Advertisement

Sivb 2003 Congress Symposium Proceeding: Mutation- and Transposon-Based Approaches for the Identification of Genes for Pre-Harvest Sprouting in Wheat

  • Lucia C. Strader
  • Janice M. Zale
  • Camille M. SteberEmail author
Article

Summary

This article reviews techniques for gene identification and cloning in allohexaploid bread wheat (Triticum aestivum L.). Gene identification and cloning in wheat are complicated by the large size and high redundancy of the genome. Both classical mutagenesis and transposon tagging are important tools for the study of grain dormancy and plant hormone signaling in wheat. While classical mutagenesis can be used to identify wheat mutants with altered hormone sensitivity, it can be difficult to clone the corresponding genes. We review the techniques available for gene identification in wheat, and propose that transposon-based activation tagging will be an important tool for wheat genetics.

Key words

Triticum aestivum L. pre-harvest sprouting dormancy mutagenesis transposon-tagging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan, R. E. Agronomic comparisons among wheat lines nearly isogenic for three reduced-height genes. Crop Sci. 26:707–710; 1986.CrossRefGoogle Scholar
  2. Anderberg, R. J.; Walker-Simmons, M. K. Isolation of a wheat cDNA clone for an abscisic acid-inducible transcript with homology to protein kinases. Proc. Natl Acad. Sci. USA 89:10183–10187; 1992.PubMedCrossRefGoogle Scholar
  3. Anderson, M.; Mulligan, B. Arabidopsis mutant collection. In: Koncz, C.; Chua, N.-H.; Schell, J., eds. Methods in Arabidopsis research. River Edge, NJ; World Scientific Publishing; 1992:419–437Google Scholar
  4. Arumuganathan, K.; Earle, E. D. Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep. 9:208–219; 1991.Google Scholar
  5. Bennetzen, J. L. The Mutator transposable element system in maize. In: Saedler, H.; Gierl, A., eds. Transposable elements. Berlin and Heidelberg: Springer-Verlag; 1996:195–229.Google Scholar
  6. Boyd, L. A.; Smith, P. H.; Wilson, A. H.; Minchin, P. N. Mutations in wheat showing altered field resistance to yellow and brown rust. Genome 45:1035–1040; 2002.PubMedCrossRefGoogle Scholar
  7. Enoki, H.; Izawa, T.; Kaahara, M.; Komatsu, M.; Koh, S.; Kyozuka, J.; Shimamoto, K. Ac as a tool for the functional genomics of rice. Plant J. 19:605–613; 1999.PubMedCrossRefGoogle Scholar
  8. Fedoroff, N.; Furtek, V.; Smith, D. L. Cloning of the Bronze locus in maize by a simple and generalizable procedure using the transposable element Ac. Proc. Natl Acad. Sci. USA 81:3825–3829; 1984.CrossRefGoogle Scholar
  9. Feldmann, K. A. T-DNA insertion mutagenesis in Arabidopsis-mutational spectrum Plant J. 71–82; 1991.Google Scholar
  10. Finkelstein, R. R.; Rock, C. D. Abscisic acid biosynthesis and response. In: The Arabidopsis book. Rockville, MD: American Society of Plant Physiologists; 2002.Google Scholar
  11. Friebe, B.; Jiang, J.; Knott, D. R.; Gill, B. S. Compensation indices of radiationinduced wheat-Agropyron elongatum translocations conferring resistance to leaf rust and stem rust. Crop Sci. 34:400–404; 1994.CrossRefGoogle Scholar
  12. Galili, S.; Avivi, Y.; Millet, E.; Feldman, M. RFLP-based analysis of three RbcS subfamilies in diploid and polyploid species of wheat. Mol. Gen. Genet. 263:674–680; 2000.PubMedCrossRefGoogle Scholar
  13. Giroux, M. J.; Morris, C. F. A glycine to serine change in puroindoline b is associated with wheat grain hardness and low levels of starch-surface friabilin. theor. Appl. Genet. 95:857–864; 1997.CrossRefGoogle Scholar
  14. Giroux, M. J.; Morris C. F. Wheat grain hardness results from highly conserved mutations in the friabilin components puroindoline a and b. Proc. Natl Acad. Sci. USA 95:6262–6266; 1998.PubMedCrossRefGoogle Scholar
  15. Groos, C.; Gay, G.; Perretant, M.-R.; Gervais, L.; Bernard, M.; Dedryver, F.; Charmet, G. Study of the relationship between pre-harvest sprouting and grain color by quantitative trait loci analysis in a white × red grain bread-wheat cross. Theor. Appl. Genet. 104:39–47; 2002.PubMedCrossRefGoogle Scholar
  16. Hayashi, H.; Czaja, I.; Lubenow, H.; Schell, J.; Walden, R. Activation of a plant gene by T-DNA tagging: auxin-independent growth in vitro. Science 258:1350–1353; 1992.PubMedCrossRefGoogle Scholar
  17. Heslot, H. The nature of mutations. In: The use of induced mutations in plant breeding. Oxford and New York: Pergamon Press; 1965:3–45.Google Scholar
  18. Jiang, J.; Gill, B. S. New 18S.26S ribosomal RNA gene loci: chromosomal landmarks for the evolution of polyploid wheats. Chromosoma 103:179–185; 1994.PubMedGoogle Scholar
  19. Kawakami, N.; Miyake, Y.; Noda, K. ABA insensitivity and low ABA levels during seed development of non-dormant wheat mutants. J. Exp. Bot. 48:1415–1421; 1997.CrossRefGoogle Scholar
  20. Kerber, E. R. Stem-rust resistance in ‘Canthatch’ hexaploid wheat induced by a nonsuppressor mutation on chromosome 7DL. Genome 34:935–939; 1991.Google Scholar
  21. Kerber, E. R.; Aung, T. Confirmation of nonsuppressor mutation of stem rust resistance in ‘Canthatch’ common wheat. Crop Sci. 35:743–744; 1995.CrossRefGoogle Scholar
  22. Kinane, J. T.; Jones, P. W. Isolation of wheat mutants with increased resistance to powdery mildew from small induced variant populations. Euphytica 117:251–260; 2001.CrossRefGoogle Scholar
  23. Koncz, C.; Schell, J.; Rédei, G. P. T-DNA transformation and insertion mutagenesis. In: Koncz, C. Chua, N.-H.; Schell, J., eds. Methods in Arabidopsis research. River Edge, NJ: World Scientific Publishing; 1992:224–273.Google Scholar
  24. Konzak, C. F. Mutations and mutation breeding. In: Heyne, E. G., ed. Wheat and wheat improvement, 2nd edn. Madison, WI: American Society o Agronomy; 1987:428–443.Google Scholar
  25. Koprek, T.; McElroy, D.; Louwerse, J.; Williams-Carrier, R.; Lemaux, P. G. Technical advance: an efficient method for dispersing Ds elements in the barley genome as a tool for determining gene function. Plant J. 24:253–263; 2000.PubMedCrossRefGoogle Scholar
  26. Lawson, W. R.; Godwin, I. D.; Cooper, M.; Brennan, P. S. Genetic analysis of preharvest sprouting tolerance in three wheat crosses. Euphytica 95:321–323; 1997.CrossRefGoogle Scholar
  27. Long, D.; Goodrich, J.; Wilson, K.; Sundberg, E.; Martin, M.; Puangsomlee, P.; Coupland, G. Ds elements on all five Arabidopsis chromosomes and assessment of their utility for transposon tagging. Plant J. 11:145–148; 1997.PubMedCrossRefGoogle Scholar
  28. McKelvie, A. D. A list of mutant genes in Arabidopsis thaliana (L). Heynh. Radiat. Bot. 1:233–241; 1962.CrossRefGoogle Scholar
  29. McLysaght, A.; Enright, A. J.; Skrabanek, L.; Wolfe, K. H. Estimation of synteny conservation and genome compaction between pufferfish (Fugu) and human. Yeast 17:22–36; 2000.PubMedCrossRefGoogle Scholar
  30. Osborne, B. I.; Baker, B. Movers and shakers: maize transposons as tools for analyzing other plant genomes. Curr. Opin. Cell Biol. 7:406–413; 1995.PubMedCrossRefGoogle Scholar
  31. Parinov, S.; Sevugan, M.; De, Y.; Yang, W. C.; Kumaran, M.; Sundaresan, V. Analysis of flanking sequences from dissociation insertion lines. A database for reverse genetics in Arabidopsis. Plant Cell 11:2263–2270; 1999.PubMedCrossRefGoogle Scholar
  32. Peng, J.; Richards, D. E.; Hartley, N. M.; Murphy, G. P.; Devos, K. M.; Flintham, J. E.; Beales, J.; Fish, L. J.; Worland, A. J.; Pelica, F.; Sudhakar, D.; Christou, P.; Snape, J. W.; Gale, M. D.; Harberd, N. P. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261; 1999.PubMedCrossRefGoogle Scholar
  33. Rédei, G. P. Arabidopsis thaliana: a review of the genetics and biology. Bibliogr. Genet. 20:1–151; 1970.Google Scholar
  34. Rédei, G. P.; Koncz, C. Classical mutagenesis. In: Koncz, C.; Chua, N.-H.; Schell, J., eds. Methods in Arabidopsis research. River Edge, NJ: World Scientific Publishing; 1992:16–82.Google Scholar
  35. Roy, J. K.; Prasad, M.; Varshney, R. K.; Balyan, H. S.; Blake, T. K.; Dhaliwal, H. S.; Singh, H.; Edwards, K. J.; Gupta, P. K. Identification of a microsatellite on chromosomes 6B and a STS on 7D of bread wheat showing an association with preharvest sprouting tolerance. Theor. Appl. Genet. 99:336–340; 1999.CrossRefGoogle Scholar
  36. Schell J. S. Transgenic plants as tools to study the molecular organization of plant genes. Science 237:1176–1183; 1987.CrossRefGoogle Scholar
  37. Wahl, T. I.; O'Rourke, A. D. The economics of spfout damage in wheat. In: Walker-Simmons, M. K.; Ried, J. L., eds. Pre-harvest sprouting in cereals. St. Paul, MN: American Association of Cereal Chemists; 1993:10–17.Google Scholar
  38. Walker-Simmons, M. ABA levels and sensitivity in developing wheat embryos of sprouting resistant and susceptible cultivars. Plant Physiol. 84:61–66; 1987.PubMedCrossRefGoogle Scholar
  39. Weigel, D.; Ahn, J. H.; Blazquez, M. A.; Borevitz, J. O.; Christensen, S. K.; Fankhauser, C.; Ferrandiz, C.; Kardailsky, I.; Malancharuvil, E. J.; Neff, M. M.; Nguyen, J. T.; Sato, S.; Wang, Z. Y.; Xia, Y.; Dixon, R. A.; Harrison, M. J.; Lamb, C. J.; Yanofsky, M. F.; Chory, J. Activation tagging in Arabidopsis. Plant Physiol. 122:1003–1013; 2000.PubMedCrossRefGoogle Scholar
  40. Weil, C. F.; Kunze, R. Transposition of maize Ac/Ds transposable elements in the yeast Saccharomyces cerevisiae. Nat. Genet. 26:187–190; 2000.PubMedCrossRefGoogle Scholar
  41. Williams, N. D.; Miller, J. D.; Klindworth, D. L. Induced mutations of a genetic suppressor of resistance of wheat stem rust. Crop Sci. 32:612–616; 1992.CrossRefGoogle Scholar
  42. Yan, L.; Loukoianov, A.; Tranquilli, G.; Helguera, M.; Fahima, T.; Dubcovsky, J. Positional cloning of the wheat vernalization gene VRNI. Proc. Natl Acad. Sci. USA 100:6263–6268; 2003.PubMedCrossRefGoogle Scholar
  43. Zale, J. M.; Steber, C. M. Transposon-related sequences in the Triticeae. Cereal Res. Commun. 30:237–244; 2002.Google Scholar
  44. Zanetti, S.; Winzeler, M.; Keller, M.; Keller, B.; Messmer, M. Genetic analysis of pre-harvest sprouting resistance in a wheat × spelt cross. Crop Sci. 40:1405–1417; 2000.CrossRefGoogle Scholar

Copyright information

© US Government 2004

Authors and Affiliations

  • Lucia C. Strader
    • 1
  • Janice M. Zale
    • 1
  • Camille M. Steber
    • 1
    • 2
    Email author
  1. 1.Department of Crop and Soil SciencesWashington State UniversityPullman
  2. 2.USDA-ARSWashington State UniversityPullman

Personalised recommendations