholar
  18. Boase, M. R.; Marshall, G. B.; Peters, T. A.; Bendall, M. J. Long-term expression of the gusA reporter gene in transgenic cyclamen produced from etiolated hypocotyl explants. Plant Cell Tiss. Organ Cult 70:27–39; 2002.CrossRefGoogle Scholar
  19. Boase, M. R.; Winefield, C. S.; Lill, T. A.; Bendall, M. J. Transgenic regal pelargoniums that express the rolC gene from Agrobacterium rhizogenes exhibit a dwarf floral and vegetative phenotype. In Vitro Cell. Dev. Biol. Plant 40:46–50; 2004.CrossRefGoogle Scholar
  20. Bovy, A. G.; Angenent, G. C.; Dons, H. J. M.; van Atvorst, A.-G. Heterologous expression of the Arabidopsis etr1-1 allele inhibits the sensscence of carnation flowers. Plant Sci. 5:301–308; 1999.Google Scholar
  21. Bradley, M.; Davies, K.; Deroles, S.; Bloor, S. J.; Lewis, D. H. The maize Lc regulatory gene up-regulates the flavonoid biosynthetic pathway of Petunia. Plant J. 13:381–392; 1998.CrossRefGoogle Scholar
  22. Bradley, M.; Davies, K.; Deroles, S.; Schwinn, K.; Manson, D. Color modification in petunia using the Lc regulatory gene from maize. Acta Hort. 420:23–25; 1995.Google Scholar
  23. Brugliera, F.; Kalc-Wright, G.; Hyland, C.; Webb, L.; Herbert, S.; Sheehan, B. Mason, J. G. Improvement of Fusarium with tolerance in carnations expressing chitinase. Supplement to Int. Plant Mol. Biol. Rep. 18:522–529; 2000.Google Scholar
  24. Chandler, S. F. Commercialization of genetically modified ornamental plants. J. Plant Biotech. 5:69–77; 2003.Google Scholar
  25. Chang, H.; Jones, M. L.; Nanowetz, G. M.; Clark, D. G. Overproduction of cytokinins in petunia flowers transformed with PSAG12-IPT delay corolla senescence and decrease sensitivity to ethylene. Plant Physiol. 132:2174–2183; 2003.PubMedCrossRefGoogle Scholar
  26. Clark, D. G.; Loucas, H.; Shibuya, K.; Underwood, B.; Barry, K.; Jandrew, J. Biotechnology of floricultural crops-scientific questions and real world answers. In: Vasil, I. K., ed. Plant biotechnology 2002 and beyond. Dordrecht: Kluwer Academic Publishers; 2003:337–342.Google Scholar
  27. Courtney-Gutterson, N.; Napoli, C.; Lemieux, C.; Morgan, A.; Firoozababy, E.; Robinson, K. E. P. Modification of flower color in Florist’s Chrysanthemum: production of a white-flowering variety through molecular genetics. Bio/Technology 12:268–271; 1994.PubMedCrossRefGoogle Scholar
  28. Cui, M-L.; Ezura, H.; Nishimura, S.; Kamada, H.; Handa, T. A rapid Agrobacterium-mediated transformation of Antirrhinum majus L. by using direct shoot regeneration from hypocotyl explants. Plant Sci. 166:873–879; 2004.CrossRefGoogle Scholar
  29. Davies, K. M.; Bloor, S. J.; Spiller, G. B.; Deroles, S. C. Production of yellow color in flowers: redirection of flavonoid biosynthesis in Petunia. Plant J. 13:259–266; 1998.CrossRefGoogle Scholar
  30. Davies, K. M.; Schwinn, K. E.; Deroles, S. C.; Manson, D. G.; Lewis, D. H.; Bloor, S. J.; Bradley, J. M. Enhancing anthocyanin production by altering competition for substrate between flavonol synthase and dihydroflavonol 4-reductase. Euphytica 131:259–268; 2003.CrossRefGoogle Scholar
  31. de Jong, J.; Rademaker, W.; Ohishi, K. Agrobacterium-mediated transformation of chrysanthemum. Plant Tiss. Cult. Biotechnol. 1:38–42; 1995.Google Scholar
  32. Deroles, S.; Bradley, J. M.; Davis, K. M.; Schwinn, K.; Manson, D. Generation of novel patterns in Lisianthus flowers using an antisense chalcone synthase gene. Acta Hort. 420:26–28; 1995.Google Scholar
  33. Deroles, S.; Bradley, J. M.; Schwinn, K. E.; Markham, K. R.; Bloor, S.; Manson, D. G.; Davies, K. M. An antisense chalcone synthase cDNA leads to novel colour patterns in lisianthus (Eustoma grandiflorum) flowers. Mol. Breed. 4:59–66; 1998.CrossRefGoogle Scholar
  34. Deroles, S.; Ledger, S. E.; Miller, R. M.; Davies, K. M.; Given, N. K. Transformation in Eustoma grandiflorum (Lisianthus). In: Bajaj, Y. P. S., ed. Biotechnology in agriculture and forestry, vol. 22. Plant protoplasts and genetic engineering III. Berlin: Springer-Verlag; 1993; 202–212.Google Scholar
  35. Dohm, A. Biotechnologies for Breeding/Genetic Transformation. In: Roberts, A. V.; Debener, T.; Gudin, S., eds. Encyclopedia of rose science. Amsterdam: Elsevier Academic Press; 2003:15–25.Google Scholar
  36. De Vetten, N.; Wolters, A-M.; Raemakers, K.; van der Meer, I.; ter Stege, R.; Heeres, E.; Heeres, P.; Visser, R. A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nat. Biotechnol. 21:439–442; 2003.PubMedCrossRefGoogle Scholar
  37. Elliott, A. R.; Campbell, J. A.; Dugdale, B.; Brettell, R. I. S.; Grof, C. P. L. Green-fluorescent protein facilitates rapid in vivo detection of genetically transformed plant cells. Plant Cell Rep. 18:707–714; 1999.CrossRefGoogle Scholar
  38. Elomaa, P.; Honkanen, J.; Puska, R.; Seppanen, P.; Helariutta, Y.; Mehto, M.; Kotilainen, M.; Nevalainen, L.; Teeri, T. H. Agrobacterium-mediated transfer of antisense chalcone synthase cDNA to Gerbera hybrida inhibits flower pigmentation. Bio/Technology 11:508–511; 1993.CrossRefGoogle Scholar
  39. Firoozabady, E.; Moy, Y.; Coutney-Gutterson, N.; Robinson, K. Regeneration of transgenic rose (Rosa hybrida) plant from embryogenic tissue. Bio/Technology 12:609–613; 1994.CrossRefGoogle Scholar
  40. Firoozabady, E.; Moy, Y.; Tucker, W.; Robinson, K.; Gutterson, N. Efficient transformation and regeneration of carnation cultivars using Agrobacterium. Mol. Breed. 1:283–293; 1995.CrossRefGoogle Scholar
  41. Firoozabady, E.; Noriega, C.; Sondahl, M. R.; Robinson, K. E. P. Genetic transformation of rose (Rosa hybrida cv. Royalty) via Agrobacterium tumefaciens. In Vitro Cell. Dev. Biol. Plant 27:154A; 1991.Google Scholar
  42. Fitch, M. M. M.; Manshardt, R. M.; Gonsalves, D.; Slightom, J. L.; Sanford, J. C. Stable transformation of papaya via microprojectile bombardment. Plant Cell Rep. 9:189–194; 1990.Google Scholar
  43. Fukai, S.; de Jong, J.; Rademaker, W. Agrobacterium-mediated genetic transformation of chrysanthemum. Acta Hort. 392:147–152; 1995.Google Scholar
  44. Giovannini, A.; Zottini, M.; Morreale, G.; Spena, A.; Allavena, A. Ornamental traits modification by rol genes in Osteospermum ecklonis transformed with Agrobacterium tumefaciens. In Vitro Cell. Dev. Biol. Plant 35:70–75; 1999.Google Scholar
  45. Godo, T.; Mii, M. Transgenic Nierembergia scopara (tall cupflower). In: Bajaj, Y. P. S., ed. Biotechnology in agriculture and forestry, vol. 48. Transgenic crops III. Berlin: Springer-Verlag; 2001;237–248.Google Scholar
  46. Griesbach, R. J. An improved method for transforming plants through electrophoresis. Plant Sci. 102:81–89; 1994.CrossRefGoogle Scholar
  47. Guterman, I.; Shalit, M.; Menda, N.; Piestun, D.; Dafny-Yelin, M.; Schalev, G. Bar, E.; Davydov, O.; Ovadis, M.; Emanuel, M.; Wang, J.; Adam, Z.; Pichersky, E.; Lewinsohn, E.; Zamir, D.; Vainstein, A.; Weiss, D. Rose scent: genomics approach to discover novel floral fragrance-related genes. Plant Cell 14:2325–2338; 2002.PubMedCrossRefGoogle Scholar
  48. Gutterson, N. Anthocyanin biosynthetic genes and their application to flower colour modification through sense suppression. HortScience 30:964–966; 1995.Google Scholar
  49. Handa, T. Genetic transformation of Antirrhinum majus L. and inheritance of altered phenotype induced by RiT-DNA. Plant Sci. 81:199–206; 1992.CrossRefGoogle Scholar
  50. Hein, M. B.; Cowen, N. M. Antibodies from plants: breaking the barriers to antibody production. In: Vasil, I. K., ed. Plant biotechnology 2002 and beyond. Dordrecht: Kluwer Academic Publishers; 2003:69.Google Scholar
  51. Hirose, Y.; Aida, R.; Shibata, M. Agrobacterium tumefaciens-mediated transformation of Delphinium spp. Plant Biotechnol. 19:377–382; 2002.Google Scholar
  52. Hood, E. E.; Horn, M. E.; Howard, J. A. Production and application of proteins from transgenic plants. In: Vasil, I. K. ed. Plant biotechnology 2002 and beyond. Dordrecht: Kluwer Academic Publishers; 2003:377–382.Google Scholar
  53. Horsch, R. B.; Fraley, R. T.; Rogers, S. G.; Sanders, P. R.; Lloyd, A.; Hoffmann, N. L. Inheritance of functional foreign genes in plants. Science 223:496–498; 1984.CrossRefPubMedGoogle Scholar
  54. Horsch, R. B.; Fry, J. E.; Hoffmann, N. L.; Eichholtz, D.; Rogers, S. G.; Fraley, R. T. A simple and general method for transferring genes into plants. Science 227:1229–1231; 1985.CrossRefGoogle Scholar
  55. Hoshi, Y.; Kondo, M.; Kobayashi, H. Transformation of Begonia semperflorens by using Agrobacterium. J. Jpn. Soc. Hort. Sci. 72:373; 2003.Google Scholar
  56. Hoshi, Y.; Kondo, M.; Mori, S.; Adachi, Y.; Nakano, M.; Kobayashi, H. Production of transgenic lily plants by Agrobacterium-mediated transformation. Plant Cell Rep. 22:359–364; 2004.PubMedCrossRefGoogle Scholar
  57. Huber, M.; Hahn, R.; Hess, D. High transformation frequency obtained from a commercial wheat (Triticum aestivum L. cv. ‘Combi’) by microbombardment of immature embryos followed by GFP screening combined with PPT selection. Mol. Breed. 10:19–30; 2002.CrossRefGoogle Scholar
  58. Hvoslef-Eide, A. K.; Fjeld, T.; Einset, J. W. Breeding Christmas begonia (Begonia × cheimantha Everett) for increased keeping quality by traditional and biotechnological methods. Acta Hort. 405:197–204; 1995.Google Scholar
  59. Jeknic, Z.; Lee, S. P.; Davies, J.; Ernst, R. C.; Chen, T. H. H. Genetic transformation of Iris germmanica mediated by Agrobacterium tumefaciens. J. Am. Soc. Hort. Sci. 124:575–580; 1999.Google Scholar
  60. Joung, Y.; Roh, M.; Kamo, K.; Song, J. Agrobacterium mediated transformation of Campanula glomerata. Plant Cell Rep. 20:289–295; 2001.CrossRefGoogle Scholar
  61. Kamo, K.; Blowers, A.; Smith, F.; van Eck, J. Stable transformation of Gladiolus by particle gun bombardment of cormels. Plant Sci. 110:105–111; 1995a.CrossRefGoogle Scholar
  62. Kamo, K.; Blowers, A.; Smith, F.; van Eck, J.; Lawson, R. Stable transformation of Gladiolus using suspension cells and callus. J. Am. Soc. Hort. Sci. 120:347–352; 1995b.Google Scholar
  63. Kamo, K.; Gera, A.; Cohen, J.; Hammond, J. Transformation of Gladiolus for resistance to bean yellow mosaic virus. In Vitro Cell. Dev. Biol. 38:107-A; 2002.Google Scholar
  64. Kamo, K.; Gera, A.; Cohen, J.; Hammond, J. Transgenic Gladiolus plants transformed with the bean yellow mosaic virus coat-protein gene in either sense or antisense orientation. Plant Cell Rep. 23:654–663; 2005.PubMedCrossRefGoogle Scholar
  65. Kim, C. K.; Chung, J. D.; Park, S. H.; Burrell, A. M.; Kamo, K. K.; Byrne, D. H. Agrobacterium tumefaciens-mediated transformation of Rosa hybrida using the green fluorescent protein (GFP). Plant Cell Tiss. Organ Cult. 78:107–111; 2004.CrossRefGoogle Scholar
  66. Kishimoto, S.; Aida, R.; Shibata, M. Agrobacterium tumefaciens-mediated transformation of Elatior Begonia (Begonia × hiemalis Fotsch). Plant Sci. 162:697–703; 2002.CrossRefGoogle Scholar
  67. Kiyokawa, S.; Kikuchi, Y.; Kamada, H.; Harada, H. Genetic transformation of Begonia tuberhybrida by Ri rol genes. Plant Cell Rep. 15:606–609; 1996.CrossRefGoogle Scholar
  68. Kiyokawa, S.; Kikuchi, Y.; Kamada, H.; Harada, H. Transgenic Begonia. In: Bajaj, Y. P. S., ed. Biotechnology in agriculture and forestry, vol. 48. Transgenic crops III. Berlin: Springer-Verlag; 2001:43–54.Google Scholar
  69. Knapp, J. E.; Kausch, A. P.; Auer, C.; Brand, M. H. Transformation of Rhododendron through microprojectile bombardment. Plant Cell Rep. 20:749–754; 2002.Google Scholar
  70. Komari, T.; Hiei, Y.; Saito, Y.; Murai, N.; Kumashiro, T. Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J. 10:165–174; 1996.PubMedCrossRefGoogle Scholar
  71. KrishnaRaj, S.; Bi, Y-M.; Saxena, P. K. Somatic embryogenesis and Agrobacterium-mediated transformation system for scented geraniums (Pelargonium sp. ‘Frensham’). Planta 201:434–440; 1997.CrossRefGoogle Scholar
  72. Kuehnle, A. R.; Chen. F. C.; Jaynes, J. M. Engineering bacterial blight resistance into Anthurium. Proceedings of the XVIIth Eucarpia Symposium ‘Creating Genetic Variations in Ornamentals’, Sanremo, 1993; 127–129.Google Scholar
  73. Kuehnle, A. R.; Sugii, N. Transformation of Dendrobium orchid using particle bombardment of protocorms. Plant Cell Rep. 11:484–488; 1992.Google Scholar
  74. Kushikawa, S.; Hoshino, Y.; Mii, M. Agrobacterium-mediated transformation of Saintpaulia ionantha Wendl. Plant Sci. 161:953–960; 2001.CrossRefGoogle Scholar
  75. Ledger, S. E.; Deroles, S. C.; Given, N. K. Regeneration and Agrobacterium-mediated transformation of chrysanthemum. Plant Cell Rep. 10:195–199; 1991.CrossRefGoogle Scholar
  76. Ledger, S. E.; Deroles, S. C.; Manson, D. G.; Marie Bradley, J.; Given, N. K. Transformation of Lisianthus (Eustoma gradiflorum). Plant Cell Rep. 16:853–858; 1997.CrossRefGoogle Scholar
  77. Lee, S. Y.; Han, B. H.; Yoo, H. J.; Shin, H. K.; Mok, I. G.; Woo, J. G.; Suh, E. J.; Lim, Y. P. Transgenic chrysanthemum (Dendranthema grandiflora cv. Subangyuk) with Ls like gene expresses branchlessness habit. In Vitro Cell. Dev. Biol. 39:43-A; 2003.CrossRefGoogle Scholar
  78. Lemieux, C.; Firoozabady, E.; Robinson, K. Agrobacterium-mediated transformation of chrysanthemum In: VIIth International congress on plant tissue and cell culture, Amsterdam, 1990:55.Google Scholar
  79. Lewinsohn, E.; Shalit, M.; Gang, D.; Lavid, N.; Bar, E.; Weiss, D.; Vainstein, A.; Adam, Z.; Zamir, D.; Dudareva, N.; Zaccai, M.; Simon, J. E.; Pichersky, E. Functional genomics to isolate genes involved in fragrance production for genetic engineering of scent in flowers. In: Vasil, I. K., ed. Plant biotechnology 2002 and beyond. Dordrecht: Kluwer Academic Publishers; 2003:329–332.Google Scholar
  80. Li, X.; Gasic, K.; Cammue, B.; Broekaert, W.; Korban, S. S. Transgenic rose lines harboring an antimicrobial protein gene, Ace-AMP1, demonstrate enhanced resistance to powdery mildew (Sphaerotheca pannosa). Planta 218:226–232; 2003.PubMedCrossRefGoogle Scholar
  81. Liau, C-H.; You, S-J.; Prasad, V.; Hsiao, H-H.; Lu, J-C.; Yang, N-S.; Chan, M-T. Agrobacterium tumefaciens-mediated transformation of an Oncidium orchid. Plant Cell Rep. 21:993–998; 2003.PubMedCrossRefGoogle Scholar
  82. Lu, C.; Chandler, S. F. Genetic transformation of Dianthus caryophyllus (carnation). In: Bajaj, Y. P. S., ed. Biotechnology in agriculture and forestry, vol. 34. Plant protoplasts and genetic engineering VI. Berlin: Springer-Verlag; 1995:156–170.Google Scholar
  83. Lu, C.; Chandler, S. F.; Mason, J. G.; Brugliera, F. Florigene flowers: from laboratory to market. In: Vasil, I. K., ed. Plant biotechnology 2002 and beyond. Dordrecht: Kluwer Academic Publishers; 2003:333–336.Google Scholar
  84. Lu, C.; Nugent, G.; Wardley-Richardson, T.; Chandler, S. F.; Young, R.; Dalling, M. Agrobacterium-mediated transformation of carnation (Dianthus caryophyllus L.). Bio/Technology 9:864–868; 1991.CrossRefGoogle Scholar
  85. Marchant, R.; Power, J. B.; Lucas, J. A.; Davey, M. R. Biolistic transformation of rose (Rosa hybrida L.). Ann. Bot. 81:109–114; 1998a.CrossRefGoogle Scholar
  86. Marchant, R.; Davey, M.R.; Lucus, J.A.; Lamb, C.J.; Dixon, R.A.; Power, J.B. Expression of a chitinase transgene in rose (Rosa hybrida L.) reduces development of blackspot disease (Diplocarpon rosae Wolf). Mol. Breed. 4:187–194; 1998b.CrossRefGoogle Scholar
  87. Meagher, R. B. Phytoremediation of toxic mercury and arsenic pollution. In: Vasil, I. K., ed. Plant biotechnology 2002 and beyond. Dordrecht: Kluwer Academic Publishers; 2003:473–478.Google Scholar
  88. Meeks-Wagner, D. R. Fast flowering. Trends Plant Sci. 1:76–77; 1996.CrossRefGoogle Scholar
  89. Men, S.; Ming, X.; Liu, R.; Wei, C.; Li, Y. Agrobacterium-mediated genetic transformation of a Dendrobium orchid. Plant Cell Tiss. Organ. Cult. 75:63–71; 2003a.CrossRefGoogle Scholar
  90. Men, S.; Ming, X.; Wang, Y.; Liu, R.; Wei, C.; Li, Y. Genetic transformation of two species of orchid by biolistic bombardment. Plant Cell Rep. 21:592–598; 2003b.PubMedGoogle Scholar
  91. Mercuri, A.; De Benedetti, L.; Burchi, G.; Schiva, T. Agrobacterium-mediated transformation of African violet. Plant Cell Tiss. Organ Cult. 60:39–46; 2000.CrossRefGoogle Scholar
  92. Meyer, P.; Heidemann, I.; Forkmann, G.; Saedler, H. A. new petunia flower colour generated by transformation of a mutant with a maize gene. Nature 330:677–678; 1987.PubMedCrossRefGoogle Scholar
  93. Miroshnichenko, D. N.; Dolgov, S. V. Production of transgenic hygromycin resistant carnation (Dianthus caryophyllus L.) plants after cocultivation with Agrobacterium tumefaciens. Acta Hort. 508:255–258; 2000.Google Scholar
  94. Mol, J.; Grotewold, E.; Koes, R. How genes paint flowers. In: Altman, A.; Ziv, M.; Izhar, S., eds. Plant biotechnology and in vitro biology in the 21st century. Dordrecht: Kluwer Academic Publishers; 1999:597–600.Google Scholar
  95. Morandini, P.; Salamini, F. Plant biotechnology and breeding: allied for years to come. Trends Plant Sci. 8:70–75; 2003.PubMedCrossRefGoogle Scholar
  96. Mori, S.; Kobayashi H.; Hoshi, Y.; Kondo, M. Heterologous expression of the flavonoid 3′,5′-hydroxylase gene of Vinca major alters flower color in transgenic Petunia hybrida. Plant Cell Rep. 22:415–421; 2004.PubMedCrossRefGoogle Scholar
  97. Morse, S.; Bennett, B.; Ismael, Y. Why Bt cotton pays for small-scale producers in South Africa. Nat. Biotechnol. 22:379–380; 2004.PubMedCrossRefGoogle Scholar
  98. Nagaraju, V.; Srinivas, G. S. L.; Sita, G. L. Agrobacterium-mediated genetic transformation in Gerbera hybrida. Curr. Sci. 74:630–634; 1998.Google Scholar
  99. Nielsen, K.; Deroles, S. C.; Markham, K. R.; Bradley, M. J.; Podivinsky, E.; Manson, D. Antisense flavonol synthase alters copigmentation and flower color in lisianthus. Mol. Breed. 9:217–229; 2002.CrossRefGoogle Scholar
  100. Nishihara, M.; Nakatsuka, T.; Mishiba, K.; Kikuchi, A.; Yamamura, S. Flower color modification by suppression of chalcone synthase gene in gentian. Plant Cell Physiol. 44:s159; 2003.Google Scholar
  101. Orlikowska, T.; Nowak, E. Factors affecting transformation of gerbera. Acta Hort. 447:619–621; 1997.Google Scholar
  102. Park, S-U.; Facchini, P. J. Agrobacterium-mediated genetic transformation of California poppy, Eschscholzia californica Cham. via somatic embryogenesis. Plant Cell Rep. 19:1006–1012; 2000.CrossRefGoogle Scholar
  103. Pavingerova, D.; Briza, J.; Kodytek, K. Niedermeierova, H. Transformation of Rhododendron spp. using Agrobacterium tumefaciens with a GUS-intron chimeric gene. Plant Sci. 122:165–171; 1997.CrossRefGoogle Scholar
  104. Pavingerova, D.; Dostal, J.; Biskova, R.; Benetka, V. Somatic embryogenesis and Agrobacterium-mediated transformation of chrysanthemum. Plant Sci. 97:95–101; 1994.CrossRefGoogle Scholar
  105. Payne, T.; Lloyd, A. Transformation and regeneration of Lobelia erinus using Agrobacterium tumefaciens. Plant Cell Rep. 18:308–311; 1998.CrossRefGoogle Scholar
  106. Pellegrineschi, A.; Damon, J.-P.; Valtorta, N.; Paillard, N.; Tepfer, D. Improvement of ornamental characters and fragrance production in lemon-scented geranium through genetic transformation by Agrobacterium rhizogenes. Bio/Technology 12:64–68; 1994.CrossRefGoogle Scholar
  107. Petty, L. M.; Harberd, N. P.; Carre, I. A.; Thomas, B.; Jackson, S. D. Expression of the Arabidopsis gai gene under its own promoter causes a reduction in plant height in chrysanthemum by attenuation of the gibberellin response. Plant Sci. 164:175–182; 2003.CrossRefGoogle Scholar
  108. Qaim, M.; Zilberman, D. Yield effects of genetically modified crops in developing countries. Science 299:900–902; 2003.PubMedCrossRefGoogle Scholar
  109. Renou, J. P.; Brochard, P.; Jalouzot, R. Recovery of transgenic chrysanthemum (Dendrathema grandiflora Tzvelev) after hygromycin resistance selection. Plant Sci. 89:185–197; 1993.CrossRefGoogle Scholar
  110. Robichon, M. P.; Renou, J. P.; Jalouzot, R. Genetic transformation of Pelargonium × hortorum. Plant Cell Rep. 15:63–67; 1995.CrossRefGoogle Scholar
  111. Savin, K. W.; Baudinette, S. C.; Graham, M. W.; Michael, M. Z.; Nugent, G. D.; Lu, C.; Chandler, S. F.; Cornish, E. C. Antisence ACC oxidase RNA delays carnation petal senescence. HortScience 30:970–972; 1995.Google Scholar
  112. Semeria, L.; Ruffoni, B.; Rabaglio, M.; Genga, A. Vaira, A. M.; Accotto, G. P. Allavena, A. Genetic transformation of Eustoma grandiflorum by Agrobacterium tumefaciens. Plant Cell Tiss. Organ Cult. 47:67–72; 1996.CrossRefGoogle Scholar
  113. Semeria, L.; Vaira, A. M.; Accotto, G. P.; Allavena, A. Genetic transformation of Eustoma grandiflorum Griseb. by microprojectile bombardment. Euphytica 85:125–130; 1995.CrossRefGoogle Scholar
  114. Shaw, J-F.; Chen, H-H.; Tsai, M-F.; Kuo, C-I.; Huang, L-C. Extended flower longevity of Petunia hybrida plants transformed with boers, a mutated ERS gene of Brassica oleracea. Mol. Breed. 9:211–216; 2002.CrossRefGoogle Scholar
  115. Sherman, J. M.; Moyer, J. W.; Daub, M. E. A regeneration and Agrobacterium tumefaciens-mediated transformation system for genetically diverse chrysanthemum cultivars. J. Am. Soc. Hort. Sci. 123:189–194; 1998a.Google Scholar
  116. Sherman, J. M.; Moyer, J. W.; Daub, M. E. Tomato spotted wilt virus resistance in chrysanthemum expressing the viral nucleocapsid gene. Plant Dis. 82:407–414; 1998b.Google Scholar
  117. Shillito, R. Methods of genetic transformation: electroporation and polyethylene glycol treatment. In: Vasil, I. K., ed. Molecular improvements of cereal crop. Dordrecht: Kluwer Academic Publishers; 1999:9–20.Google Scholar
  118. Smith, F. D.; Harriman, R.; Bolar, J.; Carr, J.; Cobb, D.; Humiston, G.; Jagabeeswaran, S.; Lowe, J.; Popham, P.; Schneiter, N. Extending flower life of ornamental plants with ethylene insensitivity. In Vitro Cell. Dev. Biol. 38:109-A; 2002.Google Scholar
  119. Song, W-Y.; Sohn, E. J.; Martinoia, E.; Lee, Y.J.; Tang, Y-Y.; Jasinski, M.; Forestier, C.; Hwang, I.; Lee, Y. Engineering tolerance and accumulation of lead and cadmium in trangenic plants. Nature 21:914–919; 2003.CrossRefGoogle Scholar
  120. Soug, F.; Coutos-Thevenot, P.; Yean, H.; Delbard, G.; Maziere, Y.; Barbe, J. P.; Boulay, M. Genetic transformation of roses, 2 examples: one on morphogenesis, the other on anthocyanin biosynthetic pathway. Acta Hort. 424:381–388; 1996.Google Scholar
  121. Sriskandarajah, S.; Frello, S.; Jorgensen, K.; Serek, M. Agrobacterium tumefaciens-mediated transformation of Campanula carpatica: factors affecting transformation and regeneration of transgenic shoots. Plant Cell Rep. 23:59–63; 2004.PubMedCrossRefGoogle Scholar
  122. Suzuki, K.; Mizutani, M.; Fukui, Y.; Ueyama, Y.; Katsumoto, Y.; Miyazaki, K.; Ohkawa, H.; Kusumi, T; Yanaka, Y. Flower color modification of Torenia by engineering gene expression of cytochromes P450 involved in flavonoid biosynthesis. In Vitro Cell. Dev. Biol. 38:109-A; 2002.Google Scholar
  123. Suzuki, K.; Xue, H.; Tanaka, Y.; Fukui, Y.; Fukuchi-Muzutani, M.; Murakami, Y.; Katsumoto, Y.; Tsuda, S.; Kusumi, T. Flower color modification of Torenia hybrida by cosupression of anthocyanin biosynthesis genes. Mol. Breed. 6:239–246; 2000.CrossRefGoogle Scholar
  124. Suzuki, K.; Zue, H.; Tanaka, Y.; Fukui, Y.; Mizutani, M.; Kusumi, T. Molecular breeding of flower color of Torenia fourieri. Plant Cell Physiol. 38:s38; 1997.Google Scholar
  125. Suzuki, S.; Supaibulwatana, K.; Mii, M.; Nakano, M. Production of transgenic plants of the Liliaceous ornamental plant Agapanthus praecox ssp. orientalis (Leighton) via Agrobacterium-mediated transformation of embryogenic calli. Plant Sci. 161:89–97; 2001.CrossRefGoogle Scholar
  126. Takatsu, Y.; Nishizawa, Y.; Hibi, T.; Akutsu, K. Transgenic chrysanthemum (Dendranthema grandiflorum (Ramat) Kitamura) expressing a rice chitinase gene shows enhanced resistance to gray mold (Botrytis cinerea). Sci. Hort. 82:113–123; 1999.CrossRefGoogle Scholar
  127. Takatsu, Y.; Tomotsune, H.; Kasumi, M.; Sakuma, F. Differences in adventitious shoot regeneration capacity among Japanese chrysanthemum (Dendrathema grandiflorum (Ramat.) Kitamura) cultivars and the improved protocol for Agrobacterium-mediated genetic transformation. J. Jpn. Soc. Hort. Sci. 6:958–964; 1998.CrossRefGoogle Scholar
  128. Tamura, M.; Togami, J.; Ishiguro, K.; Nakamura, N.; Katsumoto, Y.; Suzuki, K.; Kusumi, T.; Tanaka, Y. Regeneration of transformed verbena (Verbena × hybrida) by Agrobacterium tumefaciens. Plant Cell Rep. 21:459–466; 2003.PubMedGoogle Scholar
  129. Tanaka, T.; Katsumoto, Y.; Brugliera, F.; Mason, J. Genetic engineering in floriculture. Plant Cell Tiss. Organ Cult. 80:1–24; 2005.CrossRefGoogle Scholar
  130. Tanaka, Y.; Tsuda, S.; Kusumi, T. Metabolic engineering to modify flower colour. Plant Cell Physiol. 39:1119–1126; 1998.Google Scholar
  131. Theissen, G. A short history of MADS-box genes in plants. Plant Mol. Biol. 42:115–149; 2000.PubMedCrossRefGoogle Scholar
  132. Tong, Y-P.; Kneer, R.; Zhu, Y-G. Vacuolar compartmentalization: a second generation approach to engineering plants for phytomediation. Trends Plant Sci. 9:7–9; 2004.PubMedCrossRefGoogle Scholar
  133. Trick, H. N.; Finer, J. J. SAAT: sonication-assisted Agrobacterium-mediated transformation. Transgenic Res. 6:329–336; 1997.CrossRefGoogle Scholar
  134. Trieu, A. T.; Burleigh, S. H.; Kardailsky, I. V.; Maldonado-Mendoza, I. E.; Versaw, W. K.; Blaylock, L. A.; Shin, H.; Chiou, T-J.; Katagi, H.; Dewbre, G. R.; Weigel, D.; Harriso, M. J. Transformation of Medicago truncatula via infiltration of seedlings of flowering plants with Agrobacterium. Plant J. 22:531–541; 2000.PubMedCrossRefGoogle Scholar
  135. Tsuda, S.; Fukui, Y.; Makamura, N.; Katsumoto Y.; Yonekura-Sakakibara, K.; Fukuchi-Mizutani, M.; Ohira, K.; Ueyama, Y.; Ohkawa, H.; Holton, T. A.; Kusumi, T.; Tanaka, Y. Flower color modification of Petunia hybrida commercial varieties by metabolic engineering. Plant Biotechnol. 21:377–386; 2004.Google Scholar
  136. Tsugawa, H.; Kagami, T.; Suzuki, M. High-frequency transformation of Lobelia erinus L. by Agrobacterium-mediated gene transfer. Plant Cell Rep. 22:759–764; 2004.PubMedCrossRefGoogle Scholar
  137. Ueno, K.; Fukunaga, Y.; Arisumi, K. Genetic transformation of Rhododendron by Agrobacterium tumefaciens. Plant Cell Rep. 16:38–41; 1996.Google Scholar
  138. Urban, L. A.; Sherman, J. M.; Moyer, J. M.; Daub, M. E. High frequency shoot regeneration and Agrobacterium tumefaciens-mediated transformation of chrysanthemum (Dendranthema grandiflora). Plant Sci. 98:69–79; 1994.CrossRefGoogle Scholar
  139. van Altvorst, A-C.; Koehorst, H.; Dejong, J.; Dons, H. J. M. Transgenic carnation plants obtained by Agrobacterium tumefaciens-mediated transformation of petal explants. Plant Cell Tiss. Organ Cult. 45:169–173; 1996.CrossRefGoogle Scholar
  140. van Altvorst, A-C.; Riksen, T.; Koehorst, H.; Dons, H. J. M. Transgenic carnation obtained by Agrobacterium tumefaciens-mediated transformation of leaf explants. Transgenic Res. 4:105–113; 1995.CrossRefGoogle Scholar
  141. van der Krol, A. R.; Lenting, P. E.; Veenstra, J.; van der Meer, I. M.; Koes, R. E.; Gerats, A. G. M.; Mol, J. N. M.; Stuitje, A. R. An antisense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature 333:866–869; 1988.CrossRefGoogle Scholar
  142. van der Krol, A. R.; Mur, L. A.; Beld, M.; Mol, J. N. M.; Stuitje, A. R. Flavonoids genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2:291–299; 1990.PubMedCrossRefGoogle Scholar
  143. van der Salm, T. P. M.; van der Toorn, C. J. G.; Bouwer, R.; Hanisch ten Cate, C. H.; Dons, H. J. M. Production of ROL gene transformed plants of Rosa hybrida L. and characterization of their rooting ability. Mol. Breed. 3:39–47; 1997.CrossRefGoogle Scholar
  144. Vasil, V.; Castillo, A. M.; Fromm, M. E.; Vasil, I. K. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/Technology 10:667–674; 1992.CrossRefGoogle Scholar
  145. Wang, H.; Kraus, J.; Dettendorfer, J.; Chua, N-H.; Nehls, R. Marker gene elimination from transgenic sugarbeet by a chemically regulated cre-lox system. In: Vasil, I. K., ed. Plant biotechnology 2002 and beyond. Dordrecht: Kluwer Academic Publishers; 2003: 229–231.Google Scholar
  146. Watad, A. A.; Yun, D.-J.; Matsumoto, T.; Niu, Z.; Wu, Y.; Kononowicz, A. K.; Bressan, R. A.; Hasegawa, P. M. Microprojectile bombardment-mediated transformation of Lilium longiflorum. Plant Cell Rep. 17:262–267; 1998.CrossRefGoogle Scholar
  147. Wenck, A.; Pugieux, C.; Turner, M.; Dunn, M.; Stacy, C.; Tiozzo, A.; Dunder, E.; van Grinsven, E.; Khan, R.; Sigareva, M.; Wang, W. C.; Reed, J.; Drayton, P.; Oliver, D.; Trafford, H.; Legris, G.; Rushton, H.; Tayab, S.; Launis, K.; Chang, Y-F.; Chen, D-F.; Melchers, L. Reef-coral proteins as visual non-destructive reporters for plant transformation. Plant Cell Rep. 22:244–251; 2003.PubMedCrossRefGoogle Scholar
  148. Yang, J.; Lee, H. J.; Shin, D. H.; Oh, S. K.; Seon, J. H.; Paek, K. Y.; Han, K. H. Genetic transformation of Cymbidium orchid by particle bombardment. Plant Cell Rep. 18:978–984; 1999.CrossRefGoogle Scholar
  149. Yepes, L. M.; Mittak, V.; Pang, S-Z.; Gonsalves, C.; Slightom, J. L.; Gonsalves, D. Biolistic transformation of chrysanthemum with the nucleocapsid gene of tomato spotted wilt virus. Plant Cell Rep. 14:694–698; 1995.CrossRefGoogle Scholar
  150. Yu, Z.; Chen, M.; Nie, L.; Lu, H.; Ming, X.; Zheng, H.; Qu, L.; Chen, Z. Recovery of transgenic orchid plants with hygromycin selection by particle bombardment to protocorms. Plant Cell Tiss. Organ Cult. 58:87–92; 1999.CrossRefGoogle Scholar
  151. Zaragoza, C.; Munoz-Bertomeu, J.; Arrillaga, I. Regeneration of herbicide-tolerant black locust transgenic plants by SAAT. Plant Cell Rep. 22:832–838; 2004.PubMedCrossRefGoogle Scholar
  152. Zheng, X-Q.; Shao, H-S.; Li, J-H.; Chen, S-C. Cloning of the LFY cDNA from Arabidopsis thaliana and its transformation to Chrysanthemum morifolium. Acta Bot. Sin. 41:268–271; 1999.Google Scholar
  153. Zheng, Z. L.; Yang, Z. B.; Jang, J. C.; Metzger, J. D. Modification of plant architecture in chrysanthemum by ectopic expression of the tobacco phytochrome B1 gene. J. Am. Soc. Hort. Sci. 126:19–26; 2001.Google Scholar
  154. Zuker, A.; Ahroni, A.; Tzfira, T.; Ben-Meir, H.; Vainstein, A. Wounding by bombardment yields highly efficient Agrobacterium-mediated transformation of carnation (Dianthus caryophyllus L.). Mol. Breed. 5:367–375; 1999.CrossRefGoogle Scholar
  155. Zuker, A.; Chang, P. L.; Ahroni, A.; Cheah, K.; Woodson, W. R.; Bressan, R. A.; Watad, A. A.; Hasegawa, P. M.; Vainstein, A. Transformation of carnation by microprojectile bombardment. Sci. Hort. 64:177–185; 1995.CrossRefGoogle Scholar
  156. Zuker, A.; Tzfira, T.; Ben-meir, H.; Ovadis, M.; Shklarman, E.; Itzhaki, H.; Forkmann, G.; Martens, S.; Nata-Sharir, I.; Weiss, D.; Vainstein, A. Modification of flower colour and fragrance by antisense suppression of the flavanone 3-hydroxylase gene. Mol. Breed. 93:33–41; 2002.CrossRefGoogle Scholar
  157. Zuo, J.; Niu, Q-W.; Moller, S. G.; Chua, N-H. Chemical-regulated, site-specific DNA excision in transgenic plant. Nat. Biotechnol. 19:157–161; 2001.PubMedCrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 2005

Authors and Affiliations

  1. 1.Florigene LimitedCollingwoodAustralia

Personalised recommendations