Advertisement

In Vitro Cellular & Developmental Biology - Plant

, Volume 40, Issue 5, pp 434–441 | Cite as

Genetic engineering in conifer forestry: Technical and social considerations

  • Christian Walter
Article

Summary

Over the past 20 years, DNA-based biotechnologies have been applied to agricultural production and many crops with new and useful attributes have been cultivated in various countries. The adoption of this new technology by farmers has been swift, and benefits in terms of increased production per unit land and environmental benefits are becoming obvious. In forestry, the application of biotechnology is somewhat lagging behind and to date there are no commercial plantations with genetically modified trees. However, most tree species used in plantation forestry have been genetically transformed, and results demonstrate the successful and correct expression of new genes in these plants. At the same time, this new technology is being viewed with concern, very similar to the concerns voiced over the use of genetic engineering in agriculture. This paper discusses some of the issues involved for world forestry, with particular focus on future demand for timber and timber products and how modern biotechnology can contribute to meet the growing demand. Tree genetic engineering techniques will be outlined, and results reviewed for a number of species. Concerns over the use of this new technology will be described and analyzed in relation to scientific considerations.

Key words

conifer genetic engineering environmental impact gene expression risk assessment transformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahuja, M.R.; Libby, W. J. Clonal forestry, New York: Springer-Verlag; 1993.Google Scholar
  2. Amman, K. Biodiversity and agricultural biotechnology. Boga: Botanischer Garten; 2004 (http://www.botanischergarten.ch/Biotech-Biodiv/Report-Biodiv-Biotech12.pdf)Google Scholar
  3. Beals, T. P.; Goldberg, R. B. A novel cell ablation strategy blocks tobacco anther dehiscence. Plant Cell 9:1527–1545; 1997.PubMedCrossRefGoogle Scholar
  4. Bishop-Hurley, S. L.; Zabkievicz, R. J.; Grace, L.; Gardner, R. C.; Wagner, A.; Walter, C. Conifer genetic engineering: transgenic Pinus radiata (D. Don) and Picea abies (Karst) plants are resistant to the herbicide Buster. Plant Cell Rep. 20:235–243; 2001.CrossRefGoogle Scholar
  5. Brown, C. The global outlook for future wood supply from forest plantations. FAO report (http://www.fao.org/forestry);2000.Google Scholar
  6. Burdon, R. D. Pinus radiata. In: Last, F. T., ed. Ecosystems of the world, vol. 16. Tree crop ecosystems. Amsterdam: Elsevier; 2000:99–161.Google Scholar
  7. Burdon, R. D. Genetic aspects of risk—species diversification, genetic management and genetic engineering. NZJ. For. 45(4):20–25; 2001.Google Scholar
  8. Burdon, R. D. Pinus radiata In: Pines of silvicultural importance. Wallingford: CAB International; 2002:359–379.Google Scholar
  9. Burdon, R. D.; Walter, C. Exotic pines and eucalypts: perspectives on risks of transgenic plantations. In: Strauss, S. H.; Bradshaw, H. D., eds. The forest: challenges for science and society. Washington, DC: RFF (Resources for the Future);2004 (in press).Google Scholar
  10. Campbell, M. M.; Brunner, A. M.; Jones, H. M.; Strauss, S. H. Forestry's fertile crescent: the application of biotechnology to forest bioengineered trees. Plant Biotechnol. J. 1:141–154; 2003.PubMedCrossRefGoogle Scholar
  11. Cauley, H. Genetic engineering: FSC says risks are still too great. J. For. 99:4–7; 2001.Google Scholar
  12. Charest, P. J.; Calero, N.; Lachance, D.; Datla, R. S. S.; Duchesne, L. C.; Tsang, E. W. T. Microprojectile-DNA delivery in conifer species: factors affecting assessment of transient gene expression using the β-glucuronidase reporter gene. Plant Cell Rep. 12:189–193; 1993.CrossRefGoogle Scholar
  13. Charity, J.A.; Holland, L.; Grace, L. J.; Walter, C. Consistent and stable expression of the nptII, uidA and bar genes in transgenic Pinus radiata after Agrobacterium tumefaciens-mediated transformation using nurse cultures. Plant Cell Rep; (in press) 2004.Google Scholar
  14. Clapham, D.; Demel, P.; Elfstrand, M.; Koop, H.-U.; Sabala, I.; Van Arnold, S. Gene transfer by particle bombardment of embryogenic cultures of Picea abies and the production of transgenic plantlets. Scand. J. For. Res. 15:151–160; 2000.CrossRefGoogle Scholar
  15. Conner, A. J.; Glare, T. R.; Nap, J.-P. The release of genetically modified crops into the environment. Plant J. 33:19–46; 2003.PubMedCrossRefGoogle Scholar
  16. Dale, P.J. Public concerns over transgenic crops. Genome Res. 9:1159–1162; 1999.PubMedCrossRefGoogle Scholar
  17. Dale, P. J.; Clarke, B.; Fontes, M. G. Potential for the environmental impact of transgenic crops. Nature Biotechnol. 20:567–574; 2002.CrossRefGoogle Scholar
  18. De Block, M.; Botterman, J.; Vandewiele, M.; Dockx, J.; Thoen, C.; Gosselé, V.; Rao Movva, N.; Thompson, C.; Van Montagu, M.; Leemans, J. Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J. 6:2513–2518; 1987.PubMedGoogle Scholar
  19. De la Cruz, I.; Davies, I. Horizontal gene transfer and the origin of species: lessons from bacteria. Trends Microbiol. 8:128–133; 2000.PubMedCrossRefGoogle Scholar
  20. De Vries, J.; Meier, P.; Wackernagel, W. The natural transformation of the soil bacteria Pseudomonas stutzeri and Acinetobacter sp. by transgenic DNA strictly depends on homologous sequences in the recipient cells. FEMS Microbiol. Lett. 195:211–215; 2001.PubMedCrossRefGoogle Scholar
  21. Droege, W.; Puehler, A.; Selbitschka, W. Horizontal gene transfer among bacteria in terrestrial and aquatic habitats as assessed by microcosm and field studies. Biol. Fertil. Soils 29:221–245; 1999.CrossRefGoogle Scholar
  22. Ellis, D. D.; McCabe, D. E.; McInnis, S.; Ramachandran, R.; Russell, D. R.; Wallace, K. M.; Martinell, B. J.; Roberts, D. R.; Raffa, K. F.; McCown, B. H. Stable transformation of Picea glauca by particle acceleration. Nature Biotechnol. 11:84–89; 1993.CrossRefGoogle Scholar
  23. Ellstrand, N. C. When transgenes wander, should we worry? Plant Physiol. 125:1543–1545; 2001.PubMedCrossRefGoogle Scholar
  24. Evans, J. The sustainability of wood production in plantation forestry. Unasylva 192:47–52; 1998.Google Scholar
  25. FAOSTAT interactive database (http://apps.fao.org/)Google Scholar
  26. Fenning, T. M.; Gershenzon, J. Where will the wood come from? Plantation forests and the role of biotechnology. Trends Biotechnol. 20:291–296;2002.PubMedCrossRefGoogle Scholar
  27. Fillatti, J. J.; Sellmer, J.; McCown, B.; Haissig, B.; Comai, L. Agrobacterium-mediated transformation and regeneration of Populus. Mol. Gen. Genet. 206:192–199; 1987.CrossRefGoogle Scholar
  28. Fischer, R.; Buddle, I.; Hain, R. Stilbene synthase gene expression causes changes in flower colour and male sterility in tobacco. Plant J. 11:489–498; 1997.CrossRefGoogle Scholar
  29. Fladung, M. Gene stability in transgenic aspen (Populus). I. Flanking DNA sequences and T-DNA structure. Mol. Gen. Genet. 260:574–581; 1999.PubMedCrossRefGoogle Scholar
  30. Gianessi, L.; Sankula, S.; Reigner, N. Plant biotechnology: potential impact for improving pest management in European agriculture. Washington, DC National Center for Food and Agricultural Policy; 2003 (www.ncfap.org).Google Scholar
  31. Gianessi, L.; Sivers, CS.; Sankula, S.; Carpenter, J. E., Plant biotechnology: current and potential impact for improving pest management in US agriculture. An analysis of 40 case studies. Washington, DC: National Center for Food and Agricultural Policy; 2002 (www.ncfap.org).Google Scholar
  32. Guerinot, M. L. Plant biology: enhanced: the Green Revolution strikes gold. Science 287:242–243; 2000.CrossRefGoogle Scholar
  33. Hadi, M. Z.; McMullen, M. D.; Finer, J. J. Transformation of 12 different plasmids into soybean via particle bombardment Plant Cell Rep. 15:500–505; 1996.CrossRefGoogle Scholar
  34. Ho, M.-W.; Ryan, A.; Cummins, J. Cauliflower mosaic viral promoter—a recipe for disaster?. Microbial Ecol. Health Dis. 11:194–197; 1999.CrossRefGoogle Scholar
  35. Hoefig, K. P.; Moyle, R. L.; Putterill, J.; Walter, C. Expression analysis of four Pinus radiata male cone promoters in the heterologous host Arabidopsis. Planta 217:858–867; 2003.CrossRefGoogle Scholar
  36. Holland, L.; Gemmell, J. E.; Charity, J. A.; Walter, C. Foreign gene transfer into Pinus radiata cytoledons by Agrobacterium tumefaciens. NZ J. For. Sci. 27:289–304; 1997.Google Scholar
  37. Huang, Y.; Diner, A. M.; Karnosky, D. F. Agrobacterium rhizogenes mediated genetic transformation and regeneration of a conifer: Larix decidua. In Vitro Cell. Dev. Biol. Plant. 27:201–207; 1991.Google Scholar
  38. Jain, R.; Rivera, M. C.; Lake, J. A. Horizontal gene transfer among genomes: the complexity hypothesis. Proc. Natl Acad. Sci. USA 96:3801–3806; 1999.PubMedCrossRefGoogle Scholar
  39. James, C., Global status of commercialisation of transgenic crops: 2003. ISAAA briefs no. 30; 2003 (www.isaaa.org).Google Scholar
  40. Kaiser, J. Words (and axes) fly over transgenic trees. Science 292(5514): 34–36; 2001.Google Scholar
  41. Kanowski, P. J. Afforestation and plantation forestry. Paper for the XI World Forestry Congress; 1997 (http://coombs.anu.edu.au/Depts/RSPAS/RMAP/kanow.htm).Google Scholar
  42. Klein, T. M.; Wolf, E. D.; Wu, R.; Sanford, J. C. High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327:70–73; 1987.CrossRefGoogle Scholar
  43. Klimaszewska, K.; Lachance, D.; Pelletier, G.; Lelu, A. M.; Seguin, A. Regeneration of transgenic Picea glauca, P. mariana and P. abies after cocultivation of embryogenic tissue with Agrobacterium tumefaciens. In Vitro Cell. Dev. Biol. Plant 37:748–755; 2001.CrossRefGoogle Scholar
  44. Krattiger, A.F. Insect resistance in crops: a case study of Bacillus thuringiensis (Bt) and its transfer to developing countries. ISAAA briefs no.2; 1996 (www.isaaa.org).Google Scholar
  45. Kube, P.; Carson, M. A review of risk factors associated with clonal forestry of conifers. In: Walter, C.; Carson, M. J., eds. Plantation forest biotechnology for the 21st century. Kerala: Research Signpost; 2004 (in press).Google Scholar
  46. Kumar, S.; Fladung, M. Gene stability in transgenic aspen (Populus). II. Molecular characterisation of variable expression of transgene in wild and hybrid aspen. Planta 213:731–740; 2001.PubMedCrossRefGoogle Scholar
  47. Leisinger, K. M.; Ethical and ecological aspects of industrial property rights in the context of genetic engineering and biotechnology. Basel: Novartis Foundation for Sustainable Development; 1996 (www.foundation.novartis.com.genetic_engineering_biotechnology.htm).Google Scholar
  48. Levée, V.; Garin E.; Klimaszewska, K.; Seguin, A. Stable genetic transformation of white pine (Pinus strobus L.) after cocultivation of embryogenic tissues with Agrobacterium tumefaciens. Mol. Breed. 5:429–440; 1999.CrossRefGoogle Scholar
  49. Levée, V.; Jouanin, L.; Dornu, D.; Pilate, G. Agrobacterium tumefaciens mediated transformation of hybrid larch (Larix kaempferi x L. decidua) and transgenic plant regeneration. Plant Cell Rep. 16:680–685; 1997.CrossRefGoogle Scholar
  50. Li, L.; Zhou, Y.; Cheng, X.; Sun, J.; Marita, J. M.; Ralph, J.; Chiang, V. L. Combinatorial modification of multiple lignin traits in trees through multigene co-transformation. Proc. Natl Acad. Sci. USA 100:4939–4944; 2003.PubMedCrossRefGoogle Scholar
  51. Libby, W. J.; Rauter, R. M. Advantages of clonal forestry. For. Chron. 60:145–149; 1984.Google Scholar
  52. Lorenz, M. G.; Wackernagel, W. Bacterial gene transfer by natural genetic transformation in the environment. Microbiol. Rev. 58:563–602; 1994.PubMedGoogle Scholar
  53. Losey, J. E.; Raynor, L. S.; Carter, M. E. Transgenic pollen harms monarch larvae. Nature 399:214; 1999.PubMedCrossRefGoogle Scholar
  54. Menzies, M. I.; Aimers-Halliday, J. Propagation options for clonal forestry with conifers In: Walter, C.; Carson, M. J., eds. Plantation forest biotechnology for the 21st century. Kerala: Research Signpost; 2004 (in press).Google Scholar
  55. Nielsen, K. M.; Bones, A. M.; Smalla, K.; Van Elsas, J. D. Horizontal gene transfer from transgenic plants to terrestrial bacteria—a rare event? FEMS Microbiol. Rev. 22:79–103; 1998.PubMedGoogle Scholar
  56. Ochmann, H.; Lawrence, J. G.; Groisman, E. A. Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304; 2000.CrossRefGoogle Scholar
  57. Owusu, R. A. GM technology in the forest sector. A scoping study for the WWF; 1999 (www.wwf.uk.org/filelibrary/pdf/gmsummary/pdf).Google Scholar
  58. Pawlowski, W. P.; Somers, D. A. Transgene inheritance in plants genetically engineered by microprojectile bombardment. Mol. Biotechnol. 6:17–30; 1996.PubMedGoogle Scholar
  59. Pena, L.; Seguin, A. Recent advances in the genetic transformation of trees. Trends Biotechnol. 19:500–506; 2001.PubMedCrossRefGoogle Scholar
  60. Phipps, R. H.; Park, J. R. Environmental benefits of genetically modified crops: global and European perspectives on their ability to reduce pesticide use. J. Animal Feed Sci. 11:1–18; 2002.Google Scholar
  61. Pilate, G.; Guiney, E.; Holt, K.; Petit-Conil, M.; Lapierre, C.; Leple, J. C.; Pollet, B.; Mila, I.; Webster, E. A.; Marstorp, H. G.; Hopkins, D. W.; Jouanin, L.; Boerjan, W.; Schuch, W.; Cornu, D.; Halpin, C. Field and pulping performances of transgenic trees with altered lignification. Nat. Biotechnol. 20:558–560; 2002.CrossRefGoogle Scholar
  62. Pray, C. E.; Huang, J.; Hu, R.; Rozelle, S. Five years of Bt cotton in China— the benefits continue. Plant J. 31:423–430; 2002.PubMedCrossRefGoogle Scholar
  63. Punja, Z. K. Genetic engineering of plants to enhance resistance to fungal pathogens—a review of progress and future prospects. Can. J. Plant Pathol. 23:211–215; 2001.CrossRefGoogle Scholar
  64. Quist, D.; Chapela, I. H. Transgenic DNA introgressed into traditional maize landraces in Oaxaca, Mexico. Nature 414:541–543; 2001.PubMedCrossRefGoogle Scholar
  65. Rhymer, J. M.; Simberloff, D. Extinction by hybridization and introgression. Annu. Rev. Ecol. Syst. 27:87–109; 1996.CrossRefGoogle Scholar
  66. Shin, D. I.; Podila, G. K.; Hunag, Y.; Karnosky, D. F. Transgenic larch expressing genes for herbicide and insect resistance. Can. J. For. Res. 24:2059–2067; 1994.Google Scholar
  67. Shintani, D.; DellaPenna, D. Elevating the vitamin E content of plants through metabolic engineering. Science 282:208–210; 1998.CrossRefGoogle Scholar
  68. Snow, A. Transgenic crops—why gene flow matters. Nat. Biotechnol. 20:542; 2002.PubMedCrossRefGoogle Scholar
  69. South, D. B. How can we feign sustainability with an increasing population? New For. 17:193–212; 1999.Google Scholar
  70. Stewart, C. N.; Richards, H. A.; Halfhill, M. D. Transgenic plants and biosafety: science, misconceptions and public perceptions. Bio-Techniques 29:832–843; 2000.Google Scholar
  71. Strauss, S. H.; Rottmann, W. H.; Brunner, A. M.; Sheppard, L. A. Genetic engineering of reproductive sterility in forest trees. Mol. Breed. 1:5–26; 1995.CrossRefGoogle Scholar
  72. Tang, W.; Tian, Y. Transgenic loblolly pine (Pinus taeda L.) plants expressing a modified delta-endotoxin gene from Bacillus thuringiensis with enhanced resistance to Dendrolimus punctatus Walker and Crypyothelea formosicola Staud. J. Exp. Bot. 54:835–844; 2003.PubMedCrossRefGoogle Scholar
  73. Tepfer, D.; Garcia-Gonzales, R.; Mansouri, H.; Seruga, M.; Message, B.; Leach, F.; Mirna Curkovic, P. Homology-dependent DNA transfer from plants to a soil bacterium under laboratory conditions: implications in evolution and horizontal gene transfer. Transgenic Res. 12:425–437; 2003.PubMedCrossRefGoogle Scholar
  74. Thompson Campbell, F. T. Genetically engineered trees: questions without answers, American Lands Alliance; 2000 (http://www.americanlands.org/forestweb/getrees.htm).Google Scholar
  75. Tzfira, T.; Zuker, A.; Altmann, A. Forest-tree biotechnology: genetic transformation and its application to future forests. TIBTECH 16:439–446; 1998.Google Scholar
  76. Van den Belt, H. Debating the precautionary principle: ‘Guilty until proven innocent’ or ‘Innocent until proven guilty’? Plant Physiol. 132:1122–1126; 2003.PubMedCrossRefGoogle Scholar
  77. Vasil, I. K. The science and politics of plant biotechnology—a personal perspective. Nat. Biotechnol. 21:849–851; 2003.PubMedCrossRefGoogle Scholar
  78. Wagner, A.; Moody, J.; Grace, L. J.; Walter, C. Stable transformation of Pinus radiata based on selection with Hygromycin B. NZJ. For. Sci. 27:280–288; 1997.Google Scholar
  79. Walter, C.; Charity, J.; Grace, L.; Hoefig, K.; Moeller, R.; Wagner, A. Gene technologies in Pinus radiata and Picea abies: tools for conifer biotechnology in the 21st century. Plant Cell Tiss. Organ Cult. 70:3–12; 2002.CrossRefGoogle Scholar
  80. Walter, C.; Fenning, T. Deployment of genetically-engineered trees in plantation forestry—an issue of concern? The science and politics of genetically modified tree plantations. In: Walter, C.; Carson, M. J., eds. Plantation forest biotechnology for the 21 st century. Kerala: Research Signpost; 2004 (in press).Google Scholar
  81. Walter, C.; Grace, L. J.; Donaldson, S. S.; Moody, J.; Gemmell, J. E.; Van der Maas, S.; Kwaalen, H.; Loenneborg, A. An efficient biolistic transformation protocol for Picea abies (L) Karst embryogenic tissue and regeneration of transgenic plants. Can. J. For. Res. 29:1539–1546; 1999.CrossRefGoogle Scholar
  82. Walter, C.; Grace, L. J.; Wagner, A.; Walden, A. R.; White, D. W. R.; Donaldson, S. S.; Hinton, H. H.; Gardner, R. C.; Smith, D. R. Stable transformation and regeneration of transgenic plants of Pinus radiata D. Don. Plant Cell Rep. 17:460–468; 1998.CrossRefGoogle Scholar
  83. Walter, C.; Smith, D. R.; Connett, M. B.; Grace, L. J.; White, D. W. R. A biolistic approach for the transfer and expression of a gus reporter gene in embryogenic cultures of Pinus radiata. Plant Cell Rep. 14:69–74; 1994.CrossRefGoogle Scholar
  84. Wenck, A. R.; Quinn, M.; Whetten, R. W.; Pullman, G.: Sederoff, R. High efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda). Plant Mol. Biol. 39:407–416; 1999.PubMedCrossRefGoogle Scholar
  85. Whetten, R.; Sederoff, R. Genetic engineering of wood. For. Ecol. Manage. 43:301–316; 1991.CrossRefGoogle Scholar
  86. Zhu, S.; Tomberlin, D.; Buongiorno, J. Global forest products consumption, production, trade and prices: global forest products model projections to 2010. FAO report; 1999 (http://www.fao.org/forestry/foris/index.jsp?lang_id=1&geo_id=42&start_id=2711).Google Scholar
  87. Zobel, B. J. Vegetative propagation in production forestry. J. For. 94:29–33; 1992.Google Scholar

Copyright information

© Society for In Vitro Biology 2004

Authors and Affiliations

  1. 1.New Zealand Forest Research Institute Ltd.RotoruaNew Zealand

Personalised recommendations