Effects of the growth retardant paclobutrazol on large-scale micropropagation of daylily (Hemerocallis spp.)

Article

Summary

Meristematic clusters were induced from daylily scape explants (pedicel-scape junction) in the presence of the growth retardant Paclobutrazol on semisolid agar medium. Liquid shake culture was used to proliferate meristematic clusters. Highly efficient regeneration of adventitious shoots occurred on clusters after subculture on a 0.8% agar strength semisolid medium with the addition of activated charcoal. Paclobutrazol and sucrose levels in the media were found to significantly affect starch accumulation, growth value, and dry weight percentage of liquid-cultured meristematic clusters. The use of liquid shake cultures for mass proliferation of meristematic clusters followed by regeneration of adventitious shoots on semisolid agar culture could be an efficient system for large-scale micropropagation of daylily.

Key words

daylily Hemerocallis growth retardant liquid culture micropropagation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitken-Christie, J. Automation In: Debergh, P. C.; Zimmerman, R. H., eds. Micropropagation. Dordrecht: Kluwer Academic Publishers; 1991: 363–388.Google Scholar
  2. Chen, J.; Ziv, M. The effect of ancymidol on hyperhydricity, regeneration, starch and antioxidant enzymatic activities in liquid-cultured Narcissus. Plant Cell Rep. 20:22–27; 2001.CrossRefGoogle Scholar
  3. Chen, J.; Ziv, M., Carbohydrate, metabolic, and osmotic changes in scaled-up liquid cultures of Narcissus leaves. In Vitro Cell. Dev. Biol. Plant 39:645–650; 2003.CrossRefGoogle Scholar
  4. Chin, C. K. Promotion of shoot and root formation in asparagus in vitro by ancymidol. HortScience 17:590–591; 1982.Google Scholar
  5. Chow, Y. N.; Selby, C.; Harvey, B. M. R. Stimulation by sucrose of Narcissus bulbil formation in vitro. J. Hort. Sci. 67:289–293; 1992.Google Scholar
  6. Cichewicz, R. H.; Lim, K. C.; McKerrow, J. H.; Nair, M. G. Kwanzoquinones A-G and other constituents of Hemerocallis fulva ‘Kwanzo’ roots and their activity against the human pathogenic trematode Schistosoma mansoni. Tetrahedron 58:8597–8606; 2002.CrossRefGoogle Scholar
  7. Cichewicz, R. H.; Nair, M. G. Isolation and characterization of stelladerol, a new antioxidant naphthalene glycoside, and other antioxidant glycosides from edible daylilies (Hemerocallis) flowers. J. Agric. Food Chem. 50:87–91; 2002.PubMedCrossRefGoogle Scholar
  8. Cichewicz, R. H.; Zhang, Y.; Seeram, N. P.; Nair, M. G. Inhibition of human tumor cell proliferation by novel anthraquinones from daylilies. Life Sci. 74:1791–1799; 2004.PubMedCrossRefGoogle Scholar
  9. Fletcher R. A.; Gilley, A. Triazoles as plant growth regulators and stress protectants. Hort. Rev. 24:55–138; 2000.Google Scholar
  10. Fridborg, G.; Pedersen, M.; Landstrom, M.; Eriksson, T. The effect of activated charcoal on tissue cultures: absorption of metabolites inhibiting morphogenesis. Physiol. Plant. 43:104–106; 1978.CrossRefGoogle Scholar
  11. Grossmann, K. Plant growth retardants: their mode of action and benefit for physiological research. In: Karssen, C. M.; Van Loon, L. C.; Vreugdenhil, D., eds. Progress in plant growth regulation. Dordrecht: Kluwer Academic Publishers; 1992:788–797.Google Scholar
  12. Hanks, G. R. Effects of growth retardants on bulbil production by Narcissus twin-scales. Ann. Appl. Biol. 110:203–207; 1987.CrossRefGoogle Scholar
  13. Hata, K.; Ishikawa, K.; Hori, K. Differentiation-inducing activities of human leukemia cell line (HL60) by extracts of edible wild plants in Akita. Nat. Med. 52:269–272; 1998.Google Scholar
  14. He, C. X. Effects of extracts from Hemerocallis citrina Barroni (EHCB) and epidermal growth factor (EGF) on human dermal fibroblast proliferation. Zhonghua Pifuke Zazhi 27:218–220; 1994.Google Scholar
  15. Krikorian, A. D.; Kann, R. P. Micropropagation of daylilies through aseptic culture techniques: its basis, status, problems, and prospects. Hem. J. 33(1): 44–61; 1979a.Google Scholar
  16. Krikorian, A. D.; Kann, R. P. Clonal micropropagation of daylilies. In: Sharp, W. R.; Larsen, P. O.; Paddock, E. F.; Raghaven, V., eds. Plant cell and tissue culture: principles and applications. Columbus: Ohio State University Press; 1979b:835–836.Google Scholar
  17. Krikorian, A. D.; Kann, R. P. Regeneration in liliaceae, iridiaceae and amaryllidaceae. In: Vasil, I. K., ed. Cell culture and somatic cell genetics of plants, vol. 3. New York: Academic Press; 1986:187–205.Google Scholar
  18. Krikorian, A. D.; Kann, R. P.; Corbin, M. S. F. Daylily. In: Ammirato, P. V.; Evans, D. A.; Sharp, W. P.; Bajaj, Y. P. S., eds. Handbook of plant cell culture, vol. 5. Ornamental species. New York: Springer; 1990:285–293.Google Scholar
  19. Lin, P.; Cai, J.; Li, J.; Sang, W.; Su, Q. Constituents of the essential oil of Hemerocallis flava daylily. Flavour Fragr. J. 18:539–541; 2003.CrossRefGoogle Scholar
  20. McCown, B. H.; Zeldin, E. L.; Pinkalla, A. H. Nodule culture: a developmental pathway with high potential for regeneration, automated micropropagation and plant metabolite production from woody plants. In: Hanover, J. W.; Keathly, E. D., eds. Genetic manipulation of woody plants. New York: Plenum Publishing Corp; 1988:149–166.Google Scholar
  21. Mensuali, S. A.; Panizza, M.; Serra, G.; Tognoni, F. Involvement of activated charcoal in the modulation of abiotic and biotic ethylene levels in tissue cultures. Sci. Hort. 54:49–57; 1993.CrossRefGoogle Scholar
  22. Meyer, M. M. Jr. Propagation of daylilies by tissue culture. HortScience 11:485–487; 1976.Google Scholar
  23. Meyer, M. M. Jr. Rapid propagation of Hemerocallis by tissue culture. Hem. J. 33(3):20–23; 1979.Google Scholar
  24. Miller, W. B. A review of carbohydrate metabolism in geophytes. Acta Hort. 325:239–249; 1992.Google Scholar
  25. Murashige, T.; Nakano, R. T. The light requirement for shoot initiation in tobacco callus culture. Am. J. Bot. 55:710; 1968.Google Scholar
  26. Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.CrossRefGoogle Scholar
  27. Saito, H.; Mizunashi, K.; Tanaka, S.; Adachi, Y.; Nakano, M. Ploidy estimation in Hemerocallis species and cultivars by flow cytometry. Sci. Hort. 97:185–192; 2003.CrossRefGoogle Scholar
  28. Sluis, C. J.; Walker, K. A. Commercialization of plant tissue culture propagation. IAPTC Newsl. 47:2–12; 1985.Google Scholar
  29. Stout, A. B. Daylilies: the wild species and garden clones, both old and new, of the genus Hemerocallis. New York: Macmillan Press; 1934.Google Scholar
  30. Takayama, S. Mass propagation of plants through shake and bioreactor culture techniques. In: Bajaj, Y. P. S., ed. Biotechnology in agriculture and forestry: hightech and micropropagation, vol. 17. Berlin: Springer-Verlag; 1991:1–46.Google Scholar
  31. Thivend, P.; Mercier, C.; Guilbot, A. Determination of starch with glycoamylase. In: Wistler, R. L.; BeMiller, J. N., eds. Methods in carbohydrate chemistry, vol. 6. New York: Academic Press; 1972:100–105.Google Scholar
  32. Thorpe, T. A.; Meier, D. D. Effect of gibberellic acid on starch metabolism in tobacco callus cultured under shoot-forming conditions. Phytomorphology 25:238–245; 1975.Google Scholar
  33. Tomkins, J. P.; Wood, T. C.; Barnes, L. S.; Westman, A.; Wing, R. A. Evaluation of genetic variation in the daylily (Hemerocallis spp.) using AFLP markers. Theor. Appl. Genet. 102:489–496; 2001.CrossRefGoogle Scholar
  34. Weatherhead, M. H.; Burdon, J.; Henshaw, G. G. Effects of activated charcoals an additive plant tissue culture media. Pflanzenphysiol. 94:399–406; 1979.Google Scholar
  35. Ziv, M. Morphogenesis of gladiolus buds in bioreactors—implication for scaled-up propagation of geophytes. In: Nijkamp, H. J. J.; Van Der Plas, L. H. W.; Van Aartijk, J., eds. Progress in plant cellular and molecular biology. Dordrecht: Kluwer Academic Publishers; 1990:119–124.Google Scholar
  36. Ziv, M. The use of growth retardants for the regulation and acclimatization of in vitro plants. In: Karsen, C. M.; Van Loon, L. C.; Vregdenhil D., eds., Progress in plant growth regulation. Dordrecht: Kluwer Academic Publishers; 1992:809–817.Google Scholar
  37. Ziv, M. In vitro acclimatization. In: Aitken-Christie, J.; Kozai, T.; Smith, M. L., eds. Automation and environmental control in plant tissue culture. Dordrecht: Kluwer Academic Publishers; 1995:493–516.Google Scholar
  38. Ziv, M. Bioreactor technology for plant micropropagation Hort. Rev. 24:1–30; 2000.Google Scholar
  39. Ziv, M.; Ariel, T. Bud proliferation and plant regeneration in liquid-cultured Philodendron treated with ancymidol and paclobutrazol. Plant Growth Regul. 10:53–57; 1991.CrossRefGoogle Scholar
  40. Ziv, M.; Kahany, S.; Lilien-Kipnis, H. Scaled-up proliferation and regeneration of Nerine in liquid cultures, part I. The induction and maintenance of proliferating meristematic clusters by paclobutrazol in bioreactors. Plant Cell Tiss. Organ Cult. 39:109–115; 1994.CrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 2005

Authors and Affiliations

  • Jianxin Chen
    • 1
  • Dawn E. Hall
    • 1
  • Vincenzo De Luca
    • 1
  1. 1.Department of BiologyBrock UniversitySt. CatharinesCanada

Personalised recommendations