In Vitro Cellular & Developmental Biology - Plant

, Volume 40, Issue 5, pp 491–494

Effects of salinity on growth and compatible solutes of callus induced from Populus euphratica

  • F. Zhang
  • Y. L. Yang
  • W. L. He
  • X. Zhao
  • L. X. Zhang


The present study aimed to evaluate the response to salinity of Populus euphratica, which is more salt-resistant than other poplar cultivars, at the cellular level. To this purpose, callus was induced from shoot segments of P. euphratica on Murashige and Skoog (MS) medium supplemented with 0.5 mg l−1 (2.2 μM) 6-benzyladenine (BA) and 0.5 mg l−1 (2.7 μM 1-naphthaleneacetic acid (NAA). Callus was transferred to MS medium supplemented with 0.25 mg l−1 (1.1 μM) BA and 0.5 mg l−1 NAA. The relative growth rate of callus reached a maximum in the presence of 50 mmol l−1 NaCl and growth was inhibited with increasing NaCl concentrations. Examination of the changes of osmotic substances under salt stress showed that accumulation of proline, glycine betaine, and total soluble sugars increased with increasing salt concentrations. The results indicate that the response of the callus of P. euphratica to salt stress is similar to that of the whole plant.

Key words

callus glycine betaine NaCl proline Populus euphratica salt stress soluble sugar 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bates, L. S.; Waldren, R. P.; Teare, D. Rapid determination of free proline for water stress studies. Plant Soil 39:205–207; 1973.CrossRefGoogle Scholar
  2. Bohnert, H. J.; Jensen, R. G. Metabolic engineering for increased salt tolerance, the next step. Aust. J. Plant Physiol. 23:661–666; 1996a.Google Scholar
  3. Bohnert, H. J.; Jensen, R. G. Strategies for engineering water stress tolerance in plants. Trends Biotechnol. 14:89–97; 1996b.CrossRefGoogle Scholar
  4. Boyer, J. S. Plant productivity and environment. Science 218:443–448; 1982.CrossRefPubMedGoogle Scholar
  5. Dubois, M.; Gilles, K. A.; Hamilton, J. K.; Rebers, P. A.; Smith, F. Colorimetric method for the determination of sugars and related substances. Anal. Chem. 28:350–356; 1956.CrossRefGoogle Scholar
  6. Escalada, J. A.; Moss, D. N. Changes in non-structural carbohydrate fractions of developing spring wheat kernels. Crop Sci. 16:627–631; 1976.CrossRefGoogle Scholar
  7. Flowers, T. J.; Hajibagueri, M. A.; Clipson, N. C. W. Halophytes. Quart. Rev. Biol. 61:313–337; 1986.CrossRefGoogle Scholar
  8. Flowers, T. J.; Troke, P. F.; Yeo, A. R. The mechanism of salt tolerance in halophytes. Annu. Rev. Plant Physiol. 28:89–121; 1977.CrossRefGoogle Scholar
  9. Fung, L. E.; Ma, H.; Wang, S. X-ray microanalysis of ion distribution in salt tolerancy and salt intolerant poplar genotypes. J. Beijing For. Univ. 5:23–30; 1996.Google Scholar
  10. Fung, L. E.; Wang, S.; Altman, A.; Hüttermann, A. Effect of NaCl on growth, photosynthesis, ion and water relations of four poplar genotypes. For. Ecol. Manage. 107:135–146; 1998.CrossRefGoogle Scholar
  11. Garham, J.; Hughes, L. Y.; Wynjanes, R. G. Low molecular weight carbohydrates in some salt stressed plants. Physiol. Plant. 53:27–33; 1981.CrossRefGoogle Scholar
  12. Giridara, K. S.; Madhusudhan, K. V.; Sreenivasulu, N.; Sudhakar, C. Stress responses in two genotypes of mulberry (Morus alba L.) under NaCl salinity. Indian J. Exp. Biol. 38:192–195; 2000.Google Scholar
  13. Greenway, H.; Munns, R. Mechanisms of salt tolerance in nonhalophytes. Annu. Rev. Plant Physiol. Plant Mol. Biol. 31:149–190; 1980.Google Scholar
  14. Grieve, C. M.; Grattan, S. R. Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil. 70:303–307; 1983.CrossRefGoogle Scholar
  15. Gu, R.; Jiang, X.; Guo, Z. Organogenesis and plantlet regeneration in vitro of Populus euphratica. Acta Bot. Sin. 41:29–33; 1999.Google Scholar
  16. Hanson, A. D. Compatible solute synthesis and compartmentation in higher plants. In: Osmond, C. B.; Bjorkman, O.; Anderson, D. J., eds. Physiological processes in plant ecology: toward a synthesis with Atriplex. Berlin: Springer-Verlag; 1980:52–60.Google Scholar
  17. Hitz, W. D.; Hanson, A. D. Determination of glycine betaine by pyrolysis-gas chromatography in cereals and grasses. Phytochemistry 19:2371–2374; 1980.CrossRefGoogle Scholar
  18. Kavi Kishor, P. B.; Hong, Z.; Miao, G.-H.; Hu, C. A. A.; Verma, D. P. S. Overexpression of D1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol. 108:1387–1394; 1995.Google Scholar
  19. Kumar, S. G.; Reddy, A. M.; Sudhakar, C. NaCl effects on proline metabolism in two high yielding genotypes of mulberry (Morus alba L.) with contrasting salt tolerance. Plant Sci. 165:1245–1251; 2003.CrossRefGoogle Scholar
  20. Ma, H.; Fung, L.; Wang, S.; Altman, A.; Hüttermann, A. Photosynthetic response of Populus euphratica to salt stress. For. Ecol. Manage. 93:55–61; 1997.CrossRefGoogle Scholar
  21. Macleod, A. M.; Orquodale, M. C. Water soluble carbohydrates of seeds of the gramineae. New Phytol. 57:168–182; 1958.CrossRefGoogle Scholar
  22. Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.CrossRefGoogle Scholar
  23. Nuccio, M. L.; Rhodes, D.; McNeil, S. D.; Hanson, A. D. Metabolic engineering of plants for osmotic stress resistance. Curr. Opin. Plant Biol. 2:128–134; 1999.PubMedCrossRefGoogle Scholar
  24. Prado, F. E.; Boero, C.; Gallarodo, M.; Gonzalez, J. A. Effect of NaCl on germination, growth and soluble sugar content in Chenopodium quinoa wild seeds. Bot. Bull. Acad. Sin. 41:27–34; 2000.Google Scholar
  25. Prisco, J. T. Alguns aspectos da fisiologia do ‘stress’ salino. Revista Brasil. Bot. 3:85–94; 1980.Google Scholar
  26. Quick, P.; Siegl, G.; Neuhaus, E.; Feil, R.; Sttit, M. Short-term water stress leads to a stimulation of sucrose synthesis by activating sucrose phosphate synthase. Planta 177:535–546; 1989.CrossRefGoogle Scholar
  27. Rhodes, D.; Hanson, A. D. Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44:357–384; 1993.CrossRefGoogle Scholar
  28. Rhodes, D. P.; Rich, J.; Myers, A. C.; Rueter, C. C.; Jamieson, G. C. Determination of betaines by fast atom bombardment mass spectrometry: identification of glycine betaine deficient genotypes of Zea mays. Plant Physiol 84:781–788; 1987.PubMedCrossRefGoogle Scholar
  29. Wang, W.; Vinocur, B.; Altman, A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14; 2003.PubMedCrossRefGoogle Scholar
  30. Wang, Z.; Quebedeaux, B.; Stutte, G. W. Partitioning of (14C) glucose into sorbitol and other carbohydrates in apple under water stress. Aust. J. Plant Physiol. 23:245–251; 1996.CrossRefGoogle Scholar
  31. Wang, Z.; Stutte, G. W. The role of carbohydrates in active osmotic adjustment in apple under water stress. J. Am. Soc. Hort. Sci. 117:816–823; 1992.Google Scholar
  32. Watanabe, S.; Kojima, K.; Ide, Y.; Sasaki, S. Effects of saline and osmotic stress on proline and sugar accumulation in Populus euphratica in vitro. Plant Cell Tiss. Organ Cult. 63:199–206; 2000.CrossRefGoogle Scholar
  33. Wei, Q. Euphratica poplar. Preface. Beijing: China Forestry Publishing; 1993: 1–195.Google Scholar
  34. Winter, K. Photosynthesis and water relationships of higher plants in a saline environment. In: Jefferies, R. L.; Davy, A. J., eds. Ecological processes in coastal environments. Oxford: Blackwell Science Publishers; 1979:297–320.Google Scholar
  35. Yokoi, S.; Bressan, R.A.; Hasegawa, P. M. The Japan International Research Center for Agricultural Sciences (JIRCAS) Working Report No. 23. In: Iwanaga, M., ed. Genetic engineering of crop plants for abiotic stress. Salt stress tolerance of plants. Tsukuba: Japan International Research Center for Agricultural Sciences Publishing; 2002:25–33.Google Scholar

Copyright information

© Society for In Vitro Biology 2004

Authors and Affiliations

  • F. Zhang
    • 1
    • 2
  • Y. L. Yang
    • 1
  • W. L. He
    • 1
  • X. Zhao
    • 1
  • L. X. Zhang
    • 1
    • 3
  1. 1.Key Lab of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research InstituteChinese Academy of SciencesLanzhouP.R. China
  2. 2.Faculty of AgricultureGansu Agricultural UniversityLanzhouP.R. China
  3. 3.School of Life Science, State Key Lab of Arid AgroecologyLanzhou UniversityLanzhouP.R. China

Personalised recommendations