Advertisement

Cryopreservation of chestnut by vitrification of in vitro-grown shoot tips

  • Nieves Vidal
  • Conchi Sánchez
  • Lorena Jorquera
  • Antonio Ballester
  • Ana M. Vieitez
Article

Summary

Plants of European chestnut (Castanea sativa) have been consistently recovered from cryopreserved in vitro-grown shoot apices by using the vitrification procedure. Factors found to influence the success of cryopreservation include the source of the shoot tips (terminal buds or axillary buds), their size, the duration of exposure to the cryoprotectant solution, and the composition of the post-cryostorage recovery medium. The most efficient protocol for shoot regrowth employed 0.5–1.0 mm shoot tips isolated from 1 cm-long terminal buds that had been excised from 3–5-wk shoot cultures and cold hardened at 4°C for 2 wk. The isolated shoot tips were precultured for 2d at 4°C on solidified Gresshoff and Doy medium (GD) supplemented with 0.2M sucrose, and were then treated for 20 min at room temperature with a loading solution (2M glycerol+0.4M sucrose) and for 120 min at 0°C with a modified PVS2 solution before rapid immersion in liquid nitrogen (LN). After 1 d in LN, rapid rewarming and unloading in 1.2M sucrose solution for 20 min, the shoot tips were plated on recovery medium consisting of GD supplemented with 2.2 μM benzyladenine, 2.9 μM 3-indoleacetic acid, and 0.9 μM zeatin. This protocol achieved 38–54% shoot recovery rates among five chestnut clones (three of juvenile origin and two of mature origin), and in all cases plant regeneration was also obtained.

Key words

Castanea sativa conservation cryoprotection germplasm preservation liquid nitrogen shoot apices 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benson, E. E.; Reed, B. M.; Brenann, R. M.; Clacher, K. A.; Ross, D. A. Use of thermal analysis in the evaluation of cryopreservation protocols for Ribes nigrum L. germplasm. Cryoletters 17:347–362; 1996.Google Scholar
  2. Corredoira, E.; San-José, M. C.; Ballester, A.; Vieitez, A. M. Cryopreservation of zygotic embryo axes and somatic embryos of European chestnut. CryoLetters 25:33–42; 2004.PubMedGoogle Scholar
  3. Engelmann, F. In vitro conservation methods. In: Ford-Lloyd, B. V.; Newburry, J. H.; Callow, J. A., eds. Biotechnology and plant genetic resources: conservation and use. Wallingford: CABI; 1997:119–162.Google Scholar
  4. Escobar, R. H.; Mafla, G.; Roca, W. W. A methodology for recovering cassava plants from shoot tips maintained in liquid nitrogen. Plant Cell Rep. 16:474–478; 1997.Google Scholar
  5. Gresshoff, P. M.; Doy, C. H. Development and differentiation of haploid Lycopersicon esculentum. Planta 107:167–170; 1972.CrossRefGoogle Scholar
  6. Holliday, C.; Merkle, S. Preservation of American chestnut germplasm by cryostorage of embryogenic cultures. J. Am. Chestnut Found. 14:46–52; 2000.Google Scholar
  7. Janeiro, L.; Vieitez, A. M.; Ballester, A. Cold storage of in vitro cultures of wild cherry, chestnut and oak. Ann. Sci. For. 52:287–293; 1995.Google Scholar
  8. Jitsuyama, Y.; Suzuki, T.; Harada, T.; Fujikawa, S. Ultrastructural study of mechanism of increased freezing tolerance to extracellular glucose in cabbage leaf cells. CryoLetters 18:33–44; 1997.Google Scholar
  9. Kuranuki, Y.; Sakai, A. Cryopreservation of in vitro-grown shoot tips of tea (Camellia sinensis) by vitrification. CryoLetters 16:45–352; 1995.Google Scholar
  10. Lambardi, M.; De Carlo, A. Application of tissue culture to the germplasm conservation of temperate broad-leaf trees. In: Jain, S. M.; Ishii, K., eds. Micropropagation of woody trees and fruits. Dordrecht: Kluwer Academic Publishers; 2003:815–840.Google Scholar
  11. Lambardi, M.; Fabbri, A.; Caccavale, A. Cryopreservation of white poplar (Populus alba L.) by vitrification of in vitro-grown shoot tips. Plant Cell Rep. 19:213–218; 2000.CrossRefGoogle Scholar
  12. Martínez, D.; Arroyo-García, R.; Revilla, M. A. Cryopreservation of in vitro grown shoot-tips of Olea europaea L. var. Arbequina. CryoLetters 20:29–36; 1999.Google Scholar
  13. Matsumoto, T.; Mochida, K.; Itamura, H.; Sakai, A. Cryopreservation of persimmon (Diospyros kaki Thumb.) by vitrification of dormant shoot tips. Plant Cell Rep. 20:398–402; 2001.CrossRefGoogle Scholar
  14. Matsumoto, T.; Sakai, A.; Yamada, K. Cryopreservation of in vitro-grown apical meristems of wasabi (Wasabia japonica) by vitrification and subsequent high plant regeneration. Plant Cell Rep. 13:442–446; 1994.CrossRefGoogle Scholar
  15. Niino, T.; Seguel, I.; Murayama, T. Cryopreservation of vegetatively propagated species (mainly mulberry). In: Engelmann, F.; Takagi, H., eds. Cryopreservation of tropical plant germplasm. Tsukuba: JIRCAS. Rome: IPGRI; 2000:194–199.Google Scholar
  16. Niino, T.; Tashiro, K.; Suzuki, M.; Ohuchi, S.; Magoshi, J.; Akihama, T. Cryopreservation of in vitro grown shoot tips of cherry and sweet cherry by one-step vitrification. Sci. Hort. 70:155–163; 1997.CrossRefGoogle Scholar
  17. Pence, V. Desiccation and the survival of Aesculus, Castanea and Quercus embryo axes through cryopreservation. Cryobiology 29:391–399; 1992.CrossRefGoogle Scholar
  18. Reed, B. M. Genotype considerations in temperate fruit crop cryopreservation. In: Engelmann, F.; Takagi, H., eds. Cryopreservation of tropical plant germplasm. Tsukuba: JIRCAS; Rome: IPGRI; 2000:200–204.Google Scholar
  19. Reed, B. M.; DeNoma, J.; Chang, Y. Application of cryopreservation protocols at a clonal genebank. In: Engelmann, F.; Takagi, H., eds. Cryopreservation of tropical plant germplasm. Tsukuba: JIRCAS; Rome: IPGRI; 2000:246–249.Google Scholar
  20. Ryynänen, L. Cold hardening and slow cooling: tools for successful cryopreservation and recovery of in vitro shoot tips of silver birch. Can. J. For. Res. 26:2015–2022; 1996.Google Scholar
  21. Ryynänen, L. A.; Häggman, H. M. Recovery of cryopreserved silver birch shoot tips is affected by the pre-freezing age of the cultures and ammonium substitution. Plant Cell Rep. 20:354–360; 2001.CrossRefGoogle Scholar
  22. Ryynänen, L.; Sillanpää, M.; Kontunen-Soppela, S.; Tiimonen, H.; Kangasjärvi, J.; Vapaavuroi, E.; Häggman, H. Preservation of transgenic silver birch (Betula pendula Roth) lines by means of cryopreservation. Mol. Breed. 10:143–152; 2002.CrossRefGoogle Scholar
  23. Sakai, A. Development of cryopreservation techniques. In: Engelmann, F.; Takagi, H., eds. Cryopreservation of tropical plant germplasm. Tsukuba: JIRCAS: Rome: IPGRI; 2000:1–7.Google Scholar
  24. Sakai, A.; Kobayashi, S.; Oiyama, I. Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep. 9:30–33; 1990.CrossRefGoogle Scholar
  25. Sánchez, M. C.; San-José, M. C.; Ferro, E.; Ballester, A.; Vieitez, A. M. Improving micropropagation conditions for adult-phase shoots of chestnut. J. Hort. Sci. 72:433–443; 1997.Google Scholar
  26. Takagi, H. Recent developments in cryopreservation of shoot apices of tropical species. In: Engelmann, F.; Takagi, H., eds. Cryopreservation of tropical plant germplasm. Tsukuba: JIRCAS; Rome: IPGRI; 2000:178–193.Google Scholar
  27. Takagi, H.; Thinh, N. T.; Islam, O. M.; Senboku, T.; Sakai, A. Cryopreservation of in vitro grown shoot tips of taro (Colocasia esculenta (L.) Schott) by vitrification. I. Investigation of basic conditions of the vitrification procedure. Plant Cell Rep. 16:594–599; 1997.Google Scholar
  28. Touchell, D. H.; Turner, S. R.; Senaratna, T.; Bunn, E.; Dixon, K. W. Cryopreservation of Australian species—the role of plant growth regulators. In: Towill, L. E.; Bajaj, Y. P. S., eds. Biotechnology in agriculture and forestry, vol. 50. Cryopreservation of plant germplasm II. Berlin: Springer-Verlag; 2002:373–390.Google Scholar
  29. Vieitez, A. M.; Vieitez, M. L.; Vieitez, E. Chestnut (Castanea spp.). In: Bajaj, Y. P. S., ed. Biotechnology in agriculture and forestry, vol. 1: trees I. Berlin: Springer-Verlag; 1986:393–414.Google Scholar
  30. Wang, Q.; Tanne, E.; Arav, A.; Gafny, R. Cryopreservation of in vitro-grown shoot tips of grapevine by encapsulation-dehydration. Plant Cell Tiss. Organ Cult. 63:41–46; 2000.CrossRefGoogle Scholar
  31. Youngs, R. L. A right smart little jolt’ loss of the chestnut and way of life. J. For. 98:17–21; 2000.Google Scholar

Copyright information

© Society for In Vitro Biology 2005

Authors and Affiliations

  • Nieves Vidal
    • 1
  • Conchi Sánchez
    • 1
  • Lorena Jorquera
    • 1
  • Antonio Ballester
    • 1
  • Ana M. Vieitez
    • 1
  1. 1.Instituto de Investigaciones Agrobiológicas de Galicia, CSICSantiago de CompostelaSpain

Personalised recommendations